JPH02199040A - Wire drawing of optical fiber - Google Patents

Wire drawing of optical fiber

Info

Publication number
JPH02199040A
JPH02199040A JP2039989A JP2039989A JPH02199040A JP H02199040 A JPH02199040 A JP H02199040A JP 2039989 A JP2039989 A JP 2039989A JP 2039989 A JP2039989 A JP 2039989A JP H02199040 A JPH02199040 A JP H02199040A
Authority
JP
Japan
Prior art keywords
optical fiber
inert gas
core tube
chamber
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2039989A
Other languages
Japanese (ja)
Inventor
Masatoshi Mikami
雅俊 三上
Keigo Maeda
恵吾 前田
Yasuhiro Naka
恭宏 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2039989A priority Critical patent/JPH02199040A/en
Publication of JPH02199040A publication Critical patent/JPH02199040A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/029Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/82Means for sealing the fibre exit or lower end of the furnace
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles

Abstract

PURPOSE:To improve mechanical strength and uniformity of outer diameter of optical fiber by equipping an upper inert gas feed part, a storage chamber of parent material, a furnace core tube provided with a small chamber opening downward at an extended part and a specific gas blowing tool and carrying out melt spinning in an inert gas atmosphere. CONSTITUTION:A fixed amount of inert gas is always sent from an upper inert gas feed part 6 to a high-temperature storage chamber 9 of parent material having stored an optical fiber preform 1, flows downward along the outside of the optical fiber preform 1 and the inert gas is gradually expanded by a small chamber 10 opening downward at an extended part 8 of furnace core tube having an inner diameter l2 smaller than an inner diameter l1 of the stor age chamber 9 of parent material and a throttling part 11 having an inner diameter l3 smaller than l2 set between the storage chamber of parent material and the small chamber. An inert gas is introduced upward from an inert gas blowing tool 12 below the extended part 8 of furnace core tube at a given interval so that a fiber drawing furnace to seal an optical fiber 5 sent from the small chamber 10 from the open air until the optical fiber is solidified is constituted to give an optical fiber having small diameter variability.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、上下方向を向いた炉心管内で光ファイバ母材
の下端部をヒータで加熱溶融させ、該光ファイバ母材の
溶融部の下端から下向きに光ファイバを紡糸する光ファ
イバ線引炉に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention involves heating and melting the lower end of an optical fiber preform with a heater in a vertically oriented furnace tube, and melting the lower end of the molten portion of the optical fiber preform. The present invention relates to an optical fiber drawing furnace that spins optical fiber downward from the top.

[従来技#4] 光ファイバの伝送特性は、近年著しく向上し、種々の分
野でその実用化が進められている。
[Prior Art #4] The transmission characteristics of optical fibers have improved significantly in recent years, and their practical use is progressing in various fields.

しかしながら、光ファイバについて依然として向上すべ
き課題に、光ファイバの機械強度の向上と外径の均一性
とが挙げられている。即ち、前者は海底敷設用光ファイ
バケーブル等の分野のように長尺n強度ファイバの需要
の増大に呼応するものであり、後者は接続損失を低減す
るために求められる光ファイバの均一性に呼応するもの
である。
However, issues that still need to be improved regarding optical fibers include improvement of the mechanical strength of the optical fiber and uniformity of the outer diameter. In other words, the former is in response to the increasing demand for long n-strength fibers, such as in the field of submarine optical fiber cables, and the latter is in response to the uniformity of optical fibers required to reduce splice loss. It is something to do.

このような光ファイバの各特性の優劣は、加熱した光フ
ァイバ母材から光ファイバを線引する方法に主に依存す
ることが知られている。
It is known that the quality of each characteristic of such an optical fiber depends mainly on the method of drawing the optical fiber from a heated optical fiber preform.

高品質光ファイバの線引は、一般に円筒状の炉心管を有
する光ファイバの線引炉によって行われている。
The drawing of high-quality optical fibers is generally performed in an optical fiber drawing furnace having a cylindrical core tube.

第4図(a) (b)は、カーボン製ヒータ及びカーボ
ン製炉心管を使用した一般的な光ファイバ線引炉の概略
構成を示す断面図である。
FIGS. 4(a) and 4(b) are cross-sectional views showing the schematic structure of a general optical fiber drawing furnace using a carbon heater and a carbon furnace tube.

同図に示すように、光ファイバ線引炉は、光ファイバ母
材1を収容する上下向きのカーボン類の円筒状炉心管2
と、その周囲に配置されて光ファイバ母材1の下端部を
加熱するカーボン製ヒータ3と該ヒータ3を収容する炉
体4とを備えている。
As shown in the figure, the optical fiber drawing furnace includes a carbon-like cylindrical core tube 2 facing upward and downward, which accommodates an optical fiber preform 1.
, a carbon heater 3 disposed around the heater 3 for heating the lower end of the optical fiber preform 1, and a furnace body 4 housing the heater 3.

このような光ファイバ線引炉においては、光ファイバ母
材1を、その下端がヒータ3の間に位置するように炉心
管2と略同輪状に位買付けし、該光ファイバ母材1の下
部をヒータ3により加熱溶融し、該溶融部1Aの温度を
一定に維持しながら、該溶融部1Aの下端から下向きに
光ファイバ5を紡糸している。
In such an optical fiber drawing furnace, the optical fiber preform 1 is positioned approximately in the same ring shape as the furnace tube 2 so that its lower end is located between the heaters 3, and the lower end of the optical fiber preform 1 is positioned between the heaters 3. is heated and melted by a heater 3, and an optical fiber 5 is spun downward from the lower end of the melting section 1A while keeping the temperature of the melting section 1A constant.

ところで、炉心管2がカーボン類の場合、光ファイバ母
材1が軟化するような高温度下では、h−ボン製炉心管
2は、大気に触れると容易に酸化されて消耗する。この
炉心管2の酸化消耗は、光フ′アイバ5の強度の低下を
誘起し、また、当然に線引炉自体の寿命も縮めることに
なる。
By the way, when the furnace core tube 2 is made of carbon, the h-bond furnace core tube 2 is easily oxidized and consumed when exposed to the atmosphere at high temperatures where the optical fiber base material 1 is softened. This oxidative wear and tear of the furnace core tube 2 induces a decrease in the strength of the optical fiber 5, and naturally shortens the life of the drawing furnace itself.

そこで、炉心管2の消耗を防止するために、第4図(a
)に示すように炉心管2の上部に上部不活性ガス供給部
6を設け、或いは第4図(b)に示すように炉心管2の
上下部に上部不活性ガス供給部6と下部不活性ガス供給
部7とを設け、不活性ガスを炉心管2内に送給し、該炉
心管2内を不活性雰囲気としていた。
Therefore, in order to prevent the furnace core tube 2 from being worn out, the
), as shown in FIG. A gas supply section 7 was provided to feed an inert gas into the furnace core tube 2 to create an inert atmosphere inside the furnace core tube 2.

[発明が解決しようとする課題] このように炉心管2内に不活性ガスを供給すると、(の
流量などに応じて光ファイバ母1711を冷却する。従
って、光ファイバ母材1の溶融部1Aの温度は、そのガ
ス流量に大きく影響される。
[Problems to be Solved by the Invention] When inert gas is supplied into the furnace core tube 2 in this way, the optical fiber motherboard 1711 is cooled according to the flow rate of (. The temperature of the gas is greatly influenced by the gas flow rate.

第4図(a) (b)かられかるように、不活性ガス供
給部6.7から供給される不活性ガスは、炉心管2内を
上昇する即ら光ファイバ母材1の上部の方へ流れる部分
と、光ファイバ母材1の下部の方へ流れる部分とがある
。一方、炉心管2に供給される光ファイバ母材1の直径
は必ずしも一定ではない。光ファイバ母材1の直径が変
化すると、炉心管2と該光ファイバ母材1との間隔も当
然変化し、両者の間に形成される不活性ガス流路の断面
積が変化するので不活性ガスの平均密度あるいは流速も
変化する。その結果として、炉心管2内を上昇する即ち
光ファイバ母材1の上部の方へ流れるガス流間が変化し
、それに伴い、不活性ガス供給部6,7から不活性ガス
供給量が一定とすれば、光ファイバ母材1の下部のhへ
流れるガス流Rも変化する。このように、光ファイバ母
材1の下部の方へ流れるガス流量が変化すると、光ファ
イバ母材1の溶融部1Aの温度が大きく変化する。
As can be seen from FIGS. 4(a) and 4(b), the inert gas supplied from the inert gas supply section 6.7 rises inside the core tube 2, that is, towards the upper part of the optical fiber preform 1. There are parts that flow toward the lower part of the optical fiber preform 1 and parts that flow toward the lower part of the optical fiber preform 1. On the other hand, the diameter of the optical fiber preform 1 supplied to the furnace tube 2 is not necessarily constant. When the diameter of the optical fiber preform 1 changes, the distance between the core tube 2 and the optical fiber preform 1 naturally changes, and the cross-sectional area of the inert gas flow path formed between them changes, so the inert gas flow path changes. The average density or flow rate of the gas also changes. As a result, the flow of gas flowing upward in the core tube 2, that is, toward the top of the optical fiber preform 1, changes, and as a result, the amount of inert gas supplied from the inert gas supply sections 6 and 7 becomes constant. Then, the gas flow R flowing to the lower part h of the optical fiber preform 1 also changes. As described above, when the flow rate of the gas flowing toward the lower part of the optical fiber preform 1 changes, the temperature of the melted portion 1A of the optical fiber preform 1 changes significantly.

例えば、光ファイバ母材1の溶融部1Aを流通する不活
性ガスの流♀が増加すると、この不活性ガスに奪われて
炉心管2の外へ流出する熱mが増加し、光ファイバ母材
1、殊にその体積に比して表面積が大きい溶融部1Aの
温度が低下する。その結果、溶融部1Aの軟化状態が変
動して線引条f1が変化し、光ファイバ5の外径が変化
する。
For example, when the flow of inert gas flowing through the molten part 1A of the optical fiber preform 1 increases, the heat m absorbed by the inert gas and flowing out of the core tube 2 increases, and the 1. In particular, the temperature of the melting zone 1A, which has a large surface area relative to its volume, decreases. As a result, the softened state of the fused portion 1A changes, the filament f1 changes, and the outer diameter of the optical fiber 5 changes.

従って、外径の変動が小さいへ品質の光ファイバ5を線
引するためには、炉心管2の内部に送給するガス流量を
調整することが線引における楊めて@要なり制御要素で
ある。
Therefore, in order to draw a quality optical fiber 5 with small variations in outer diameter, adjusting the gas flow rate fed into the inside of the furnace tube 2 is an essential control element in drawing. be.

光ファイバ5の外径を均一化するためのガス流間、即ち
、光ファイバ母材1の溶融部1Aでの不活性ガス流量が
一定になるような不活性ガスの供給船を算出することは
容易である。
It is possible to calculate an inert gas supply vessel so that the flow rate of the inert gas at the gas flow interval for uniformizing the outer diameter of the optical fiber 5, that is, at the melting part 1A of the optical fiber base material 1 is constant. It's easy.

しかし、光ファイバ5の外径の均一化のみ注目してガス
流間を制御した場合、炉心管12内への人気の混入を防
止するには不活性ガスの供給量が不十分になることがあ
る。炉心管2内へ大気が混入覆ると、カーボン製炉心管
2が潤粍し、光ファイバ5の強度が低下する。反面、炉
心管2内への大気の混入のみ注目してガス流間を制御し
た場合、ガス供給量が増大する傾向になり、ガス流に乱
れが生じ、光ファイバ5の外径が変動する。
However, if the gas flow rate is controlled by focusing only on making the outer diameter of the optical fiber 5 uniform, the amount of inert gas supplied may become insufficient to prevent the gas from entering the reactor core tube 12. be. When air enters the furnace core tube 2, the carbon core tube 2 becomes wet and the strength of the optical fiber 5 decreases. On the other hand, if the gas flow rate is controlled by focusing only on the mixing of air into the reactor core tube 2, the amount of gas supplied tends to increase, turbulence occurs in the gas flow, and the outer diameter of the optical fiber 5 fluctuates.

即ち、従来の線引方法では、光ファイバ母材1の温度制
御と炉心管2に対する大気の遮断とが両立せず、均一な
外径で十分な強度を有する光ファイバ5を線引できない
場合があった。
That is, in the conventional drawing method, temperature control of the optical fiber preform 1 and shielding of the atmosphere from the furnace tube 2 are not compatible, and it may not be possible to draw an optical fiber 5 having a uniform outer diameter and sufficient strength. there were.

第5図は、従来の光ファイバ50線径変動の状態を示し
たものである。即ち、従来の光ファイバ50線径は、0
.8μ■以下の範囲で変動していた。
FIG. 5 shows the state of variation in the diameter of a conventional optical fiber 50. That is, the diameter of the conventional optical fiber 50 is 0.
.. It fluctuated within a range of 8 μ■ or less.

本発明の目的は、光ファイバの線引に必要な光ファイバ
母材の温度の安定化と、炉心管の保護、及び光ファイバ
の外径変動の抑1.11とを図れる光ファイバ線引炉を
提供することにある。
An object of the present invention is to provide an optical fiber drawing furnace capable of stabilizing the temperature of the optical fiber base material necessary for drawing the optical fiber, protecting the furnace tube, and suppressing fluctuations in the outer diameter of the optical fiber. Our goal is to provide the following.

[yI題を解決するための手段1 上記の目的を達成するための本発明の詳細な説明すると
、本発明は上下方向を向いた炉心管内で光ファイバは材
の下部をヒータで加熱溶融させ、該光ファイバ母材の溶
融部の下端から下向きに光ファイバを紡糸する光ファイ
バ線引炉において、前記炉心管の下には炉心管延長部が
設けられ、前記炉心管内には前記光ファイバは月を収容
する母材収容室が設けられ、前記炉心管延長部内には前
記母材収容室に連通して該母材収容室の内径より内径が
小径で且つ下端が下向きに・開口された小室が設けられ
、前記炉心管の上部には前記母材収容室に対して不活性
ガスを前記光ファイバ母材の外周に沿って下向きに流す
ように供給する上部不活性ガス供給部が設けられ、前記
炉心管延長部の下には前記小室から出てくる前記光)?
イバに沿って十向きに不活性ガスを吹出す不活性ガス吹
出し貝が前記炉心管延長部に対して所定の間隔を隔てて
設けられていることを特徴とする。
[Means for Solving yI Problem 1] To explain in detail the present invention for achieving the above object, the present invention heats and melts the lower part of the optical fiber in a vertically oriented furnace tube with a heater. In the optical fiber drawing furnace that spins the optical fiber downward from the lower end of the molten part of the optical fiber preform, a core tube extension section is provided below the core tube, and the optical fiber is disposed within the core tube. A base metal storage chamber for accommodating the reactor core tube is provided, and a small chamber communicating with the base metal storage chamber and having an inner diameter smaller than the inner diameter of the base metal storage chamber and having a lower end opened downward is provided in the core tube extension. An upper inert gas supply section is provided at the upper part of the core tube to supply an inert gas to the preform storage chamber so as to flow downward along the outer periphery of the optical fiber preform, and the (The light coming out of the chamber below the core tube extension)?
The present invention is characterized in that an inert gas blowing shell for blowing out inert gas in ten directions along the pipe is provided at a predetermined interval with respect to the core tube extension.

[作用〕 このように光ファイバ母材を収容する炉心管内に母材収
容室を設け、その下に位置する炉心管延長部内に小室を
設け、炉心管の上部には上部不活性ガス供給部を設け、
該上部不活性ガス供給部から母材収容室に対して不活性
ガスを光ファイバ母材の外周に沿って下向きに流れるよ
うに供給し、炉心管延長部の下には所定の間隔を隔てて
不活性ガス吹出し具を設け、該不活性ガス吹出し具から
光ファイバに沿って上向きに不活性ガスを供給すると、
光ファイバ母材の温度のtdlt[]と炉心管に対する
人気の遮断とを両立させることができ、光ファイバの外
径変動を十分に抑シリできる。
[Operation] In this way, a preform storage chamber is provided in the core tube that accommodates the optical fiber preform, a small chamber is provided in the core tube extension located below it, and an upper inert gas supply section is provided at the top of the core tube. established,
Inert gas is supplied from the upper inert gas supply section to the preform storage chamber so as to flow downward along the outer periphery of the optical fiber preform, and is provided at a predetermined interval below the core tube extension. When an inert gas blowing device is provided and the inert gas is supplied upward along the optical fiber from the inert gas blowing device,
It is possible to achieve both the temperature tdlt[] of the optical fiber base material and the popular shielding of the furnace tube, and it is possible to sufficiently suppress fluctuations in the outer diameter of the optical fiber.

[実施例] 以下、本発明の実施例を図面を参照して詳細に説明する
。なお、前述した第4図(a) (b)と対応する部分
には同一符号を付けて示している。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings. Note that parts corresponding to those in FIGS. 4(a) and 4(b) described above are designated by the same reference numerals.

第1図は本発明に係る光ファイバ線引炉の一実施例を示
したものである。図示のように本実施例の光ファイバ線
引炉においては、炉心管2の下には炉心管延長部8が炉
体4と一体にhなる長さで設けられている。炉心管2内
には、光ファイバ母材1を収容する母材収容室9が設け
られている。
FIG. 1 shows an embodiment of an optical fiber drawing furnace according to the present invention. As shown in the figure, in the optical fiber drawing furnace of this embodiment, a core tube extension part 8 is provided below the furnace tube 2 and integrally with the furnace body 4 to a length h. A preform housing chamber 9 for accommodating the optical fiber preform 1 is provided within the furnace tube 2 .

炉心管延長部8内には、母材収容室9に連通して該母材
収容室9の内径J2+より内径β2が小径で且つ下端が
下向きに開口された小室10が設けられている。母材収
容室9と小室10との間には、小室10の内径℃2より
内径a3が小径の絞り部11が設けられている。炉心管
2の上部には、母材収容v9に対して不活性ガスを光フ
ァイバ母材1の外周に沿って下向きに流すように供給す
る上部不活性ガス供給部6が設けられている。炉心管延
長部8の下には、小室10から出て来る光ファイバ5に
沿って上向きに不活性ガスを吹出す不活性ガス吹出し具
12が炉心管延長部8に対して所定の間隔を隔てて設け
られている。
Inside the furnace tube extension 8, a small chamber 10 is provided which communicates with the base material storage chamber 9, has an inner diameter β2 smaller than the inner diameter J2+ of the base material storage chamber 9, and has a lower end opened downward. A constricted portion 11 having an inner diameter a3 smaller than the inner diameter C2 of the small chamber 10 is provided between the base material storage chamber 9 and the small chamber 10. An upper inert gas supply section 6 is provided at the upper part of the furnace tube 2 to supply inert gas to the preform housing v9 so as to flow downward along the outer periphery of the optical fiber preform 1. Below the core tube extension 8 , an inert gas blower 12 is installed at a predetermined distance from the core tube extension 8 and blows inert gas upward along the optical fiber 5 coming out of the small chamber 10 . It is provided.

第2図は第1図における母材収容室9及び小室10の温
度分布図である。
FIG. 2 is a temperature distribution diagram of the base material storage chamber 9 and the small chamber 10 in FIG. 1.

次に、このような光ファイバ線引炉の動作について説明
する。光ファイバ母材1を収容した母材収容室9には、
上部不活性ガス供給部6より不活性ガスが供給され、該
不活性ガスは光ファイバ母U1の外周に沿って下方へ流
れる。この場合、母材収容室9は約2000℃と高温で
あって、そこを流れる不活性ガスは爆発的に膨張するの
で、従来は光ファイバ5の固化点の安定化や光ファイバ
5の振れを抑!、IIすることは不可能であった。そこ
で、本発明では、母材収容室9の上方から一定量の不活
性ガスを流し込み、R高温に達する過程で徐々に膨張さ
せるようにしている。また、母材収容室9と小室10と
は、できるだけ干渉を排除するため両者の内径を1!、
2<J2+と変え、且つ両者の間に更に内径β3の小さ
い絞り部11を設けている。
Next, the operation of such an optical fiber drawing furnace will be explained. The preform storage chamber 9 that accommodates the optical fiber preform 1 includes:
Inert gas is supplied from the upper inert gas supply section 6, and the inert gas flows downward along the outer periphery of the optical fiber mother U1. In this case, the base material storage chamber 9 is at a high temperature of approximately 2000° C., and the inert gas flowing therein expands explosively. Suppression! , II was not possible. Therefore, in the present invention, a certain amount of inert gas is poured from above the base material storage chamber 9, and is gradually expanded in the process of reaching the R high temperature. In addition, the inner diameters of the base material storage chamber 9 and the small chamber 10 are set to 1! in order to eliminate interference as much as possible. ,
2<J2+, and a constricted portion 11 with a smaller inner diameter β3 is provided between the two.

近年、光ファイバ母材1が大径化する傾向にあり、例え
ば外径が5041IIIφの光ファイバ母材1を線引し
ようとするとき、母材収容室9の内径a1は約80a+
s+φにしなければならない。この時、小v10の内径
12も80mφにすると、下部からの上昇気流のため上
部不活性ガス供給部6より流し込む不活性ガスの流量は
約401/分となり、大量の不活性ガスを消費すること
になる。また、この時には母材収容室9への空気の流入
は完全に防げず、カーボンの酸化消耗が発生するため、
光ファイバ5の強度劣化などのトラブルを発生する。
In recent years, the diameter of the optical fiber preform 1 has tended to increase. For example, when attempting to draw an optical fiber preform 1 with an outer diameter of 5041IIIφ, the inner diameter a1 of the preform storage chamber 9 is approximately 80 mm.
It must be s+φ. At this time, if the inner diameter 12 of the small V10 is also set to 80 mφ, the flow rate of the inert gas flowing from the upper inert gas supply section 6 will be approximately 401/min due to the upward air flow from the bottom, which will consume a large amount of inert gas. become. Moreover, at this time, the inflow of air into the base material storage chamber 9 cannot be completely prevented, and oxidation and consumption of carbon occurs.
This causes troubles such as deterioration of the strength of the optical fiber 5.

このような時、本発明のように小室10の内径を例えば
最大で60aemφと、且つAt>λ2とすると、上部
不活性ガス供給部6からの不活性ガスの流量を減らすこ
とができ、且つ母材収容室9への空気の流入も完全に防
止できる。また、母材収容室9と小室10との間に絞り
部11を設けると、その効果を一層確実に発揮させるこ
とができる。
In such a case, if the inner diameter of the small chamber 10 is set to, for example, a maximum of 60 aemφ and At>λ2 as in the present invention, the flow rate of the inert gas from the upper inert gas supply section 6 can be reduced, and the Inflow of air into the material storage chamber 9 can also be completely prevented. Further, by providing the constricted portion 11 between the base material storage chamber 9 and the small chamber 10, the effect can be more reliably exhibited.

不活性ガス吹出し具12は、炉心管延長部8の下にあっ
て不活性ガスを光ファイバ5に沿って上向きに吹出−4
゜これにより、小室10から出た光ファイバ5と雰囲気
(空気)とのシールがなされる。ここで、不活性ガス吹
出し具12は、シール効果が損われないことを前提とし
である程度小室10から離しておくことが望ましい。そ
の理由は、小室10から流れ出る不活性ガスと、該不活
性ガス吹出し具12から出る不活性ガスとが干渉し、光
ファイバ5の振動源となり、線径〃乱れるのを防ぐため
である。
The inert gas blowing device 12 is located under the furnace tube extension 8 and blows the inert gas upward along the optical fiber 5 -4.
゜This seals the optical fiber 5 coming out of the small chamber 10 and the atmosphere (air). Here, it is desirable to keep the inert gas blowing tool 12 a certain distance from the small chamber 10 on the premise that the sealing effect is not impaired. The reason for this is to prevent the inert gas flowing out from the small chamber 10 and the inert gas coming out from the inert gas blowing device 12 from interfering with each other, becoming a source of vibration for the optical fiber 5, and causing the wire diameter to be disturbed.

上記のようにして光ファイバ5の線引をして得た光ファ
イバ5のIQ径変動を測定したところ、第3図のような
結果が得られた。即ち、本発明の装買を使用して線引き
した光ファイバ5の線径は02μ以下の範囲に納まり、
線径変動が小さいことがMf認された。
When the IQ diameter variation of the optical fiber 5 obtained by drawing the optical fiber 5 as described above was measured, the results shown in FIG. 3 were obtained. That is, the diameter of the optical fiber 5 drawn using the equipment of the present invention falls within the range of 0.2 μm or less,
It was observed that the wire diameter variation was small in Mf.

[発明の効果] 以」説明したように本発明に係る光ファイバ線引炉は、
光ファイバ母材を収容する炉心管内に母材収容室を設け
、その下に位置する炉心管延長部内に小室を設け、炉心
管の上部には上部不活性ガス供給部を設け、該上部不活
性ガス供給部から母材収容室に対して不活性ガスを光フ
ァイバ母材の外周に沿って下向きに流れるように供給し
、炉心管延長部の下には所定の間隔を隔てて不活性ガス
吹出し具を設け、該不活性ガス吹出し具から光ファイバ
に沿って上向きに不活性ガスを供給する構造にしたので
、光ファイバ母材の温爪の制御と炉心管に対する大気の
遮断とを両立させることができ、光ファイバの外径変動
を十分に抑制でき、外径変動の小さい光ファイバの¥J
造を容易に行うことができる。特に、本発明では炉心管
内の母材収容室の下に、それより内径の小さい小室を炉
心管延長部により形成し、炉心管の上部から母材収容室
を経て下向きに不活性ガスを流すようにしたので、内径
の小さい小室の存在により不活性ガスの消費型を減らす
ことができ、また外気が下から侵入するのを防止でき、
且つ母材収容室内で下降ガス流と上昇ガス流とがぶつか
り合うのを避けることができる。また、炉心管延長部の
下に所定の間隔を隔て設置ノだ不活性ガス吹出し具合か
らの上向きの不活性ガスの吹出しにより、小室から出た
光ファイバが十分に固化するまで外気からシールするこ
とができる。更に、不活性ガス吹出し具を炉心管延長部
より下に設けることにより、小室から出る不活性ガスと
この不活性ガス吹出し具から出る不活性ガスとの干渉を
可及的に回避することができる。
[Effects of the Invention] As explained below, the optical fiber drawing furnace according to the present invention has the following advantages:
A preform housing chamber is provided in the core tube that accommodates the optical fiber preform, a small chamber is provided in the core tube extension located below the preform, and an upper inert gas supply section is provided in the upper part of the core tube. Inert gas is supplied from the gas supply section to the base material storage chamber so as to flow downward along the outer periphery of the optical fiber base material, and inert gas is blown out at predetermined intervals below the core tube extension. Since the structure is such that the inert gas is supplied upward along the optical fiber from the inert gas blowing tool, it is possible to simultaneously control the warm claw of the optical fiber base material and block the atmosphere from the reactor core tube. It is possible to sufficiently suppress fluctuations in the outer diameter of the optical fiber, and to reduce fluctuations in the outer diameter of the optical fiber.
construction can be done easily. In particular, in the present invention, a small chamber with an inner diameter smaller than the base material storage chamber in the core tube is formed by the core tube extension, and the inert gas is allowed to flow downward from the top of the core tube through the base material storage chamber. Because of this, the existence of a small chamber with a small inner diameter reduces the consumption of inert gas, and also prevents outside air from entering from below.
In addition, it is possible to avoid collision between the descending gas flow and the ascending gas flow within the base material storage chamber. In addition, by blowing out inert gas upward from the inert gas blowing device installed at a predetermined interval below the core tube extension, the optical fiber coming out of the small chamber is sealed from the outside air until it is sufficiently solidified. Can be done. Furthermore, by providing the inert gas blowing device below the furnace tube extension, interference between the inert gas coming out of the small chamber and the inert gas coming out of this inert gas blowing device can be avoided as much as possible. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光ファイバ線引炉の一実施例の!
[面図、第2図は第1図に示す線引炉内の各室の温潰分
佑図、第3図は本発明の線引炉で得られた光ファイバの
線径変化測定図、第4図(a) (b) $、を従来の
光ファイバ線引炉の2種の例の縦断面図、第5図は従来
の線引炉で得られた光ファイバの線径変化測定図である
。 1・・・光ファイバ母材、1A・・・溶融部、2・・−
炉心管、3・・・ヒータ、4・・・炉体、5・・・光フ
ァイバ、6・・・上部不活性ガス供給部、8・・・炉心
管延長部、9・・・母材収容室、10・・・小室、11
・・・絞り部、12・・・不活性ガス吹出し具。
FIG. 1 shows an embodiment of an optical fiber drawing furnace according to the present invention!
[A top view, FIG. 2 is a diagram showing the temperature and collapse of each chamber in the drawing furnace shown in FIG. Figures 4 (a) and (b) are longitudinal cross-sectional views of two examples of conventional optical fiber drawing furnaces, and Figure 5 is a measurement diagram of the diameter change of optical fibers obtained with the conventional drawing furnace. It is. 1... Optical fiber base material, 1A... Melted part, 2...-
Furnace tube, 3... Heater, 4... Furnace body, 5... Optical fiber, 6... Upper inert gas supply section, 8... Core tube extension, 9... Base material accommodation. Room, 10... Small room, 11
... Throttle part, 12... Inert gas blowing tool.

Claims (1)

【特許請求の範囲】[Claims] 上下方向を向いた炉心管内で光ファイバ母材の下部をヒ
ータで加熱溶融させ、該光ファイバ母材の溶融部の下端
から下向きに光ファイバを紡糸する光ファイバ線引炉に
おいて、前記炉心管の下には炉心管延長部が設けられ、
前記炉心管内には前記光ファイバ母材を収容する母材収
容室が設けられ、前記炉心管延長部内には前記母材収容
室に連通して該母材収容室の内径より内径が小径で且つ
下端が下向きに開口された小室が設けられ、前記炉心管
の上部には前記母材収容室に対して不活性ガスを前記光
ファイバ母材の外周に沿って下向きに流すように供給す
る上部不活性ガス供給部が設けられ、前記炉心管延長部
の下には前記小室から出てくる前記光ファイバに沿って
上向きに不活性ガスを吹出す不活性ガス吹出し具が前記
炉心管延長部に対して所定の間隔を隔てて設けられてい
ることを特徴とする光ファイバ線引炉。
In an optical fiber drawing furnace, the lower part of an optical fiber preform is heated and melted by a heater in a furnace tube facing in the vertical direction, and the optical fiber is spun downward from the lower end of the melted part of the optical fiber preform. A core tube extension is provided below.
A preform accommodating chamber for accommodating the optical fiber preform is provided in the furnace core tube, and a preform accommodating chamber is provided in the furnace tube extension portion, communicating with the preform accommodating chamber and having an inner diameter smaller than the inner diameter of the preform accommodating chamber. A small chamber whose lower end is opened downward is provided, and an upper chamber is provided at the upper part of the core tube for supplying an inert gas to the base material storage chamber so as to flow downward along the outer periphery of the optical fiber base material. An active gas supply unit is provided below the core tube extension, and an inert gas blowing device is provided below the core tube extension for blowing an inert gas upward along the optical fiber coming out of the small chamber. An optical fiber drawing furnace characterized in that the optical fiber drawing furnace is provided at a predetermined interval.
JP2039989A 1989-01-30 1989-01-30 Wire drawing of optical fiber Pending JPH02199040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039989A JPH02199040A (en) 1989-01-30 1989-01-30 Wire drawing of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039989A JPH02199040A (en) 1989-01-30 1989-01-30 Wire drawing of optical fiber

Publications (1)

Publication Number Publication Date
JPH02199040A true JPH02199040A (en) 1990-08-07

Family

ID=12025943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039989A Pending JPH02199040A (en) 1989-01-30 1989-01-30 Wire drawing of optical fiber

Country Status (1)

Country Link
JP (1) JPH02199040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040084A (en) * 2011-08-19 2013-02-28 Sumitomo Electric Ind Ltd Optical fiber drawing furnace
CN107082560A (en) * 2017-05-15 2017-08-22 江苏亨通光纤科技有限公司 A kind of optical fiber annealing extension tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040084A (en) * 2011-08-19 2013-02-28 Sumitomo Electric Ind Ltd Optical fiber drawing furnace
CN107082560A (en) * 2017-05-15 2017-08-22 江苏亨通光纤科技有限公司 A kind of optical fiber annealing extension tube
CN107082560B (en) * 2017-05-15 2023-02-10 江苏亨通光纤科技有限公司 Optical fiber annealing extension tube

Similar Documents

Publication Publication Date Title
EP0659699B1 (en) Optical fiber drawing furnace and drawing method
US7823419B2 (en) Optical fiber drawing furnace with gas flow tubes
RU2116269C1 (en) Furnace for spinning of optical fibers and method of joining of intermediate products of optical fibers
JPS5957927A (en) Optical fiber production using plasma torch
JPS62246837A (en) Drawing furnace for optical fiber
JPH10101349A (en) Method for supplying flashed glass stream and device therefor
JPH02199040A (en) Wire drawing of optical fiber
JP3189968B2 (en) Optical fiber drawing method and optical fiber drawing furnace
JPH038738A (en) Furnace and method for drawing optical fiber
JPH1184145A (en) Heating furnace in drawing device of plastic optical fiber
JP4404203B2 (en) Optical fiber manufacturing method
JPS62162647A (en) Drawing device for optical fiber
JPH03126636A (en) Optical fiber drawing furnace
JP3141464B2 (en) Optical fiber drawing furnace
JPH04310533A (en) Drawing of optical fiber
JPH06199537A (en) Optical fiber drawing furnace
JPH01305829A (en) Method for drawing optical fiber
JPS5850938B2 (en) Optical fiber manufacturing method and nozzle for optical fiber manufacturing
WO2021193567A1 (en) Optical fiber wiredrawing furnace and method for producing optical fiber
JPH026347A (en) Drawing of optical fiber
JP2644310B2 (en) Optical fiber drawing method
JPH0717739A (en) Method for drawing optical fiber
JPH01192740A (en) Method for drawing optical fiber and apparatus therefor
JPH06206735A (en) Drawing of optical fiber
JPH0131462B2 (en)