JPH02198058A - Fixed magnetic disk device - Google Patents

Fixed magnetic disk device

Info

Publication number
JPH02198058A
JPH02198058A JP1017208A JP1720889A JPH02198058A JP H02198058 A JPH02198058 A JP H02198058A JP 1017208 A JP1017208 A JP 1017208A JP 1720889 A JP1720889 A JP 1720889A JP H02198058 A JPH02198058 A JP H02198058A
Authority
JP
Japan
Prior art keywords
disk
magnetic disk
hub
servo
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1017208A
Other languages
Japanese (ja)
Inventor
Kaneo Yoda
兼雄 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP1017208A priority Critical patent/JPH02198058A/en
Publication of JPH02198058A publication Critical patent/JPH02198058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Holding Or Fastening Of Disk On Rotational Shaft (AREA)

Abstract

PURPOSE:To reduce eccentricity due to disk loading with simple structure by designing the shape of a hole loaded to a spindle motor hub of a center part so that an inner circumferential face of a disk is engaged and positioned at a prescribed number of positions with respect to nearly a cylindrical face of the spindle motor hub. CONSTITUTION:The inner circumferential face of a disk is formed nearly a triangle shape using a flexible part 8 as one side and engaged and fixed with a spindle motor hub 1 at three positions, while engaging one point of other two sides to a main shaft hub 1, and the relative position of the hub 1 and the disk is determined definitely and stably. The flexible part 8 of the disk protrudes to its center when it is not loaded to the bus 1, and when the disk is loaded to the hub 1, the disk is loaded while the projecting part is bent, then the flexible part 8 is engaged and is brought into contact with the hub 1 while giving a pre-load in the direction 7. The disk has an automatic center aligning function by the pre-load, the alignment is decided automatically and the eccentricity is avoided by deciding the inner circumference of the disk so that the center of gravity of the disk in the loading state is coincident with a rotating center 2 of the hub 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はディスク装着時に発生する偏心を低減しディス
クドライブの機械的信頼性を向上させると共に、ヘッド
位置決めに、ディスク上に書き込まれたサーボ信号を利
用する際に既にサーボ情報を書き込んだディスクを簡単
に精度よく装着し、量産性に優れかつ十分な位置追従制
御が可能な固定磁気ディスク装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention improves the mechanical reliability of a disk drive by reducing eccentricity that occurs when a disk is mounted, and also uses servo signals written on the disk for head positioning. The present invention relates to a fixed magnetic disk device in which a disk on which servo information has already been written can be easily and accurately mounted when using a fixed magnetic disk device, which is excellent in mass productivity, and which can perform sufficient position tracking control.

〔従来の技術〕[Conventional technology]

従来の固定ディスク装置の主軸モーターへのディスクの
組込と偏心の説明図を第2図に示す。
FIG. 2 shows an explanatory diagram of the installation and eccentricity of the disk into the main shaft motor of a conventional fixed disk device.

回転中心23で直径Aなる主軸モーターハブ21に回転
中心22直径Bなる円形の穴を有する磁気ディスク20
が固定されている。円滑な装着を行うため、必ずF (
F−B−A)なるクリアランスが存在し、通常その量は
10ミクロンから80ミクロンもあった。従って偏心量
Cは、筒回転中心22.23の距離となり、これはクリ
アランスFの半分に相当する。固定磁気ディスクの場合
、主軸モーターは約3000から4000rpmの高速
回転を行っているが、従来の磁気ディスク装置では、上
記偏心荷重を有したまま、高速回転をするため主軸モー
ターの半径方向の負荷が増大し、主軸モーターの軸受に
悪影響を及はし軸受寿命の低下を助長していた。特に軸
受と磁気ディスクの重心距離が長い場合は軸の振れ回り
運動が発生し、軸受部にダメージを与えて磁気ディスク
装置の機械的信頼性を大幅にそこねていた。
A magnetic disk 20 having a circular hole with a rotation center 22 and a diameter B in a main shaft motor hub 21 with a rotation center 23 and a diameter A.
is fixed. To ensure smooth installation, be sure to press F (
There is a clearance called F-B-A), and the amount usually ranges from 10 microns to 80 microns. Therefore, the eccentricity C is the distance between the cylinder rotation center 22 and 23, which corresponds to half of the clearance F. In the case of a fixed magnetic disk, the spindle motor rotates at a high speed of about 3,000 to 4,000 rpm, but in conventional magnetic disk drives, the load in the radial direction of the spindle motor increases as it rotates at high speed with the eccentric load mentioned above. This had an adverse effect on the bearings of the main shaft motor, contributing to a reduction in bearing life. Particularly when the distance between the center of gravity between the bearing and the magnetic disk is long, the shaft swings around, damaging the bearing and significantly reducing the mechanical reliability of the magnetic disk drive.

ことに5.25インチ以上の大型機では、バランス取り
を行ったり、主軸モーターの径寸法精度を向上させてこ
の偏心量を押えていた。
In particular, for large machines of 5.25 inches or larger, this amount of eccentricity has been suppressed by balancing or improving the dimensional precision of the spindle motor.

また偏心高速回転により振動、騒音が発生し、振動は筐
体を伝わってアクチュエーターのへッドポジショニング
精度を低下させ、騒音はホストシステム使用者に非常な
不快感を与えていた。
In addition, high-speed eccentric rotation generates vibrations and noise, and the vibrations are transmitted through the housing, reducing the actuator's head positioning accuracy, and the noise causes extreme discomfort to the host system user.

偏心量Cをもち回転する固定磁気ディスク装置では、磁
気ヘッド24が、主軸モータハブの中心23まわりに半
径りなる軌跡を描き、デーグーの読み書きを行う。上記
の如く軸受にダメージが発生した場合又は、変動する遠
心力で軸受にたわみが生じた場合は軸が振れ回りをはじ
め、仮にその偏心量がCの場合は、ヘッド24がディス
ク20に描く軌跡は半径Eの円となり最大Fなるズレを
生じデーターが読み出せないという致命的欠陥に至る場
合が発生した。
In a fixed magnetic disk drive that rotates with eccentricity C, the magnetic head 24 draws a radial locus around the center 23 of the spindle motor hub to read and write data. If damage occurs to the bearing as described above, or if the bearing is deflected due to fluctuating centrifugal force, the shaft will start whirling, and if the amount of eccentricity is C, then the trajectory drawn by the head 24 on the disk 20 becomes a circle with a radius of E, resulting in a maximum deviation of F, resulting in a fatal defect in which data cannot be read.

ディスクバック等のリムーバブル型固定磁気ディスク装
置では、更に深刻な影響をうけていた。
Removable fixed magnetic disk devices such as diskbacks were even more seriously affected.

即ち主軸モーターハブ21の径Aとディスク20の内径
Bの間のクリアランスFは直接的にヘッドとディスク上
のトラック位置のズレ(オフトラックと呼ぶ)となり軸
受のダメージの有無にかかわらず、データーが読み出せ
ない、正規トラック位置に書けない場合が発生した。
In other words, the clearance F between the diameter A of the spindle motor hub 21 and the inner diameter B of the disk 20 directly causes a deviation in the track position on the head and disk (referred to as off-track), resulting in data loss regardless of bearing damage. There were cases where it was not possible to read or write to the regular track position.

この様に、従来の固定磁気ディスク装置は固定磁気ディ
スク装置の基本的な特性であるデーター信頼性を著しく
劣化させていた。
As described above, conventional fixed magnetic disk drives have significantly deteriorated data reliability, which is a basic characteristic of fixed magnetic disk drives.

面サーボ(1面をヘッドポジショニング用の位置情報の
生成に使用する)方式の磁気ディスク装置では、サーボ
面に信号を書き込む為に、サーボトラックライター(S
、T、W)等の専用の高精度信号書き込み装置を用いて
サーボ情報を書き込んでいた。
In surface servo (one surface is used to generate position information for head positioning) magnetic disk drives, a servo track writer (S) is used to write signals on the servo surface.
, T, W), etc., were used to write servo information using a dedicated high-precision signal writing device.

この際に筐体に主軸モーター、磁気ディスクを組込んだ
状態で筐体ごとS、T、Wの中に入れ、磁気ディスク装
置の主軸モーターを回転させてヘッドでサーボ信号を書
き込んでいた。これは主軸モーター軸まわりの偏心、振
れ回りによるオフトラックを吸収するためであった。し
かし、この従来の方式だと、1台ずつ書き込みを行なう
ため磁気ディスクドライブをS、T、Wに出し入れをし
なければならず又、サーボ信号の書き込み、精度確認に
は非常に長い時間がかかり、大量生産ができずコスト高
となりこの方式の磁気ディスク装置の大きな欠点となっ
ていた。
At this time, the main spindle motor and magnetic disk were assembled in the case, and the whole case was placed inside an S, T, or W, and the main spindle motor of the magnetic disk device was rotated to write a servo signal using the head. This was to absorb off-track caused by eccentricity and whirling around the main motor shaft. However, with this conventional method, it is necessary to take the magnetic disk drive in and out of S, T, and W because writing is performed one by one, and it takes a very long time to write the servo signal and check the accuracy. However, mass production was not possible and the cost was high, which was a major drawback of this type of magnetic disk drive.

また、1合のS、 T、 Wに磁気ディスク装置がいつ
も出入りする為STW内にダストが入り込み、これがデ
ィスクがむき出しの磁気ディスク内に入り込み、ディス
クの損傷(ディフェクトやヘッドクラッシュ)の増加、
STWのヘッドの損傷を発生させていた。特にディフェ
クトやヘッドクラッシュは磁気ディスクの信頼性を大幅
にそこなうものであった。
In addition, because magnetic disk drives are constantly moving in and out of the S, T, and W of the first row, dust gets into the STW, which causes the disk to get into the exposed magnetic disk, increasing disk damage (defects and head crashes),
This caused damage to the STW head. In particular, defects and head crashes significantly reduced the reliability of magnetic disks.

従来の面サーボディスク装置のサーボトラックライター
(STW)の書き込みヘッド等の可動部と磁気ディスク
装置筐体との関係を示す説明図を第3図に示す。
FIG. 3 is an explanatory diagram showing the relationship between a movable part such as a write head of a servo track writer (STW) of a conventional planar servo disk device and a magnetic disk device housing.

STWで磁気ディスク面37にサーボ信号を書き込む場
合、STWの筺体31に固定した磁気ディスク装置の筐
体36に主軸モーター35が装着されディスクを駆動す
る。信号を書き込むSTWのヘッド33及びクロック信
号をディスク面38に書き込むクロックヘッド34はS
TWアクチュエーター32に固定され、例えばレーザ位
置決め装置等で位置決めをしつつ移動する。
When a servo signal is written on the magnetic disk surface 37 by STW, a main shaft motor 35 is attached to the housing 36 of the magnetic disk device fixed to the housing 31 of the STW to drive the disk. The STW head 33 for writing signals and the clock head 34 for writing clock signals onto the disk surface 38 are S
It is fixed to the TW actuator 32 and moves while being positioned using, for example, a laser positioning device.

従ってディスク面37.38に信号を書き込む為にはヘ
ッド33、クロックヘッド34、図示してないガイレー
ズヘッド等がディスク上に位置するので磁気ディスク装
置の筐体36の高さは少なくとも1枚のディスクが露出
する高さHまでしか上げられない。従って磁気ディスク
筐体36の側面壁は低くせざるを得ず、筐体剛性を大幅
に低減させ、サーボ制御上有害な特に3 K Hz以下
の機械的共振点を発生させ、サーボ制御を不可能にする
場合が発生し、又位置決め精度を劣化させたり、シーク
ミスが発生し磁気ディスク装置のデータ信頼性を低下さ
せていた。これを防ぐ為、高価な防振材や補強材を使用
せざるを得なかった。
Therefore, in order to write signals on the disk surface 37, 38, the head 33, clock head 34, Gailles head (not shown), etc. are located on the disk, so the height of the casing 36 of the magnetic disk device is at least one plate. It can only be raised to a height H where the disc is exposed. Therefore, the side walls of the magnetic disk housing 36 have to be made low, which greatly reduces the rigidity of the housing and generates a mechanical resonance point, particularly below 3 KHz, which is harmful to servo control, making servo control impossible. In addition, the positioning accuracy may be degraded, seek errors may occur, and the data reliability of the magnetic disk device may be degraded. To prevent this, expensive vibration-proofing materials and reinforcing materials had to be used.

また、磁気ディスク筐体とこれをおおうチャンバーが磁
気ディスク及びヘッドの近くで接合するため、このすき
間から放射ノイズが混入しやすく、データーエラーの発
生頻度が非常に高くなり磁気ディスク装置の信頼性を大
幅に低下させる要因となっていた。
In addition, since the magnetic disk housing and the chamber that covers it are joined near the magnetic disk and head, radiation noise is likely to enter through this gap, which increases the frequency of data errors and reduces the reliability of the magnetic disk drive. This was a factor that led to a significant decline.

更に前述の如<STW可動部が筐体側面と干渉しない様
に構成する為サーボ面は通常積層されるディスクの最上
面に位置していた。しかし、これは主軸モーターやヘッ
ド支持体及び筐体の熱変形による各ヘッド間のオフトラ
ックの影響を直接受け、最下面でのオフトラック増大し
、データ信頼性を低下させた。また、これを補うため他
のデータ面上にそれぞれ補正用の位置情報を書き込み、
面サーボ情報と重複させて各データヘッドの位置決めを
行っていた。この方式は、データー面の記録領域を減少
させ又、各データヘッドの補正位置情報を再生する追加
回路が必要となり更には、各データーヘッドでそれぞれ
オフトラックを補正するのに時間を要するので、読み出
し、書き込み速度(データーのスルーブツト量)が極端
に低下し、磁気ディスク装置の最重要特性である高速デ
ータ転送を阻害する大きな欠陥となっていた。
Furthermore, as mentioned above, the servo surface is usually located on the top surface of the stacked disks in order to prevent the STW movable section from interfering with the side surface of the housing. However, this was directly affected by off-track between each head due to thermal deformation of the spindle motor, head support, and housing, resulting in increased off-track at the bottom surface and reduced data reliability. In addition, to compensate for this, position information for correction is written on each other data surface,
The positioning of each data head was performed by duplicating the surface servo information. This method reduces the recording area on the data surface, requires an additional circuit to reproduce the corrected position information of each data head, and furthermore, it takes time to correct off-track in each data head, so it is difficult to read. The write speed (data throughput) was extremely low, which was a major defect that hindered high-speed data transfer, which is the most important characteristic of magnetic disk drives.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように従来の技術では、 1)主軸モーターハブと磁気ディスク内周のガタにより
偏心が生じ、これが高速回転する事により主軸モーター
の寿命を低下させ機械的信頼性を損ねていた。
As described above, in the conventional technology, 1) eccentricity occurs due to play between the spindle motor hub and the inner circumference of the magnetic disk, which causes high speed rotation, shortening the life of the spindle motor and impairing mechanical reliability.

2)高速偏心回転に伴ない騒音、振動が発生し、騒音は
ホストシステム使用者に不快感与え、振動はヘッド位置
決め精度を低下させていた。
2) Noise and vibration are generated due to high-speed eccentric rotation, and the noise gives discomfort to the user of the host system, and the vibration reduces head positioning accuracy.

3)1)により軸受にたわみ又はダメージが発生し、振
れ回りによる非繰返し性のオフトラックが生じ装置のデ
ーター信頼性を損ねていた。
3) Due to 1), the bearings were deflected or damaged, causing non-repeatable off-track due to whirling, impairing the data reliability of the device.

4)特にリムーバブル型固定磁気ディスク装置では主軸
モータハブとディスク内周のガタ、加えて3)の非繰返
し性のオフトラックは、直接的にヘッドとトラック間の
ズレとなりデーター信頼性を極端に低下させていた。
4) Particularly in removable fixed magnetic disk drives, the backlash between the spindle motor hub and the inner periphery of the disk, as well as the non-repetitive off-track mentioned in 3), directly causes misalignment between the head and the track, extremely reducing data reliability. was.

5)1)から4)を防ぐ為、大型高精度高剛性軸受の使
用、ディスク組込後のバランス取り、高精度ハブの使用
を余儀なくされ、装置の大型化、高価格化をまねいてい
た。
5) In order to prevent 1) to 4), it was necessary to use large, high-precision, high-rigidity bearings, balance after the disk was installed, and use of high-precision hubs, leading to larger and more expensive equipment.

6)面サーボディスク装置では、ディスク装置の頻繁な
出し入れによりSTW内がダストで汚染され、これが磁
気ディスク装置内にも入り装置のヘッド、ディスクにt
M (aを与え、データ信頼性を損ねていた。
6) In a surface servo disk device, the inside of the STW is contaminated with dust due to frequent loading and unloading of the disk device, and this dust also enters the magnetic disk device and causes damage to the device head and disk.
M (a), damaging data reliability.

またSTWのヘッドもダメージを受は易かった。Also, the STW head was easily damaged.

7)ディスク、主軸モーターを組込んだ状態で1台づつ
、出し入れをしてサーボ情報の書込み、検査をする為非
常に長い時間を要し、装置の大量生産を阻害し、製作コ
スト高をまねいていた。
7) It takes a very long time to take in and out one unit at a time with the disk and spindle motor installed, write servo information, and inspect it, which hinders mass production of the device and increases manufacturing costs. was.

8)STW可動部が磁気ディスク装置内に入り込む為、
磁気ディスク装置筐体の側面高さが得られず筐体の剛性
を低下させ、サーボ位置制御、速度制御に有害なおよそ
3KHz以下の機械共振を生じ、位置決め精度の低下、
シークミスの発生を促し磁気ディスク装置の信頼性を大
幅に損ねた。
8) Because the STW movable part enters the magnetic disk device,
The side height of the magnetic disk device housing cannot be obtained, reducing the rigidity of the housing, causing mechanical resonance of approximately 3 KHz or less that is harmful to servo position control and speed control, and decreasing positioning accuracy.
This promoted the occurrence of seek errors and significantly impaired the reliability of magnetic disk drives.

9)8)を防ぐ為高価な防振材、補強材を使用し、装置
の大型化、高価格化をまねいた。
9) In order to prevent 8), expensive vibration isolating materials and reinforcing materials were used, resulting in larger and more expensive equipment.

10)磁気ディスク装置の筐体とチャンバーの接合面が
ディスク、ヘッドの近くにあるためスキマから入る放射
ノイズ、筐体接合面等から再放射されるノイズによりデ
ータエラーが発生し装置のデータ信頼性を損ねていた。
10) Since the joint surface between the housing and chamber of a magnetic disk device is close to the disk and head, data errors occur due to radiated noise that enters from the gap and noise that is re-radiated from the housing joint surface, etc., reducing the data reliability of the device. was damaging.

11)サーボ面が積層ディスクの最上面に位置せざるを
得ない為、サーボヘッドと他のデータヘッド間のズレが
大きく、そのためオフトラックによるデーター信頼性が
低下した。
11) Since the servo surface had to be located on the uppermost surface of the stacked disks, there was a large misalignment between the servo head and other data heads, which reduced data reliability due to off-track.

12)11)を補正するためにデータ面サーボを併用す
る方法が取られていたが、そのための追加回路が必要と
なり、また、各データヘッドのオフトラックを補正する
時間が必要となるため、磁気ディスク装置のデータ転送
速度を大幅に低下させていた、等の問題点を有していた
12) In order to compensate for 11), a method was used in which data surface servo was used in combination, but this required an additional circuit and also required time to compensate for the off-track of each data head. This method had problems such as significantly reducing the data transfer speed of the disk device.

そこで本発明は、かかる問題点を解決するもので、その
目的とするところは、ディスク内周の簡単な構造により
ディスク装着による偏心を低減させ、長寿命、低騒音、
高精度位置決め、オフトラの低減により機械的信頼性、
データ信頼を高めると共に、面サーボディスク装置を小
型高剛性化し、大量生産化による安価で信頼性の高い固
定磁気ディスク装置を提供するところにある。
The present invention is intended to solve these problems.The purpose of the present invention is to reduce the eccentricity caused by mounting the disk through a simple structure of the inner periphery of the disk, thereby achieving long life, low noise, and
Mechanical reliability due to high precision positioning and reduction of off-tracks.
The object of the present invention is to improve data reliability, make a surface servo disk device smaller and more rigid, and provide a fixed magnetic disk device that is inexpensive and highly reliable through mass production.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の固定磁気ディスク装置は中心部に主軸モーター
ハブに装着する穴を有し、主軸モーターハブの略円筒面
と3カ所にて係合、位置決めをする穴形状を有し、少な
くとも1面にヘッド位置決め用のサーボ信号が書かれて
いる磁気ディスクを少なくとも1枚搭載する事を特徴と
する。
The fixed magnetic disk device of the present invention has a hole in the center for mounting on the spindle motor hub, and has hole shapes that engage and position the substantially cylindrical surface of the spindle motor hub at three locations, and at least one surface. It is characterized by mounting at least one magnetic disk on which a servo signal for head positioning is written.

〔作 用〕[For production]

本発明の位置決めに用いた原理の説明図を第4図に示す
An explanatory diagram of the principle used for positioning according to the present invention is shown in FIG.

ある物体を安定して一意に位置を決めるためには物体を
3点にて支持する。
In order to stably and uniquely position an object, the object must be supported at three points.

主軸モーターハブ41の略円筒面とディスク40の相対
位置を一意に決める事はディスク内周42が3つの支点
(三角印で模式的に示す)43゜44.45で主軸モー
タハブ41の外周を係合支持する事により達成される。
Uniquely determining the relative position between the approximately cylindrical surface of the spindle motor hub 41 and the disk 40 is such that the inner circumference of the disk 42 engages the outer circumference of the spindle motor hub 41 at three fulcrums (schematically indicated by triangle marks) of 43°44.45. This is achieved by mutual support.

また、支点43,44.45のうち1つは予圧する事に
より自動的に位置決めがなされる。
Also, one of the fulcrums 43, 44, 45 is automatically positioned by preloading.

更に3点で係合した状態で主軸モータノ\ブ41の重心
46とディスク40の重心47を平面的に一致させる事
により回転系の偏心はなくす事ができる。
Furthermore, by aligning the center of gravity 46 of the main shaft motor knob 41 and the center of gravity 47 of the disk 40 in a plane while engaged at three points, eccentricity in the rotation system can be eliminated.

〔実 施 例〕〔Example〕

第1図は本発明の固定磁気ディスク装置の主軸モーター
ハブ(以下ハブと呼ぶ)とディスク内周位置決めの1例
を示す説明図である。
FIG. 1 is an explanatory diagram showing an example of a main shaft motor hub (hereinafter referred to as hub) of a fixed magnetic disk device of the present invention and positioning of the inner circumference of the disk.

略円筒面を有するハブ(主軸モーターノλブ)1に対し
ディスク9はその内周と図中実線で示す如く係合固定す
る。ディスク9はハブ1に装着される内周の一部に斜線
で示すブリッジ状の可撓部を有し、略1カ所でハブ1を
矢印7の方向に加圧しつつ接している。またディスク9
の内周は可撓部8を1辺とする略三角形状をなし、他の
2辺のそれぞれ1カ所がハブ1と係接することにより3
カ所にて係合固定しハブ1とディスク9の相対位置は一
意に安定して決定する。ディスク9の可撓部8はハブ1
に装着されない場合は図中破線にて示す如く突出した形
状を有す。ハブ1に装着する場合、この部分を撓ませて
装着する事により可撓部はハブ1に対し予圧力を発生し
つつ係接する。この予圧部分によりディスク9は自動調
心機能を発揮し、自動的に位置が決まる。従ってディス
ク9をハブ1に押し込むだけで位置決めが完了し工数の
省力化が計れる。また装管状態でディスク9の重心が主
軸モーターハブ1の回転中心(重心)と一致する様にデ
ィスク9の内周を決定しておく事により偏心は発生しな
い。
A disk 9 is engaged with and fixed to the inner circumference of a hub (main shaft motor knob λ) 1 having a substantially cylindrical surface as shown by the solid line in the figure. The disk 9 has a bridge-shaped flexible portion shown by diagonal lines on a part of its inner periphery to be attached to the hub 1, and contacts the hub 1 at approximately one location while applying pressure in the direction of the arrow 7. Also disk 9
The inner periphery has a substantially triangular shape with the flexible part 8 as one side, and one place on each of the other two sides engages with the hub 1, thereby forming a triangular shape.
The relative positions of the hub 1 and the disk 9 are uniquely and stably determined by engaging and fixing them at several points. The flexible part 8 of the disk 9 is connected to the hub 1
If it is not attached to the body, it has a protruding shape as shown by the broken line in the figure. When attached to the hub 1, by bending this portion, the flexible portion engages the hub 1 while generating a preload force. Due to this preloaded portion, the disk 9 exhibits a self-aligning function and its position is automatically determined. Therefore, positioning is completed simply by pushing the disk 9 into the hub 1, which saves man-hours. Furthermore, by determining the inner circumference of the disk 9 so that the center of gravity of the disk 9 coincides with the center of rotation (center of gravity) of the spindle motor hub 1 in the tubed state, eccentricity does not occur.

第5図は本発明の他の一例を示す説明図である。FIG. 5 is an explanatory diagram showing another example of the present invention.

磁気ディスク50の内周53は略凹角辺を有し、その1
頂点部分にブリッジ上の可撓部58を有する。可撓部5
8は、ハブ51に装着されない状態では破線で示す如く
突出した形状を有し、装着時に撓み、予圧力を発生し、
四角形の2辺のそれぞれ1カ所にて係接し安定して位置
決めされる。また、ディスク装着状態でハブ51の回転
中心とディスク50の重心は一致するよう内周の形状を
選ぶ事により回転偏心荷重は発生しない。
The inner periphery 53 of the magnetic disk 50 has a substantially concave side, one of which
It has a bridge-like flexible portion 58 at the apex. Flexible part 5
8 has a protruding shape as shown by the broken line when not attached to the hub 51, and when attached, bends and generates a preload force.
It is engaged at one location on each of the two sides of the rectangle and is stably positioned. Further, by selecting the shape of the inner circumference so that the center of rotation of the hub 51 and the center of gravity of the disk 50 coincide with each other when the disk is attached, eccentric rotational loads are not generated.

第6図は本発明の他の一例を示す説明図である。FIG. 6 is an explanatory diagram showing another example of the present invention.

磁気ディスク60の内周63は図の如き形状を有し、可
撓性部材68はハブ62ヘデイスク60が装着される前
には破線で示す如き形状でディスク60の内周に係接し
ている。ハブ61にディスク60が装着されると可撓性
部材68は撓み、/Xプロ1の略1カ所にて係接しつつ
予圧を行なう。同時にハブ61とディスク60は内周6
3の2カ所で係接し、計3カ所にて安定的に位置決めさ
れる。
The inner periphery 63 of the magnetic disk 60 has a shape as shown in the figure, and the flexible member 68 is engaged with the inner periphery of the disk 60 in the shape shown by the broken line before the disk 60 is attached to the hub 62. When the disk 60 is attached to the hub 61, the flexible member 68 is bent and engages with the /X pro 1 at approximately one location to apply preload. At the same time, the hub 61 and disc 60 are
It engages at two locations (3) and is stably positioned at a total of three locations.

又、可撓性部材68とディスク60の重心はノ\プロ1
の回転中心62と一致する様、形状が決定される。
Moreover, the center of gravity of the flexible member 68 and the disc 60 is
The shape is determined so that it coincides with the rotation center 62 of.

このように偏心が発生しないため、主軸モーター軸受へ
の負荷が軽減し長寿命が達成できるばかりでなく振れ回
りによる軸受のたわみがないため、非繰返し性のオフト
ラックがなく、装置のデーター信頼性を向上させた。ま
た、偏心による騒音、振動を押える事ができた。
Since eccentricity does not occur in this way, the load on the main shaft motor bearing is reduced and a long service life can be achieved.In addition, since there is no deflection of the bearing due to whirling, there is no non-repetitive off-track, which improves the data reliability of the equipment. improved. In addition, we were able to suppress noise and vibration caused by eccentricity.

又、リムーバブル型固定磁気ディスク装置に於いては、
ディスクと主軸モーターの相対位置が一意に安定して、
再現する為、オフトラ・ツクを極端に低減させ、ディス
ク装置の位置決め精度を向上させる事ができた。
In addition, in removable fixed magnetic disk devices,
The relative position of the disc and spindle motor is uniquely stable,
In order to reproduce this, we were able to drastically reduce the off-traffic load and improve the positioning accuracy of the disk device.

面サーボを採用する磁気ディスク装置に於ける本発明の
詳細な説明する。
The present invention in a magnetic disk device employing surface servo will be described in detail.

本発明の磁気ディスクのみを主軸モーターノーブと同一
形状寸法を持つ駆動部を有し、専用へ・ラドにて書き込
む。サーボトラックライター(STW)にてサーボ情報
を書き込む。サーボ情報の書き込まれたディスクを磁気
ディスク装置の主軸モーターハブに組み込みディスク装
置のヘッドにてサーボ信号の読み出しをしヘッドの制御
を行なうことができる。本方式の場合、ディスク単品の
みをSTWにて書き込むため、サーボトラックライター
に余分なダストが入り込まず、従ってディスク上にダス
トが付着する事がなく磁気ディスク内に組込む際にもダ
ストの混入が防げ、非常にクリーン度の高い装置が実現
でき、ディフェクトやヘッドクラッシュの発生がなくな
った。又STWのヘッドにつく傷も防止できた。
Only the magnetic disk of the present invention has a drive section having the same shape and dimensions as the main shaft motor knob, and is written on a dedicated disk. Write the servo information using the servo track writer (STW). A disk on which servo information has been written can be installed in the main shaft motor hub of a magnetic disk device, and the servo signal can be read by the head of the disk device to control the head. In the case of this method, since only a single disk is written using STW, excess dust does not enter the servo track writer, so no dust adheres to the disk, and dust can be prevented from getting mixed in when it is installed into a magnetic disk. , we were able to create an extremely clean device, eliminating the occurrence of defects and head crashes. It also prevented scratches on the STW head.

更にディスクを複数枚まとめて一度にサーボ情報を書き
込む事が可能になり、書き込まれたディスクを磁気ディ
スク装置に単に組込むだけで回転中心と同心円のサーボ
トラックが偏心なく、実現できる為従来の磁気ディスク
装置と同じ精度のサーボ面を有する磁気ディスク装置を
簡単かつ短時間で製造する事が出来、面サーボ磁気ディ
スク装置の大量生産を初めて実現できた。またこれによ
り装置のコスト削減が可能となった。
Furthermore, it is now possible to write servo information on multiple disks at once, and by simply installing the written disk into a magnetic disk device, a servo track that is concentric with the center of rotation can be achieved without eccentricity, which is different from conventional magnetic disks. It was possible to manufacture a magnetic disk device with a servo surface with the same precision as the device easily and in a short time, and for the first time mass production of surface servo magnetic disk devices was realized. This also made it possible to reduce the cost of the device.

第7図に本発明の磁気ディスク装置の筐体の説明図を示
す。
FIG. 7 shows an explanatory diagram of the casing of the magnetic disk device of the present invention.

本発明の磁気ディスク装置では、既にサーボ情報を書き
込んであるディスクを装置内に単に装置するのみである
から、従来の様にSTWの可動部と干渉しないよう筐体
76の側面を切り欠く必要がなく筐体側面高さHは可能
な限り十分高く構成できる。ここで主軸モーター75、
ヘッド支持手段72、データ1lj71、サーボ面70
、データへラド77である。
In the magnetic disk device of the present invention, a disk on which servo information has already been written is simply installed in the device, so it is not necessary to cut out the side surface of the casing 76 so as not to interfere with the moving part of the STW as in the conventional case. Therefore, the height H of the side surface of the casing can be configured to be as high as possible. Here, the main shaft motor 75,
Head support means 72, data 1lj71, servo surface 70
, Dataherad77.

この様に筐体側面が高くできる事により剛性が高くでき
、サーボ制御に有害な低周波数の共振を消滅もしくは高
周波領域に移行することができたため、サーボ回路の帯
域が十分広くとれ、これによりヘッド位置決め精度が向
上し速度制御の精度も向上し、ミスシークがなくなり、
磁気ディスク装置の信頼性が向上した。
By making the sides of the housing higher in this way, the rigidity can be increased, and the low-frequency resonance that is harmful to servo control can be eliminated or shifted to a high-frequency region, allowing the servo circuit to have a sufficiently wide band, which allows the head Positioning accuracy is improved, speed control accuracy is improved, and mis-seeks are eliminated.
The reliability of magnetic disk drives has improved.

更に磁気ディスク装置の筐体とチャンバー79の接合面
が磁気ディスク、ヘッドから遠い部分に配置できたため
、放射ノイズのヘッドへの進入を防止でき装置のデータ
信頼性を向上できた。
Furthermore, since the joint surface between the casing of the magnetic disk device and the chamber 79 can be located far from the magnetic disk and the head, it is possible to prevent radiation noise from entering the head and improve the data reliability of the device.

第8図は本発明の磁気ディスク装置のサーボ面の位置と
熱オフトラックの関係を示す説明図である。本発明では
サーボ面を積層ディスクの略中間に位置させせる事が何
の障害もなく可能である。
FIG. 8 is an explanatory diagram showing the relationship between the position of the servo surface and the thermal off-track of the magnetic disk device of the present invention. With the present invention, it is possible to position the servo surface approximately in the middle of the stacked disks without any problems.

図の如く3枚のディスクのうち中間ディスクの1面をサ
ーボ面80、これに対応するヘッドをサーボヘッド87
とする。その他のデーター面81、データーヘッド88
である。今、筐体86が磁気ディスク装置回路部等の発
熱により熱的不均一を生じこれがために図示の様にゆが
み、ヘッド支持手段82に固定するヘッドを傾かせ、ヘ
ッド間のズレを生じた。即ち最上ヘッドと最下ヘッドで
はlなるズレを生じ従来の様に最上面がサーボ面の場合
、最下面のデータヘッドはIなるオフトラックを生じて
いた。
As shown in the figure, one surface of the intermediate disk among the three disks is a servo surface 80, and the corresponding head is a servo head 87.
shall be. Other data surface 81, data head 88
It is. Now, the casing 86 has become thermally non-uniform due to the heat generated by the magnetic disk device circuitry, etc., and as a result, it has become distorted as shown in the figure, causing the head fixed to the head support means 82 to be tilted, causing misalignment between the heads. That is, a deviation of l occurs between the uppermost head and the lowermost head, and when the uppermost surface is a servo surface as in the conventional case, the data head on the lowermost surface has an off-track of I.

しかし、本発明では中間にサーボ面を配置することがで
きた為、ヘッド間のオフトラックは下ヘツドで工、上ヘ
ツドでKに分散されオフトラック量を非常に少なくする
事が可能になりデーター信頼性が向上した。通常この理
由からデータ面サーボを併用する必要もほとんどなくな
り回路の簡略化が可能となり又、ヘッド切り換え時のオ
フトラック補正が不要なため、データ転送速度を飛躍的
に向上させる事が実現できた。
However, in the present invention, the servo surface can be placed in the middle, so the off-track between the heads is processed on the lower head and distributed to K on the upper head, making it possible to extremely reduce the amount of off-track, and thus the data Improved reliability. For this reason, there is almost no need to use a data surface servo in combination, which makes it possible to simplify the circuit, and because there is no need for off-track correction when switching heads, it has been possible to dramatically improve the data transfer speed.

またデータ面サーボを併用する場合にもオフトラック量
が少ないので、その補正に要する時間も短くてすみ高速
データ転送を可能にした。
Furthermore, since the amount of off-track is small even when data surface servo is used, the time required for correction is short, making high-speed data transfer possible.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、 1)主軸モータハブと磁気ディスク内周は三カ所に係接
し偏心なく装着でき、回転するため主軸モータの寿命を
低下させず機械的信頼性を向上させた。
As described above, according to the present invention, 1) The spindle motor hub and the inner periphery of the magnetic disk are engaged in three places and can be mounted without eccentricity, and because they rotate, the life of the spindle motor is not reduced and mechanical reliability is improved. .

2)偏心が生じないため騒音、振動が発生せず、ホスト
システム使用者に不快感を与える事がなくなった。また
、振動によるヘッド位置決め精度の劣化も防止できた。
2) Since no eccentricity occurs, no noise or vibration is generated, and the user of the host system is no longer uncomfortable. It was also possible to prevent deterioration of head positioning accuracy due to vibration.

3)偏心や振れ回りが低減され、軸受のたわみもなくな
る為、非繰返し性のオフトラックが低減し、装置のデー
タ信頼性を高めた。
3) Eccentricity and whirling are reduced, and bearing deflection is eliminated, reducing non-repeatable off-track and improving data reliability of the device.

4)リムーバブル型固定磁気ディスク装置のオフトラッ
クを極端に小さくでき、データー信頼性を高めた。
4) Off-track of a removable fixed magnetic disk device can be extremely reduced, improving data reliability.

5)大型高剛性ベアリング、ディスク組込み後のバラン
ス取り、高精度ハブが不要になり装置の組立工数低減、
低価格化、小型化が実現できた。
5) Large, high-rigidity bearings, balancing after disc assembly, and high-precision hubs are no longer required, reducing device assembly man-hours.
We were able to achieve lower prices and smaller size.

6)面サーボ磁気ディスク装置内のクリーン度を高めヘ
ッド、ディスクの損傷を防ぎ、データー信頼性を高めた
6) Improved cleanliness inside the surface servo magnetic disk device to prevent head and disk damage and improve data reliability.

7)−度に複数枚のディスクに同時にサーボ信号を書き
、これをそれぞれ磁気ディスク装置に単に組み込むだけ
で従来の面サーボ磁気ディスク装置と同じ精度のサーボ
面が得られるため、ディスク装置製作が飛躍的に簡単か
つ短時間にて行なえ、面サーボディスク装置の大量生産
を可能にし、低価格化に貢献した。
7) - By simply writing servo signals to multiple disks at the same time and incorporating them into each magnetic disk device, you can obtain a servo surface with the same accuracy as a conventional surface servo magnetic disk device, making a leap forward in disk device production. It was easy and quick to perform, making it possible to mass-produce surface servo disk devices and contributing to lower prices.

8)磁気ディスク装置筐体の側面高さが十分に得られる
ため装置の高剛性化が可能となり、サーボ制御に有害な
機械共振点の低減、高周波帯への移行を可能にし、十分
安定なサーボ制御が実現され高精度な位置決め、信頼性
の高いシークが可能となった。
8) Since the side height of the magnetic disk device housing is sufficient, it is possible to increase the rigidity of the device, reduce mechanical resonance points that are harmful to servo control, and make it possible to shift to a high frequency band, resulting in sufficiently stable servo control. control has been realized, allowing highly accurate positioning and highly reliable seek.

9)高価な防振材、補強材が不用であり装置の小型軽量
化、低価格化を実現した。
9) Expensive vibration isolating materials and reinforcing materials are not required, making the device smaller, lighter, and cheaper.

10)筐体とチャンバー接合面から入る放射ノイズの影
響を低減させ、装置のデーター信頼性を高めた。
10) Reduced the influence of radiation noise entering from the joint surface of the casing and chamber, increasing the reliability of the data of the device.

11)サーボ面を積層ディスクの中間ディスクに設定で
きるため、各ディスク間でのオフトラックを分散低減し
、オフトラックによるエラーの発生を押え装置の信頼性
を高めた。
11) Since the servo surface can be set on the intermediate disk of the stacked disks, off-track distribution between the disks is reduced, and the reliability of the device for suppressing errors due to off-track is increased.

12)11)によりデータ面サーボを併用する必要がほ
とんどなくなり、回路の簡略化ができ、低価格化を実現
すると共に、ヘッド切換時のオフトラック補正に要する
時間が不要なため、データ転送速度を飛躍的に高める事
ができた。
12) With 11), there is almost no need to use a data surface servo, which simplifies the circuit, lowers the price, and eliminates the time required for off-track correction when switching heads, increasing data transfer speed. I was able to increase it dramatically.

13)データ面サーボを併用する場合でもオフトラック
補正時間を短縮でき、高速データ転送が可能となった。
13) Even when data surface servo is used, off-track correction time can be shortened and high-speed data transfer is possible.

以上に示す様な効果を有する。It has the effects shown above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の固定磁気ディスク装置の主軸モータ
ハブとディスク内周の位置決めの一例を示す説明図。 第2図は従来の固定ディスク装置の主軸モータへのディ
スク組込みと偏心の説明図。 第3図は従来の面サーボディスク装置のSTWの可動部
とディスク装置筐体との関係を示す説明図。 第4図は本発明の位置決めに用いた原理の説明図。 第5図は本発明の他の一例を示す説明図。 第6図は本発明の他の一例を示す説明図。 第7図は本発明の磁気ディスク装置の筐体の説明図。 第8図は本発明の磁気ディスク装置のサーボ面の位置と
熱オフトラックの関係を示す説明図。 1、 21.41. 51. 61 ・・・主軸モーターハブ 2.23,46,52.62 ・・・主軸モーターハブの回転中心(重心) 8、 58. 103 ・・・可撓部 9、 20.40. 50.60. 100・・・磁気
ディスク、ディスク 22・・・・磁気ディスク回転中心 47・・・・ディスク重心 24.33・ヘッド 35、75.85 ・・・主軸モーター 36.76.86 ・・・筐体(磁気ディスク装置筐体) 37.38・ディスク面 34・會・・クロックヘッド 32拳・・・STWアクチュエータ 4.2. 53. 63 68 ・ 72゜ 71゜ 70゜ 77゜ 79争 ・・・ディスク内周 ・・・可撓性部材 82・ヘッド支持手段 8トデ一タ面 80・サーボ面 88・データヘッド 87・サーボヘッド e舎拳チャンバー 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴 木 喜三部(他1名)N5 図 第十 図 第6 図 第8 図・
FIG. 1 is an explanatory diagram showing an example of the positioning of the main shaft motor hub of the fixed magnetic disk device of the present invention and the inner circumference of the disk. FIG. 2 is an explanatory diagram of the installation of a disk into the main shaft motor and eccentricity of a conventional fixed disk device. FIG. 3 is an explanatory diagram showing the relationship between the movable part of the STW of a conventional planar servo disk device and the disk device housing. FIG. 4 is an explanatory diagram of the principle used for positioning according to the present invention. FIG. 5 is an explanatory diagram showing another example of the present invention. FIG. 6 is an explanatory diagram showing another example of the present invention. FIG. 7 is an explanatory diagram of the casing of the magnetic disk device of the present invention. FIG. 8 is an explanatory diagram showing the relationship between the position of the servo surface and the thermal off-track of the magnetic disk device of the present invention. 1, 21.41. 51. 61 ... Main shaft motor hub 2.23, 46, 52.62 ... Center of rotation (center of gravity) of main shaft motor hub 8, 58. 103...Flexible part 9, 20.40. 50.60. 100... Magnetic disk, disk 22... Magnetic disk rotation center 47... Disk center of gravity 24.33, head 35, 75.85... Main shaft motor 36.76.86... Housing ( Magnetic disk device housing) 37.38・Disk surface 34・Clock head 32 fist・STW actuator 4.2. 53. 63 68 ・ 72゜71゜70゜77゜79 Inner periphery of disk...Flexible member 82, head support means 8, top surface 80, servo surface 88, data head 87, servo head housing Fist Chamber Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Kizobe Suzuki (and 1 other person) N5 Figure 10 Figure 6 Figure 8

Claims (1)

【特許請求の範囲】 1)中心部に主軸モーターハブに装着する穴を有し、前
記主軸モーターハブの略円筒面と3カ所にて係合位置決
めをする穴形状を有し、少なくとも1面にヘッド位置決
め用のサーボ信号が書かれている磁気ディスクを少なく
とも1枚搭載する事を特徴とする固定磁気ディスク装置
。 2)前記係合位置決めの3カ所のうち1カ所が可撓性を
有することを特徴とする請求項1記載の固定磁気ディス
ク装置。 3)前記係合位置決めの3カ所のうち1カ所が可撓性を
有する磁気ディスクとは別の手段から成ることを特徴と
する請求項1記載の固定磁気ディスク装置。
[Scope of Claims] 1) The main spindle motor hub has a hole in the center for attachment to the main spindle motor hub, and has a hole shape that engages and positions the substantially cylindrical surface of the main spindle motor hub at three locations, and at least one surface has a hole shape for engaging and positioning the main spindle motor hub at three locations. A fixed magnetic disk device characterized by mounting at least one magnetic disk on which a servo signal for head positioning is written. 2) The fixed magnetic disk device according to claim 1, wherein one of the three engagement positioning locations is flexible. 3) The fixed magnetic disk device according to claim 1, wherein one of the three positions for engaging and positioning is formed by means other than a flexible magnetic disk.
JP1017208A 1989-01-26 1989-01-26 Fixed magnetic disk device Pending JPH02198058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1017208A JPH02198058A (en) 1989-01-26 1989-01-26 Fixed magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1017208A JPH02198058A (en) 1989-01-26 1989-01-26 Fixed magnetic disk device

Publications (1)

Publication Number Publication Date
JPH02198058A true JPH02198058A (en) 1990-08-06

Family

ID=11937523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017208A Pending JPH02198058A (en) 1989-01-26 1989-01-26 Fixed magnetic disk device

Country Status (1)

Country Link
JP (1) JPH02198058A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19644519A1 (en) * 1995-10-26 1997-04-30 Alps Electric Co Ltd Cassette with flexible data carrier disc
US6678114B2 (en) * 2000-02-25 2004-01-13 Seagate Technology Llc Disc biasing scheme to minimize single plane unbalance for hard disc drives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19644519A1 (en) * 1995-10-26 1997-04-30 Alps Electric Co Ltd Cassette with flexible data carrier disc
US6678114B2 (en) * 2000-02-25 2004-01-13 Seagate Technology Llc Disc biasing scheme to minimize single plane unbalance for hard disc drives

Similar Documents

Publication Publication Date Title
JP3042188B2 (en) Manufacturing method of pivot mechanism
JP3240935B2 (en) Magnetic disk drive
US7499243B2 (en) Disk drive with support structure for air dams and disk-vibration capacitive sensors
US7609483B2 (en) Data storage device with load/unload tab inclined towards a disk
US6765759B2 (en) Resonance four piece suspension
US20030179493A1 (en) Hard disk drive having disk fluttering reducing unit
US6351344B1 (en) Stiffened cover for a head disc assembly of a disc drive
CN101159153A (en) Disk device
US7733610B2 (en) Load/unload ramp for an actuator assembly in a data storage device
US5112147A (en) Rotating support apparatus in disk storage device
US7161754B2 (en) Servo pattern writing method and magnetic disk drive for carrying out the same
JPH02198058A (en) Fixed magnetic disk device
JPH09320002A (en) Method for assembling disk medium into magnetic disk apparatus
JPH02198084A (en) Magnetic disk
US6125099A (en) Disk drive system, process and components thereof for improved disk stiffness
JP2007250027A (en) Dumping mechanism of rotary disk, information recording device, and magnetic disk device
US7477480B2 (en) Disk spacer, hard disk drive with the disk spacer, and disk balancing method using the disk spacer
JP2001078384A (en) Spindle motor
JP3234110B2 (en) Information recording / reproducing device and head assembly
JP2000268485A (en) Information recording and reproducing device
KR100699903B1 (en) Disk damper, Hard disk drive including the disk damper and Fabricating method of the disk damper
JPH02198085A (en) Fixed magnetic disk device
JPH0554574A (en) Magnetic disk device
JPH05151740A (en) Magnetic disk device
JPH06338154A (en) Magnetic disk device