JPH02199020A - Aluminum hydroxide for resin filler and production thereof - Google Patents
Aluminum hydroxide for resin filler and production thereofInfo
- Publication number
- JPH02199020A JPH02199020A JP1019244A JP1924489A JPH02199020A JP H02199020 A JPH02199020 A JP H02199020A JP 1019244 A JP1019244 A JP 1019244A JP 1924489 A JP1924489 A JP 1924489A JP H02199020 A JPH02199020 A JP H02199020A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum hydroxide
- slurry
- surface area
- specific surface
- average particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 title claims abstract description 68
- 229920005989 resin Polymers 0.000 title claims abstract description 20
- 239000011347 resin Substances 0.000 title claims abstract description 20
- 239000000945 filler Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000002245 particle Substances 0.000 claims abstract description 42
- 239000002002 slurry Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000011164 primary particle Substances 0.000 claims abstract description 21
- 239000003921 oil Substances 0.000 claims abstract description 13
- 235000019198 oils Nutrition 0.000 claims abstract description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000003746 surface roughness Effects 0.000 claims abstract description 6
- 235000021388 linseed oil Nutrition 0.000 claims abstract description 4
- 239000000944 linseed oil Substances 0.000 claims abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 4
- 239000007787 solid Substances 0.000 claims description 8
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 14
- 238000010521 absorption reaction Methods 0.000 abstract description 13
- 238000000926 separation method Methods 0.000 abstract description 7
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 5
- 229910001388 sodium aluminate Inorganic materials 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 150000003839 salts Chemical class 0.000 abstract description 2
- 229910021502 aluminium hydroxide Inorganic materials 0.000 abstract 3
- 229910001679 gibbsite Inorganic materials 0.000 abstract 3
- 238000004131 Bayer process Methods 0.000 abstract 2
- 238000005119 centrifugation Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000000843 powder Substances 0.000 description 14
- 238000001035 drying Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 238000005406 washing Methods 0.000 description 12
- 150000004645 aluminates Chemical class 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 6
- 238000004062 sedimentation Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000003889 chemical engineering Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002928 artificial marble Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、樹脂フィラー用途に好適な水酸化アルミニウ
ムとその製造法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to aluminum hydroxide suitable for use as a resin filler and a method for producing the same.
(従来の技術)
水酸化アルミニウムを樹脂フィラー用途に使用すること
は公知である。BACKGROUND OF THE INVENTION The use of aluminum hydroxide in resin filler applications is known.
水酸化アルミニウムは、化学式でA文(OH)iまたは
AM、03 ・:1H20と書き表わすことかでき、2
00°C以上の温度で結晶内より水蒸気を放出し、その
際、大きな吸熱を示すため、樹脂フィラーとして用いた
場合、優れた難燃性が得られる。Aluminum hydroxide can be written as the chemical formula A (OH)i or AM, 03 ・: 1H20, 2
It releases water vapor from within the crystal at a temperature of 00°C or higher, and exhibits a large amount of heat absorption at that time, so when used as a resin filler, excellent flame retardancy can be obtained.
また、水酸化アルミニウムは、優れた低発煙性、耐アー
ク・耐トラツキング性を有しており、さらに低コストで
あることから、極めて有用な難燃剤であると言える。In addition, aluminum hydroxide has excellent low smoke emission properties, arc resistance and tracking resistance, and is low in cost, so it can be said to be an extremely useful flame retardant.
従来この用途にはバイヤー法から得られた平均径50〜
60gm程度の粗粒の水酸化アルミニウムをそのまま、
あるいは、ボールミル、その他の粉砕機て粉砕したもの
か用いられてきた。しかし、粗粒の水酸化アルミニウム
をフィラー用途に用いた場合、樹脂との相溶性か悪い。Conventionally, for this purpose, the average diameter obtained from the Bayer method was 50 ~
Approximately 60 gm of coarse aluminum hydroxide as it is,
Alternatively, it has been used by pulverizing it with a ball mill or other pulverizer. However, when coarse-grained aluminum hydroxide is used as a filler, it has poor compatibility with resins.
また、粘度の低い樹脂に充填した場合には、水酸化アル
ミニウムが沈降する。さらには、なめらかな成形体表面
が得られない、難燃効果に劣るなどの問題かあった。Furthermore, when filled with a resin having a low viscosity, aluminum hydroxide will precipitate. Furthermore, there were other problems such as not being able to obtain a smooth surface of the molded product and poor flame retardant effect.
これを防ぐために、粉砕して粒子径を細かくした水酸化
アルミニウムか樹脂フィラー用途に広く使用されている
か、粉砕によって沈降か起こり難い粒子径(一般に平均
で101L■以下)まで細かくすることは多大なエネル
ギーを必要とする。また、粉砕された水酸化アルミニウ
ムは、その結晶か破壊され、多量のチッピングによる微
粒を含むため、粉体の比表面積か大きく、結果として、
吸着水分量か多いという問題があった。吸着水分量の多
い水酸化アルミニウムをフィラーとして用いることは、
用途によってはフィラーの分散不良、樹脂の硬化不良、
成形体の硬度低下、絶縁性不良、混練時の発泡などの原
因となり、好ましくないことかある。さらに、粉砕物に
ついて一般に言えることであるか、微粒になる程、フィ
ラーの吸油量か大きくなり、樹脂への高充填か難かしく
なる。To prevent this, it is necessary to use aluminum hydroxide, which is widely used in resin filler applications, which has been pulverized to a finer particle size, or to grind it to a particle size that is less likely to cause sedimentation (generally less than 101L on average). Requires energy. In addition, the crystals of pulverized aluminum hydroxide are destroyed and contain a large amount of fine particles due to chipping, so the specific surface area of the powder is large, and as a result,
There was a problem that the amount of adsorbed water was too large. Using aluminum hydroxide as a filler, which has a large amount of adsorbed water,
Depending on the application, filler dispersion may be poor, resin curing may be poor,
This may be undesirable since it may cause a decrease in the hardness of the molded product, poor insulation, and foaming during kneading. Furthermore, as is generally the case with pulverized materials, the finer the particles, the greater the oil absorption of the filler, making it more difficult to fill the resin with high levels.
(発明か解決しようとする課題)
上記の課題を解決するため、粉砕水酸化アルミニウムを
ステアリン酸、及び、その金属塩やシランカップリング
剤などの表面処理剤て表面することはある程度は有効で
あるか、コストが高くなるという欠点かある。(Invention or problem to be solved) In order to solve the above problems, it is effective to some extent to surface the crushed aluminum hydroxide with a surface treatment agent such as stearic acid, its metal salt, or a silane coupling agent. Or, the disadvantage is that it costs more.
また、米国特許第2549541号、及び、仏国特許第
2041750号などに記載されたアルミナゲルを析出
誘発材料として微粒の水酸化アルミニウムを析出させる
方法は古くから知られている。この方法により得られた
微粒水酸化アルミニウムは、同程度の粉砕水酸化アルミ
ニウムに比べ確かに比表面積は小さく、吸着水分量は少
ないか、微細な1次粒子か凝集した2次凝集粒の形態を
有しており、吸油量か非常に大きく、フィラー用途とし
て樹脂に十分な難燃性を付与させるのに十分な量の水酸
化アルミニウムを充填することは、非常に困難であった
。公表特許公報昭59−501711には粉砕水酸化ア
ルミニウムを析出誘発材料として微粒水酸化アルミニウ
ムを析出させる方法が開示されているか、この方法によ
り得られた水酸化アルミニウムも同様に吸油量か非常に
大きいことか判っている。Furthermore, methods for precipitating fine particles of aluminum hydroxide using alumina gel as a precipitation-inducing material have been known for a long time, such as in US Pat. No. 2,549,541 and French Patent No. 2,041,750. The fine-grained aluminum hydroxide obtained by this method has a smaller specific surface area than the same level of ground aluminum hydroxide, and either has a small adsorbed water content or is in the form of fine primary particles or agglomerated secondary agglomerates. It has a very large oil absorption capacity, and it is extremely difficult to fill it with aluminum hydroxide in a sufficient amount to impart sufficient flame retardancy to the resin for use as a filler. Published Patent Publication No. 59-501711 discloses a method of precipitating fine particles of aluminum hydroxide using crushed aluminum hydroxide as a precipitation-inducing material, and the aluminum hydroxide obtained by this method also has a very large oil absorption capacity. I know that.
特願昭63−129527号には、1次粒子平均径を4
〜8ル膳に限定した2次凝集粒を1次粒子平均径にほぼ
等しくなるまて粉砕することを特徴とする低比表面積て
樹脂充填粘度の低い人造大理石用水酸化アルミニウムの
製造方法が開示されている。In Japanese Patent Application No. 129527/1983, the average diameter of primary particles is 4.
Disclosed is a method for producing aluminum hydroxide for artificial marble with a low specific surface area and low resin-filled viscosity, which is characterized by pulverizing secondary agglomerated particles limited to ~8 particles until they become approximately equal to the average diameter of the primary particles. ing.
この方法によれば、確かに吸油量の低い水酸化アルミニ
ウムが得られるか、ボールミルによって2次凝集粒の解
砕を行なうため、1次粒子の破壊かわずかであるが起こ
り、本発明の目的とする低比表面積の微粒水酸化アルミ
ニウムを得ることは極めて困難であった。According to this method, it is true that aluminum hydroxide with low oil absorption can be obtained, or because the secondary agglomerated particles are disintegrated by a ball mill, destruction of the primary particles occurs, although only slightly, which is not the objective of the present invention. It was extremely difficult to obtain finely divided aluminum hydroxide with a low specific surface area.
かかる事情に鑑み、本発明者等はフィラー用途に適した
低吸油量で、かつ、低比表面積の微粒水酸化アルミニウ
ムを安価に提供することを目的に鋭意検討した結果、連
続式遠心分離装置より発生する大きな遠心効果か、水酸
化アルミニウムの2次凝集粒を、1次結晶粒子を破壊す
ることなく。In view of these circumstances, the inventors of the present invention conducted extensive studies with the aim of providing at low cost fine particulate aluminum hydroxide with low oil absorption and low specific surface area suitable for filler applications, and as a result, they developed a method using a continuous centrifugal separator. Perhaps due to the large centrifugal effect that occurs, secondary agglomerated particles of aluminum hydroxide are produced without destroying the primary crystal particles.
極めて有効に解砕することを見出し、本発明を完成する
に至ったものである。It was discovered that crushing is extremely effective, and the present invention was completed.
すなわち、本発明は、
1、 i)平均粒子径が2〜8ル■
ii)表面粗度係数S*/ SC< 3 (;: コテ
SRは窒素吸着法にて測定された比表面積を、また、S
Cは平均粒子径より球近似て算出された比表面積、すな
わち、
を表わす)
iii)アマニ油膜油量(JIS K51旧準拠)が
30cc/ 100g以下
上記i)〜1ii)より表わされる樹脂フィラー用低比
表面積微粒水酸化アルミニウムと、
2、バイヤー法により得た平均径1〜4μ■のl次粒子
より成る水酸化アルミニウムの2次凝集粒に溶媒を加え
てスラリーとし、連続式遠心分離装置を用いて100O
G以上の遠心力を該スラリーに加えて固形分を濃縮分離
することにより水酸化アルミニウムの2次凝集粒を解砕
することを特徴とする前記の樹脂フィラー用低比表面8
!微粒水醸化アルミニウムの製造法
とを提供することにある。That is, the present invention has the following characteristics: 1. i) Average particle diameter is 2 to 8 l; ii) Surface roughness coefficient S*/SC<3 (;: Iron SR is the specific surface area measured by the nitrogen adsorption method; , S
C is the specific surface area calculated by spherical approximation from the average particle diameter, that is, iii) The linseed oil film amount (according to JIS K51 old standard) is 30 cc/100 g or less. A solvent is added to secondary agglomerated particles of aluminum hydroxide consisting of fine particles of specific surface area aluminum hydroxide and primary particles with an average diameter of 1 to 4 μm obtained by the Bayer method, and a slurry is prepared using a continuous centrifugal separator. 100O
The above-mentioned low specific surface 8 for resin filler is characterized in that secondary agglomerated particles of aluminum hydroxide are crushed by applying a centrifugal force of G or more to the slurry to concentrate and separate the solid content.
! It is an object of the present invention to provide a method for producing fine grained water-brew aluminum.
まず、請求項1記載の発明の数値限定理由を説明する。First, the reason for the numerical limitation of the invention set forth in claim 1 will be explained.
水酸化アルミニウムの平均粒子径は、沈降法にて測定さ
れたものであり、2〜8ト1の範囲内にあることが必要
である。平均粒子径か2gmより小さいと、吸油量が大
きく、樹脂への高充填かできなくなる。また、比表面積
か大きくなり吸着水分量が多くなるなどの欠点が生じて
くる。The average particle diameter of aluminum hydroxide is measured by a sedimentation method, and needs to be within the range of 2 to 8 to 1. If the average particle diameter is smaller than 2 gm, the amount of oil absorbed will be large and it will not be possible to highly fill the resin. In addition, the specific surface area becomes large, resulting in disadvantages such as an increase in the amount of adsorbed water.
平均粒子径が8gmより大きいと沈降の問題か生じてく
る。尚、沈降の点では、より好ましくは平均粒子径は4
IL−未満である。If the average particle size is larger than 8 gm, a problem of sedimentation may occur. In addition, in terms of sedimentation, the average particle diameter is more preferably 4.
less than IL-.
表面粗度係数は、窒素吸着法にて測定された比表面積S
Rと、平均粒子径より球近似て算出された比表面積SC
との比、SR/SCで表わされ、 3未満であることか
必要である。The surface roughness coefficient is the specific surface area S measured by nitrogen adsorption method.
R and the specific surface area SC calculated by spherical approximation from the average particle diameter
The ratio, expressed as SR/SC, must be less than 3.
表面粗度係数は、いわば水酸化アルミニウム粒子表面の
荒れ具合、及び、チッピング粒子の量を表わしており、
この値が大きい程、吸着水分量か多くなり、また、樹脂
への分散性が悪化する等の欠点か生してくる。The surface roughness coefficient represents the roughness of the aluminum hydroxide particle surface and the amount of chipping particles.
The larger this value is, the larger the amount of water adsorbed will be, and this will lead to disadvantages such as poor dispersibility in the resin.
アマニ油膜油量は、JIS K5010に準拠して測定
された値であり、30cc/ 100g以下であること
が必要である。この値を越えると、十分な難燃性か付与
できる量の水酸化アルミニウムを樹脂に充填することか
困難になるため、フィラー用途として不適である。The amount of linseed oil film oil is a value measured in accordance with JIS K5010, and must be 30 cc/100 g or less. If this value is exceeded, it becomes difficult to fill the resin with enough aluminum hydroxide to impart sufficient flame retardancy, making it unsuitable for use as a filler.
次に請求項2の発明の数値限定理由を説明する。Next, the reason for the numerical limitation of the invention of claim 2 will be explained.
】R
バイヤー、εより得られる水酸化アルミニウム2次凝集
粒の1次粒子径は、 1〜4μ鳳の範囲内であることか
必要である。1次粒子径がt4諺より小さいと、解砕粉
の吸油量は、30cc/ 100gを越え、 4μ■よ
り大きいと、遠心力による解砕効果が2次凝集粒を効果
的に解砕するのに十分ではなくなるため、吸油量は30
cc/ l00gを越え、平均粒子径は8蒔鵬より大き
くなる。水酸化アルミニウムの1次粒子径の測定は、電
子顕微鏡による観察によっても良いが、さらに簡便には
次の方法による。] The primary particle size of the aluminum hydroxide secondary agglomerated particles obtained from R Bayer and ε must be within the range of 1 to 4 μm. If the primary particle size is smaller than T4, the oil absorption amount of the crushed powder will exceed 30cc/100g, and if it is larger than 4μ, the crushing effect of centrifugal force will not effectively crush the secondary agglomerated particles. The oil absorption amount is 30.
cc/l00g, and the average particle size is larger than 8mm. The primary particle diameter of aluminum hydroxide may be measured by observation using an electron microscope, but the following method is more convenient.
第1図に示す金型1(円筒ルツボ形、直径圓I、深さ5
0■)内に、23℃、相対湿度65%の雰囲気下に1時
間放置した水酸化アルミニウム2を15g装入し、油圧
プレスにより0.75t/crn’の圧力て30秒間加
圧する。ついで金型内から水酸化アルミニウムを取り出
し、樹脂フィルム製の袋に入れ指圧により圧塊をほぐし
得られた解砕粉を空気透過法により、その平均粒子径(
ブレーン径)を測定する。Mold 1 shown in Fig. 1 (cylindrical crucible shape, diameter round I, depth 5
15 g of aluminum hydroxide 2, which had been left in an atmosphere of 23° C. and 65% relative humidity for 1 hour, was charged into a container (0.0) and pressurized with a hydraulic press at a pressure of 0.75 t/crn' for 30 seconds. Next, the aluminum hydroxide was taken out from the mold, placed in a plastic film bag, and the compacted powder was loosened using finger pressure.The average particle size (
Measure the brane diameter).
平均径1〜4 ILwの1次粒子径を持つ2次凝集した
水酸化アルミニウムは、例えば、米国特許第25495
49号に記載、のバイヤー法によって得たアルミン酸ナ
トリウム溶液にアルミニウム塩を導入してアルミナゲル
な得1次にこのゲルの一部を結晶性水酸化アルミニウム
に変換させ、このようにして得られた混合物を分解すべ
きアルミン酸ナトリウムに導入し、撹拌を続けて極めて
細かい水酸化アルミニウムの析出を誘起する方法によっ
て得られるか、得られた水酸化アルミニウムの1次粒子
径か目的とする1次粒子径より細かい場合は、該水酸化
アルミニウムを種晶として使用し、さらにアルミン酸ナ
トリウム過飽和溶液を分解することによっで所望の1次
粒子径を持つ2次凝集した水酸化アルミニウムを製造し
得る。2次凝集した水酸化アルミニウムの2次粒子径は
、本発明においては特に限定するものではないか、20
μ−以下であることが好ましい。Secondary agglomerated aluminum hydroxide having a primary particle size with an average diameter of 1 to 4 ILw is disclosed in, for example, US Pat. No. 25495
No. 49, an aluminum salt was introduced into a sodium aluminate solution obtained by the Bayer method to obtain an alumina gel. The primary particle size of the obtained aluminum hydroxide can be obtained by introducing the mixture into the sodium aluminate to be decomposed and stirring continuously to induce the precipitation of extremely fine aluminum hydroxide. If it is finer than the particle size, secondary agglomerated aluminum hydroxide having the desired primary particle size can be produced by using the aluminum hydroxide as a seed crystal and further decomposing a supersaturated sodium aluminate solution. . The secondary particle size of the secondary agglomerated aluminum hydroxide is not particularly limited in the present invention.
It is preferably less than or equal to μ.
連続式遠心分離装置により該水酸化アルミニウムを含む
スラリーに与えられる遠心力は、重力の1000倍(I
I)OOG )以上であることか必要である。The centrifugal force applied to the slurry containing aluminum hydroxide by the continuous centrifugal separator is 1000 times the force of gravity (I
I)OOG) or higher is required.
遠心力か重力の1000倍より小さいと、水酸化アルミ
ニウムの2次凝集粒は有効に解砕されない結果、吸油量
は依然として大きいままである。連続式遠心分離装置と
は遠心力により連続的にスラリーを連綿分離する装置を
いい、遠心力を加えた状態で該スラリーの固形分を分離
する機能を有する装置を言う。この装置の代表的ものと
しては、例えば改訂凹版“化学工学便覧” (化学工学
便覧編)pH19記載の水平型デカンタ一連続排出式を
あげることができる。すなわち、回転する円筒、又は円
すい体とわずかの差て回転するヘリカルコンベヤーを組
み合わせたもので沈降固形物を連続的に排出する型式の
ものである。本発明における装置は同じ型式で垂直(縦
)型のものであってもよい。If the centrifugal force is less than 1000 times the gravity, the secondary agglomerated particles of aluminum hydroxide are not effectively broken down, and as a result, the oil absorption remains large. A continuous centrifugal separator refers to a device that continuously separates slurry using centrifugal force, and refers to a device that has the function of separating the solid content of the slurry while applying centrifugal force. A typical example of this device is, for example, a horizontal decanter with a continuous discharge type described in the revised intaglio edition of "Chemical Engineering Handbook" (edited by Chemical Engineering Handbook) with a pH of 19. That is, it is a type that combines a rotating cylinder or cone with a helical conveyor that rotates with a slight difference, and continuously discharges the settled solids. The device according to the invention may also be of the same type and of vertical type.
連続式遠心分離装置により、水酸化アルミニウムの2次
凝集粒か有効に解砕される機構は次のように考えられる
。The mechanism by which secondary agglomerated particles of aluminum hydroxide are effectively crushed by the continuous centrifugal separator is considered to be as follows.
水酸化アルミニウムの2次凝集粒を含むスラリーが連続
式遠心分離装置に導かれると、その大きな遠心効果によ
り、固形分は遠心分離装置の回転円筒、又は円すい体等
に強く押しつけられ、2次凝集粒は互いに強く接触する
ようになる。このような条件下て回転円筒、又は円すい
体とわずかの差で回転するヘリカルコンベヤーにより固
形分が強制的に排出される際、水酸化アルミニウムの2
次凝集粒は互いに強く接触しながら移動し、その結果、
互いのこすれ合いによって2次凝集粒の解砕効果が発生
するものと考えられる。When slurry containing secondary agglomerated particles of aluminum hydroxide is led to a continuous centrifugal separator, the solid content is strongly pressed against the rotating cylinder or cone of the centrifugal separator due to the large centrifugal effect, resulting in secondary agglomeration. The grains come into strong contact with each other. Under these conditions, when solids are forcibly discharged by a rotating cylinder or a helical conveyor that rotates with a slight difference from the cone, the aluminum hydroxide
The secondary agglomerated grains move while in strong contact with each other, and as a result,
It is thought that a crushing effect of the secondary agglomerated grains occurs due to mutual rubbing.
この連続式遠心分離装置による解砕は、従来より用いら
れてきたメデイア間の衝突による衝撃力を利用した粉砕
法や、レイモンドローラーミル等の円筒−ローラー間の
摩砕効果を利用するもの、ジェットミル等の粒子間の衝
突を利用した粉砕法則的なものである。This continuous centrifugal separator can be used to crush conventionally used crushing methods that utilize the impact force caused by collisions between media, as well as crushing methods that utilize the grinding effect between cylinders and rollers such as Raymond roller mills, and jet This is similar to the pulverization law that uses collisions between particles such as a mill.
(実施例)
ここで、実施例によって、本発明の内容をさらに詳細に
説明するか1本発明は、これら実施例に限定されるもの
ではない。(Examples) Here, the content of the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.
バイヤー液によって得られたアルミン酸ナトリウム溶液
(Na2O濃度= 120g/l AfL2036度
=120g/fL)を以下の実施例、及び比較例におい
て単にアルミネート液と省略して呼ぶこととする。The sodium aluminate solution (Na2O concentration = 120 g/l AfL2036 degrees = 120 g/fL) obtained by Bayer's solution will be simply referred to as aluminate solution in the following Examples and Comparative Examples.
尚、樹脂フィラーとしての評価は、コンポジット銅張り
積層板で、以下の項目について行った。In addition, evaluation as a resin filler was conducted on the following items using a composite copper-clad laminate.
(])フェス粘度
硬化剤含有エポキシ樹脂 100部水酸化アルミニ
ウム 70部溶剤
100部上記配合による25℃における粘度を測定した
。(]) Epoxy resin containing face viscosity hardening agent 100 parts Aluminum hydroxide 70 parts Solvent
The viscosity at 25° C. of 100 parts of the above formulation was measured.
10000cp以上ではガラス不織布への含浸性が悪化
する。If it exceeds 10,000 cp, the impregnating property into the glass nonwoven fabric will deteriorate.
(2)沈降性
上記樹脂フェスを75g/rn’のガラス不織布に含浸
乾燥させて、 780g/rn’のプリプレグ(以下
、プリプレグAとする)を得た。また、 200g/r
n’のガラス布に硬化剤を含むエポキシ樹脂フェスを含
浸乾燥させて、 400g/rn’のプリプレグ(以
下、プリプレグBとする)を得た。(2) Sedimentation The resin face was impregnated into a glass nonwoven fabric of 75 g/rn' and dried to obtain a prepreg of 780 g/rn' (hereinafter referred to as prepreg A). Also, 200g/r
A prepreg of 400 g/rn' (hereinafter referred to as prepreg B) was obtained by impregnating and drying an epoxy resin face containing a curing agent into a glass cloth of n'.
次にプリプレグAを3枚重ね、その両面にプリプレグB
を1枚ずつ介して厚さ0.0185mの銅箔を載せて積
層体を得た。これを金属プレート間にはさみ、圧力50
kg/ c rn”、 170°Cで 100分間成形
し、厚さ 1.6mmの電気用積層板を得た。Next, stack three sheets of prepreg A, and prepreg B on both sides.
A laminate was obtained by placing a copper foil with a thickness of 0.0185 m through each layer. Sandwich this between metal plates and press 50
kg/c rn" and molded at 170°C for 100 minutes to obtain an electrical laminate with a thickness of 1.6 mm.
沈降性の評価は、次の基準で行った。Sedimentability was evaluated based on the following criteria.
◎非常に良好二基板の反りは全くない。◎Very good. There is no warping of the two boards.
○良好 :基板の反りは問題になる程ではない。○Good: The warpage of the substrate is not enough to cause a problem.
x不良 :基板の反りか問題となる。x Defective: The problem may be board warping.
成形時に粒子の沈降が起こると基板のそりの原因となる
。If particles settle during molding, it causes the substrate to warp.
実施例1
アルミネート液に中和当量の硫酸ばん土の水溶液を加え
、ゲル状の水和アルミナ液(AfL2oz換算濃度:
170g/又)を得た。これを種子液とし、アルミネ
ート液に種子率(種子液中のAn zO:+酸/アルミ
ネート液中のA文203量×100)か1%になるよう
に加え、60℃に保温しつつ、−昼夜撹拌を続けた。析
出物を少量、枦別後、水洗、乾燥して得た水酸化アルミ
ニウムの平均粒子径は、2.71L■、1次粒子平均径
は、 1.5μ層であった。Example 1 A neutralization equivalent amount of an aqueous solution of sulfuric acid was added to the aluminate solution to form a gel-like hydrated alumina solution (AfL2oz equivalent concentration:
170 g/yet) was obtained. This was used as a seed liquid, and added to the aluminate liquid at a seed rate of 1% (An zO in the seed liquid: + acid / amount of A203 in the aluminate liquid x 100), and while keeping it at 60°C. , - Stirring was continued day and night. After separating a small amount of the precipitate, the aluminum hydroxide obtained by washing with water and drying had an average particle diameter of 2.71 L, and an average primary particle diameter of 1.5 microns.
得られたスラリーを連続式遠心分離装置(シャープレス
・スーパ・デカンタP−660、以下、同)により、2
500Gの遠心力を与えつつ、固澄分離後1分離された
ケーキを水洗・濾過・乾燥の各工程を経由させた。The obtained slurry was separated into
While applying a centrifugal force of 500 G, the cake separated once after solidification and clarification was passed through the steps of washing with water, filtration, and drying.
得られた乾燥粉の特性値を第1表に示す。Table 1 shows the characteristic values of the obtained dry powder.
実施例2
実施例1において得られたスラリーに、さらに種子率か
10%になるようにアルミネート液を加え、60℃に保
温しつつ、−昼夜撹拌を続けた。析出物を少量、炉別後
、水洗、乾燥して得た水酸化アルミニウムの平均粒子径
は、 5.4終■、1次粒子平均径は、 1.5ILm
であった。Example 2 An aluminate solution was further added to the slurry obtained in Example 1 so that the seed rate was 10%, and stirring was continued day and night while keeping the slurry at 60°C. The average particle size of aluminum hydroxide obtained by separating a small amount of precipitate in a furnace, washing with water, and drying is 5.4 mm, and the average primary particle size is 1.5 ILm.
Met.
得られたスラリーを連続式遠心分離装置により、300
0Gの遠心力を与えつつ、固液分離後、分離されたケー
キを水洗・濾過・乾燥の各工程を経由させた。The obtained slurry was centrifuged at 300°C using a continuous centrifugal separator.
After solid-liquid separation while applying a centrifugal force of 0 G, the separated cake was passed through the steps of washing with water, filtration, and drying.
得られた乾燥粉の特性値を第1表に示す。Table 1 shows the characteristic values of the obtained dry powder.
実施例3
実施例2と同様に水酸化アルミニウムを製造したか、ス
ラリーに与えた遠心力は150OGであった。Example 3 Aluminum hydroxide was produced in the same manner as in Example 2, and the centrifugal force applied to the slurry was 150 OG.
得られた乾燥粉の特性値を第1表に示す。Table 1 shows the characteristic values of the obtained dry powder.
実施例4
実施例1において得られたスラリーに、さらに、種子率
か5%になるようにアルミネート液を加え、60℃に保
温しつつ、−昼夜撹拌を続けた。Example 4 An aluminate solution was further added to the slurry obtained in Example 1 so that the seed rate was 5%, and stirring was continued day and night while keeping the slurry at 60°C.
析出物を少量、炉別後、水洗、乾燥して得た水酸化アル
ミニウムの平均粒子径は、 7.9gm 、1次粒子モ
均径は、:1.3gmであった。The average particle diameter of aluminum hydroxide obtained by separating a small amount of the precipitate in a furnace, washing with water, and drying was 7.9 gm, and the average diameter of primary particles was 1.3 gm.
得られたスラリーを連続式遠心分離装置により、300
0 Gの遠心力を与えつつ、固液分離後、分離されたケ
ーキを水洗・−過・乾燥の各工程を経由させた。The obtained slurry was centrifuged at 300°C using a continuous centrifugal separator.
After solid-liquid separation while applying a centrifugal force of 0 G, the separated cake was passed through the steps of washing with water, filtering, and drying.
得られた乾燥粉の特性値を第1表に示す。Table 1 shows the characteristic values of the obtained dry powder.
実施例5
実施例1において得られたスラリーに、さらに種子率か
2%になるようにアルミネート液を加え、60℃に保温
しつつ、−昼夜撹拌を続けた。析出物を少量、炉別後、
水洗、乾燥して得た水酸化アルミニウムの平均粒子径は
、11.フル■、1次粒子平均径は、3.7鉢■てあっ
た。Example 5 An aluminate solution was further added to the slurry obtained in Example 1 so that the seed rate was 2%, and stirring was continued day and night while keeping the slurry at 60°C. After removing a small amount of precipitate from the furnace,
The average particle size of aluminum hydroxide obtained by washing with water and drying was 11. The average diameter of the primary particles was 3.7 mm.
得られたスラリーを連続式遠心分離装置により、300
0Gの遠心力を与えつつ、固液分離後、分離されたケー
キを水洗・濾過・乾燥の各工程を経由させた。The obtained slurry was centrifuged at 300°C using a continuous centrifugal separator.
After solid-liquid separation while applying a centrifugal force of 0 G, the separated cake was passed through the steps of washing with water, filtration, and drying.
得られた乾燥粉の特性値を第1表に示す。Table 1 shows the characteristic values of the obtained dry powder.
(以下余白)
比較例1
アルミネート液に中和当量の硫酸ばん土の水溶液を加え
、ゲル状の水和アルミナ液(AfL20i換算濃度:
170g/見)を得た。これを種子液とし、アルミネ
ート液に種子率が2%になるように加え、60°Cに保
温しつつ、−昼夜撹拌を続けた。析出物を少量、炉別後
、水洗、乾燥して得た水酸化アルミニウムの平均粒子径
は、 1.7μI、1次粒子平均径は、0.8終■であ
った。(Left below) Comparative Example 1 A neutralization equivalent amount of an aqueous solution of sulfuric acid was added to the aluminate solution to form a gel-like hydrated alumina solution (AfL20i equivalent concentration:
170g/view) was obtained. This was used as a seed liquid and added to the aluminate liquid so that the seed rate was 2%, and stirring was continued day and night while keeping the mixture at 60°C. The average particle diameter of aluminum hydroxide obtained by separating a small amount of the precipitate in a furnace, washing with water, and drying was 1.7 μI, and the average primary particle diameter was 0.8μI.
得られたスラリーを連続式遠心分離装置により、280
0Gの遠心力を与えつつ、固液分離後、分離されたケー
キを水洗・濾過・乾燥の各工程を経由させた。The obtained slurry was separated by a continuous centrifugal separator at 280
After solid-liquid separation while applying a centrifugal force of 0 G, the separated cake was passed through the steps of washing with water, filtration, and drying.
得られた乾燥粉の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained dry powder.
比較例2
実施例2において得られたスラリーに、さらに種子率が
30%になるようにアルミネート液を加え、60°Cに
保温しつつ、−昼夜撹拌を続けた。析出物を少?、炉別
後、水洗、乾燥して得た水酸化アルミニウムの平均粒子
径は、20.2JL鵬、1次粒子平均径は、5.2gm
であった。Comparative Example 2 An aluminate solution was further added to the slurry obtained in Example 2 so that the seed rate was 30%, and stirring was continued day and night while keeping the slurry at 60°C. Less precipitate? The average particle size of aluminum hydroxide obtained by furnace separation, washing with water, and drying was 20.2 JL, and the average primary particle size was 5.2 gm.
Met.
得られたスラリーを連続式遠心分離装置により、300
0Gの遠心力を与えつつ、固液分離後、分離されたケー
キを水洗・濾過・乾燥の各工程を経由させた。The obtained slurry was centrifuged at 300°C using a continuous centrifugal separator.
After solid-liquid separation while applying a centrifugal force of 0 G, the separated cake was passed through the steps of washing with water, filtration, and drying.
得られた乾燥粉の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained dry powder.
比較例3
実施例2と同様に水酸化アルミニウムを製造したが、ス
ラリーに与えた遠心力は500Gであった。Comparative Example 3 Aluminum hydroxide was produced in the same manner as in Example 2, but the centrifugal force applied to the slurry was 500G.
得られた乾燥粉の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained dry powder.
比較例4
実施例2において得られたスラリーをラボの遠心分離装
置で固液分離後、液分を捨て、固形分の洗浄、乾燥を行
なった。Comparative Example 4 The slurry obtained in Example 2 was separated into solid and liquid using a laboratory centrifugal separator, the liquid was discarded, and the solid was washed and dried.
得られた乾燥粉の特性値を第2表に示す。Table 2 shows the characteristic values of the obtained dry powder.
比較例5
実施例4において得られたスラリーを通常のフィルター
で濾過後、洗浄、乾燥を行なった。Comparative Example 5 The slurry obtained in Example 4 was filtered with a normal filter, then washed and dried.
得られた乾燥粉をアトライター(三井三池化工at)に
よって20分間粉砕することにより得られた粉砕粉の特
性値を第2表に示す。Table 2 shows the characteristic values of the pulverized powder obtained by pulverizing the obtained dry powder for 20 minutes using an attritor (Mitsui Miike Kako AT).
比較例6
市販の粉砕微粒水酸化アルミニウム(日本軽金属−社製
8W−703)の特性値を第2表に示す。Comparative Example 6 Table 2 shows the characteristic values of commercially available pulverized fine aluminum hydroxide (8W-703 manufactured by Nippon Light Metal Co., Ltd.).
(以下余白)
(発明の効果)
本発明により得られた水酸化アルミニウムは、従来の微
粒水酸化アルミニウムにおいて不可能であった低比表面
積と低吸油量の両立を達成している所に、その債れた価
値が認められる。また、本発明になる水酸化アルミニウ
ムの製造方法のポイントである連続式遠心分離装置によ
る2次凝集粒の解砕法は、チッピングを起こす事なく、
1次粒子まて解砕できるという点て全く画期的であり、
また、極めて優れたプロセスであり、その工業的価値は
大である。(Left below) (Effects of the invention) The aluminum hydroxide obtained by the present invention has the advantage of achieving both low specific surface area and low oil absorption, which were impossible with conventional fine-grained aluminum hydroxide. The value of the debt is recognized. In addition, the method of crushing secondary agglomerates using a continuous centrifugal separator, which is the key point of the method for producing aluminum hydroxide according to the present invention, does not cause chipping.
It is completely revolutionary in that it can crush primary particles.
Moreover, it is an extremely excellent process and has great industrial value.
第1図は、水酸化アルミニウムの1次粒子平均径測定の
ための加圧解砕法に使用する金型の断面図である。FIG. 1 is a cross-sectional view of a mold used in a pressure crushing method for measuring the average diameter of primary particles of aluminum hydroxide.
Claims (1)
吸着法にて測定された比表面積を、S_Cは平均粒子径
より球近似で算出された比表面積を表わ す) iii)アマニ油膜油量(JISK5101準拠)が3
0cc/100g以下 であることを特徴とする樹脂フィラー用水酸化アルミニ
ウム。 2、バイヤー法により得た平均径1〜4μmの1次粒子
より成る水酸化アルミニウムの2次凝集粒のスラリーに
連続式遠心分離装置を用いて1000G以上の遠心力を
加えて該スラリーの固形分を濃縮分離することを特徴と
する請求項1記載の樹脂フィラー用水酸化アルミニウム
の製造法。[Claims] 1. i) Average particle diameter is 2 to 8 μm ii) Surface roughness coefficient S_R/S_C<3 (S_R is the specific surface area measured by the nitrogen adsorption method, and S_C is the spherical surface roughness from the average particle diameter. (represents the specific surface area calculated by approximation) iii) Linseed oil film oil amount (according to JISK5101) is 3
Aluminum hydroxide for resin filler, characterized in that it is 0cc/100g or less. 2. Using a continuous centrifugal separator, a centrifugal force of 1000 G or more is applied to a slurry of secondary agglomerated particles of aluminum hydroxide consisting of primary particles with an average diameter of 1 to 4 μm obtained by the Bayer method to determine the solid content of the slurry. 2. The method for producing aluminum hydroxide for resin filler according to claim 1, wherein the aluminum hydroxide is concentrated and separated.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1019244A JPH02199020A (en) | 1989-01-26 | 1989-01-26 | Aluminum hydroxide for resin filler and production thereof |
EP89911865A EP0407595B1 (en) | 1989-01-26 | 1989-10-31 | Aluminum hydroxide, process for its production and composition |
AU44823/89A AU629254B2 (en) | 1989-01-26 | 1989-10-31 | Aluminum hydroxide, process for its production and composition |
US07/566,474 US5130113A (en) | 1989-01-26 | 1989-10-31 | Aluminum hydroxide, process for preparation thereof and composition |
KR1019900701210A KR0159504B1 (en) | 1989-01-26 | 1989-10-31 | Process for producing aluminium hydroxide |
DE68923171T DE68923171D1 (en) | 1989-01-26 | 1989-10-31 | ALUMINUM HYDROXYD, METHOD FOR THE PRODUCTION AND COMPOSITION. |
PCT/JP1989/001123 WO1990008737A1 (en) | 1989-01-26 | 1989-10-31 | Aluminum hydroxide, process for its production and composition |
NZ231482A NZ231482A (en) | 1989-01-26 | 1989-11-22 | Aluminium hydroxide and its use in an artificial marble composition |
CA002004673A CA2004673C (en) | 1989-01-26 | 1989-12-05 | Aluminum hydroxide, process for preparation thereof and composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1019244A JPH02199020A (en) | 1989-01-26 | 1989-01-26 | Aluminum hydroxide for resin filler and production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02199020A true JPH02199020A (en) | 1990-08-07 |
JPH054336B2 JPH054336B2 (en) | 1993-01-19 |
Family
ID=11993997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1019244A Granted JPH02199020A (en) | 1989-01-26 | 1989-01-26 | Aluminum hydroxide for resin filler and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02199020A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100894590B1 (en) * | 2001-06-21 | 2009-04-24 | 쇼와 덴코 가부시키가이샤 | Aluminum hydroxide and production process thereof |
JP2012006778A (en) * | 2010-06-23 | 2012-01-12 | Hitachi Chem Co Ltd | Finely divided metal hydroxide particles and method for manufacturing the same |
DE112010000783T5 (en) | 2009-02-13 | 2012-07-19 | Sumitomo Chemical Company, Ltd. | Fine aluminum hydroxide powder for filling in resin and process for its preparation |
WO2018020862A1 (en) * | 2016-07-26 | 2018-02-01 | 信越化学工業株式会社 | Heat conductive sheet |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7101529B2 (en) | 2001-06-21 | 2006-09-05 | Showa Denko K.K. | Aluminum hydroxide and production process thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4340579A (en) * | 1978-12-02 | 1982-07-20 | Vereinigte Aluminium-Werke Aktiengesellschaft | Process for producing modified alumina hydrate crystals |
JPS63202639A (en) * | 1987-02-18 | 1988-08-22 | Nippon Light Metal Co Ltd | Flame-retardant resin composition |
JPS63224752A (en) * | 1987-03-13 | 1988-09-19 | Hakusui Kagaku Kogyo Kk | Centrifugal classifier |
-
1989
- 1989-01-26 JP JP1019244A patent/JPH02199020A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4340579A (en) * | 1978-12-02 | 1982-07-20 | Vereinigte Aluminium-Werke Aktiengesellschaft | Process for producing modified alumina hydrate crystals |
JPS63202639A (en) * | 1987-02-18 | 1988-08-22 | Nippon Light Metal Co Ltd | Flame-retardant resin composition |
JPS63224752A (en) * | 1987-03-13 | 1988-09-19 | Hakusui Kagaku Kogyo Kk | Centrifugal classifier |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100894590B1 (en) * | 2001-06-21 | 2009-04-24 | 쇼와 덴코 가부시키가이샤 | Aluminum hydroxide and production process thereof |
DE112010000783T5 (en) | 2009-02-13 | 2012-07-19 | Sumitomo Chemical Company, Ltd. | Fine aluminum hydroxide powder for filling in resin and process for its preparation |
JP2012006778A (en) * | 2010-06-23 | 2012-01-12 | Hitachi Chem Co Ltd | Finely divided metal hydroxide particles and method for manufacturing the same |
WO2018020862A1 (en) * | 2016-07-26 | 2018-02-01 | 信越化学工業株式会社 | Heat conductive sheet |
JPWO2018020862A1 (en) * | 2016-07-26 | 2018-11-22 | 信越化学工業株式会社 | Thermally conductive sheet |
US10676587B2 (en) | 2016-07-26 | 2020-06-09 | Shin-Etsu Chemical Co., Ltd. | Heat conductive sheet |
Also Published As
Publication number | Publication date |
---|---|
JPH054336B2 (en) | 1993-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4278208A (en) | Comminution of materials | |
RU2076083C1 (en) | PROCESS FOR PREPARING SINTERED MATERIAL BASED ON α- MODIFICATION OF ALUMINA | |
US20080190325A1 (en) | Modified Nanoparticles | |
US9243121B2 (en) | Process for manufacturing high solids suspensions of mineral materials | |
EP0407595B1 (en) | Aluminum hydroxide, process for its production and composition | |
US8834833B2 (en) | Process for preparing an aluminium oxide powder having a high alpha-Al2O3 content | |
TWI471368B (en) | Fine particles of aluminum hydroxide powder for filling resin and a method for producing the same | |
EP3826963B1 (en) | Heavy metal removal using minerals being functionalized with adsorption enhancers | |
WO2012018175A2 (en) | Method for regenerating ceria-based abrasive | |
EP1546268B1 (en) | Grinding method for inorganic particulate material | |
JPH02199020A (en) | Aluminum hydroxide for resin filler and production thereof | |
CN108473332B (en) | Barium sulfate particles with low alpha-ray dose, use thereof, and method for producing same | |
US7571869B2 (en) | Mineral layered silicate in the form of a nanopower | |
JP3132077B2 (en) | Aluminum hydroxide having low content of aggregated particles and narrow particle distribution and method for producing the same | |
JPH06172581A (en) | Gibbsitic aluminum hydroxide as filler for resin | |
KR100718090B1 (en) | Aluminum hydroxide and method for production thereof | |
US5624646A (en) | Method for improving the brightness of aluminum hydroxide | |
KR100894590B1 (en) | Aluminum hydroxide and production process thereof | |
JP2004182555A (en) | Aluminum hydroxide and its preparation method | |
JP2004043549A (en) | Noncohesive mica particle, manufacturing method therefor and moistureproof paper having mica particle-containing coating layer | |
WO2008154614A1 (en) | Methods for dewatering kaolin clay slurries and kaolin-clay filter cakes and kaolin-clay slurries made therefrom | |
KR100894589B1 (en) | Aluminum hydroxide and production process thereof | |
JPH07172823A (en) | Production of aluminum hydroxide having low degree of flocculation | |
JP2011016672A (en) | Particulate aluminum hydroxide with low soda content and method for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080119 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090119 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 17 |