JPH0219767A - Membrane bio sensor - Google Patents

Membrane bio sensor

Info

Publication number
JPH0219767A
JPH0219767A JP1120209A JP12020989A JPH0219767A JP H0219767 A JPH0219767 A JP H0219767A JP 1120209 A JP1120209 A JP 1120209A JP 12020989 A JP12020989 A JP 12020989A JP H0219767 A JPH0219767 A JP H0219767A
Authority
JP
Japan
Prior art keywords
entity
substance
membrane
layers
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1120209A
Other languages
Japanese (ja)
Inventor
H Gilbert Smith
エッチ・ギルバート・スミス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Revvity Inc
Original Assignee
EG&G Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EG&G Inc filed Critical EG&G Inc
Publication of JPH0219767A publication Critical patent/JPH0219767A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/5432Liposomes or microcapsules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To make a membrane biosensor possible to respond to biologically active compounds of various kinds, e.g. hormone, nerve conduction elements, toxicants, etc., by designing the sensor based on a chemically sensitive receptor. CONSTITUTION: A device for detecting a first substance is provided with a supporting member 10 having a face, a first hydrophobic layer 14 coupled to the face not diffusingly, a second hydrophobic layer 16 overlapping with the first layer to form two layers, and a second substance reactive to the first substance and positioned between the two layers. The second substance reacts with the first substance when in the two layers thereby to generate a partial change of a detectable characteristic of the two-layer structure. The first or second hydrophobic layer includes a plurality of molecule having an aliphatic chain with at least 6 carbon atoms. The first substance is set as a chemical substance. The second substance is protein capable of freely moving in the two layers. The detectable characteristic is set as an electric or optical characteristic. The second substance reacts with the first substance thereby to form an affinitive complex without a covalent bond of the first and second substances.

Description

【発明の詳細な説明】 産業上皇且且分… 本発明は選択的膜を含む電子デバイスに関し。[Detailed description of the invention] Retired Emperor and Minister of Industry… The present invention relates to electronic devices containing selective membranes.

例えば化合物・イオン等の化学的実体等を測定するセン
サに関する。
For example, it relates to a sensor that measures chemical entities such as compounds and ions.

従来災肢血 生物学的に顕著な実体7例えば生体流体内の抗原を測定
し得る多くのデバイスがある。この種デバイスは、免疫
センサ、酵素電極、電気化学センサ、生体触媒膜電極、
化学センサ、光電気デバイス、イオン感知電極等を含み
、質量分光計、核磁気共鳴計を使用するデバイスもある
。Schramm eta+、、1987 The C
ommercialization of Btose
nsorsMedical Device & Dia
gnostic Industry、 Vol、9゜p
、52参照。
There are many devices capable of measuring biologically significant entities such as antigens in biological fluids. This type of device includes immunosensors, enzyme electrodes, electrochemical sensors, biocatalytic membrane electrodes,
These include chemical sensors, optoelectronic devices, ion sensing electrodes, etc., and some devices use mass spectrometers and nuclear magnetic resonance meters. Schramm eta+, 1987 The C
Omercialization of Btose
nsorsMedical Device & Dia
Gnostic Industry, Vol, 9゜p
, 52.

免疫センサは一群の抗体又は抗原を組合せたセンサを有
するデバイスであり1選択的に測定すべき抗体又は抗原
に結合する。抗体抗原の複合体は生理化学手段では直接
測定不可能であり、単一発生器例えば抗体酵素共軛体を
必要とする。共軛体は酵素の基質を電気能動物品に変換
して電気化学検出器によって検出できる。分析量は検出
器の応答によって定まる。
An immunosensor is a device that has a sensor that combines a group of antibodies or antigens and selectively binds to the antibody or antigen to be measured. Antibody-antigen complexes cannot be measured directly by physiochemical means and require a single generator, such as an antibody-enzyme conjugate. The conjugate converts the enzyme's substrate into an electroactive product that can be detected by an electrochemical detector. The analyte is determined by the detector response.

米国特許第4490216号は電気分析デバイスを記載
し、剛体の電気感知層に脂質層を非拡散に結合する。脂
質層の上に第2の脂質層を重ね、極性疎水性ヘッド群が
脂質層から離れた位置にある。この極性群の形成する層
は静電気層として作用し。
US Pat. No. 4,490,216 describes an electroanalytical device that non-diffusively couples a lipid layer to a rigid electrosensing layer. A second lipid layer is placed on top of the lipid layer, and the polar hydrophobic heads are located away from the lipid layer. The layer formed by this polar group acts as an electrostatic layer.

極性は剛性電気感知層によって感知される。極性層を変
更してリガンド受容体対の群を一方の脂質に代え9例え
ばデイバルミトイル・フォスフォリピド・ニトロキサイ
ド(DPN)を結合する。この改造デバイスはこの結合
が極性層内の静電界に変化を生ずれば結合対の中の他の
メンバーを検出するに有効である。
Polarity is sensed by a rigid electrical sensing layer. The polar layer is changed to replace the group of ligand-receptor pairs with one lipid, 9 for example binding divarmitoyl phospholipid nitroxide (DPN). This modified device is effective in detecting other members of the bonding pair if this bonding causes a change in the electrostatic field within the polar layer.

発肌二槍要 本発明は膜受容体蛋白質が形質導入素子として作用し、
特定の分子の接触等による刺激を電気又は化学信号に変
換し、細胞からの応答を顕現させることの認識に基く。
Key points for skin development The present invention is based on the membrane receptor protein acting as a transduction element,
It is based on the recognition that stimulation caused by contact with specific molecules is converted into electrical or chemical signals, and a response from cells is manifested.

受容体蛋白質の三元構造の刺激トリガ変化はこのプロセ
スの一般的段階である。例えば、受容体蛋白質の特定の
側に化合物を結合すれば受容体の形状に変化を生じ1M
*のイオンに対する透過性を変化させ、電気化学的形質
導入を開始し、膜の内側を露出し、酵素プロセスを開始
する。この順応変化は蛋白質の荷電側チェーンの膜面に
対する分布の変化を生じ、膜面における電位の変化を生
ずる。
Stimulus-triggered changes in the ternary structure of receptor proteins are a common step in this process. For example, binding a compound to a specific side of a receptor protein causes a change in the shape of the receptor.
* changes its permeability to ions, initiates electrochemical transduction, exposes the inside of the membrane, and initiates enzymatic processes. This adaptive change causes a change in the distribution of the protein's charged side chains with respect to the membrane surface, resulting in a change in the potential at the membrane surface.

本発明による膜センサは実体例えば膜内に保持された蛋
白質の特性を利用する。このセンサは小さな運動例えば
膜の疎水性部分内に生ずる装入物の2オングストローム
以下の運動を膜の電界の局部的変化の測定によって検出
し得る。この装入物の運動だけでなく、運動力学も検出
できる。他の変化1例えば光学的変化も本発明のセンサ
によって検出し得る。
Membrane sensors according to the invention exploit the properties of entities such as proteins retained within membranes. This sensor is capable of detecting small movements, such as movements of less than 2 angstroms of the charge occurring within the hydrophobic portion of the membrane, by measuring local changes in the electric field of the membrane. Not only the movement of this charge but also the kinematics can be detected. Other changes, such as optical changes, can also be detected by the sensor of the invention.

本発明による第1の実体を検出するデバイスは面を有す
る支持部材と1面に非拡散に結合した第1の疎水性層と
、第1の層に重ねて二層を形成する第2の疎水性層と、
二層内に位置決めされ第1の実体に反応性の第2の実体
とを備え、第2の実体は二層内にある時に第1の実体と
反応してに層構造の検出可能特性の部分的変化を生じ得
る。
A device for detecting a first entity according to the present invention includes a support member having a surface, a first hydrophobic layer non-diffusively bonded to one surface, and a second hydrophobic layer overlaid on the first layer to form two layers. sex layer and
a second entity positioned within the bilayer and reactive with the first entity, wherein the second entity reacts with the first entity when within the bilayer to cause a portion of the detectable property of the layer structure to react with the first entity; may cause physical changes.

本発明の好適な実施例によって、第1又は第2の疎水性
層は少なくとも6個の炭素原子を有する脂肪族チェーン
を有する複数の分子を含む。第1の実体を化学的実体と
する。第2の実体を前記二層内を自由に動き得る蛋白質
(好適な例で膜受容対する蛋白質)とする。検出可能の
特性を電気的特性又は光学的特性とする。第2の実体は
第1の実体と反応して第1第2の実体が非共有結合した
親和錯体(例えば、受容体蛋白質と特定する淡白質等の
実体との間の錯体5例えば生長関数と面結合蛋白質3例
えばインターロイキン2とリンパ細胞のインターロイキ
ン2受容体、又は神経伝達素子と神経受容体、又はホル
モンとホルモン受容体又は免疫錯体)を形成する。
According to a preferred embodiment of the invention, the first or second hydrophobic layer comprises a plurality of molecules with aliphatic chains having at least 6 carbon atoms. Let the first entity be a chemical entity. The second entity is a protein (preferably a membrane receptor protein) that can move freely within the two layers. The detectable property is an electrical property or an optical property. The second entity reacts with the first entity to form an affinity complex in which the first and second entities are non-covalently bonded (e.g., a complex between a receptor protein and an entity such as a specific white matter). Surface binding proteins 3 form interleukin 2 and interleukin 2 receptors of lymph cells, or neurotransmitter elements and neuroreceptors, or hormones and hormone receptors, or immune complexes).

本発明は生体受容体の検出可能性と、ソ’J ソドステ
ートマイクロ電子デバイスと光学デバイスの既知の信号
処理可能性とを結合する手段を提供する。本発明による
生体疑似感知組立体は膜受容体蛋白質等の分子のほぼ天
然の環境内での使用によって著しい測定可能性を得る。
The present invention provides a means of combining the detectability of bioreceptors with the known signal processing possibilities of So'J sodostate microelectronic and optical devices. The biomimetic sensing assembly according to the invention gains significant measurability through the use of molecules such as membrane receptor proteins in their near-natural environment.

各種刺激に対する蛋白質の応答を測定でき、この応答は
蛋白質に反応する溶液内の分子の濃度に関連する。広範
囲の実体、膜受容対する蛋白質だけでなく他の蛋白質例
えば抗体、抗原、酵素、改造ポリペプチド等を使用して
膜を構成できる。
The response of a protein to various stimuli can be measured, and this response is related to the concentration of molecules in solution that react with the protein. A wide variety of entities can be used to construct membranes, including membrane-receptor proteins as well as other proteins such as antibodies, antigens, enzymes, modified polypeptides, and the like.

本発明によるデバイスでは二圏内での運動実体は蛋白質
であり、デバイスは蛋白質の機能特性を作動又は変化さ
せる刺激に応答する。膜の環境は蛋白質が天然に機能す
る環境に疑似し、最大感度はその生体範囲に釣合う。蛋
白質分子は天然環境にできるだけ近似させ、適合動態を
維持し、天然の刺激に応答する。即ち、センサは天然の
正負の刺激、及び刺激の疑似を検出する。本発明のセン
サは医学診断、薬剤スクリーニング、化学戦争等の毒物
検出、不法薬使用検査、及び膜受容体機構の研究に有効
である。更に、溶液内の蛋白質等の化学的実体の検出に
付加して、このデバイスは。
In the device according to the invention, the internally moving entity is a protein, and the device responds to stimuli that actuate or change the functional properties of the protein. The membrane environment mimics the environment in which proteins naturally function, and maximum sensitivity is commensurate with their biological range. Protein molecules closely approximate their natural environment, maintain adaptive dynamics, and respond to natural stimuli. That is, the sensor detects natural positive and negative stimuli as well as simulated stimuli. The sensor of the present invention is effective for medical diagnosis, drug screening, detection of toxic substances such as chemical warfare, testing for illegal drug use, and research on membrane receptor mechanisms. Additionally, this device can be used to detect chemical entities such as proteins in solution.

光、臭い、 ph及び温度変化を検出できる。It can detect light, odor, pH, and temperature changes.

夫施拠 本発明を例示とした実施例並びに図面について説明する
DETAILED DESCRIPTION OF THE INVENTION Examples and drawings illustrating the present invention will be described.

第1図は膜擬態組立体の線図表示であり5面詰合膜構造
8は第1の実体の検出のために設計され支持部材IOの
面12に第1の疎水性FW14を拡散せずに例えば共有
結合として結合する。第2の疎水性(脂質)層16は極
性ヘッド群18を有する脂質分子I7を含み、疎水性相
互作用によって層14に結合する。極性脂質ヘッド群1
8は基板10に対して外方を向く。両層に組合せた第2
の実体分子20は例えば受容体蛋白質とし1両層内で自
由に可動とする。
FIG. 1 is a diagrammatic representation of a membrane-mimetic assembly in which a five-sided membrane structure 8 is designed for the detection of a first entity and does not diffuse the first hydrophobic FW 14 onto the surface 12 of the support member IO. For example, as a covalent bond. The second hydrophobic (lipid) layer 16 contains lipid molecules I7 with polar head groups 18 and is bound to the layer 14 by hydrophobic interactions. Polar lipid head group 1
8 faces outward with respect to the substrate 10. The second layer combined with both layers
The entity molecule 20 is, for example, a receptor protein and is freely movable within both layers.

膜構造8は標準の補助電子回路と組合せ、検出すべき第
1の実体が膜内の第2の実体に反応する時に検出可能の
信号を生ずる。各部分を以下詳細に説明する。
The membrane structure 8 is combined with standard auxiliary electronics to produce a detectable signal when the first entity to be detected reacts with the second entity within the membrane. Each part will be explained in detail below.

第1の疎水性層を説明する。The first hydrophobic layer will be explained.

第1の疎水性層は極性脂質が相互作用して面を形成し自
然の膜に類似した二層構造を形成する。
In the first hydrophobic layer, polar lipids interact to form a surface, forming a bilayer structure similar to natural membranes.

支持部材と共有結合を形成し得る反応性長チェーン炭水
化物例えばオクタドエシルトリクロロシランを含む溶液
を基質の面に反応させてこの層を形成し、ガラスの面上
でヒドロキシル群に反応しJ 、 Sag iv + 
1979+ I sr、 J 、 Chem、 + V
ol −18+ p46に記載がある。他の好適な疎水
性層形成溶液はMcConneL 1等の文献がある。
A solution containing a reactive long chain carbohydrate, such as octadoethyltrichlorosilane, capable of forming covalent bonds with the support member is reacted on the surface of the substrate to form this layer, and on the surface of the glass is reacted with hydroxyl groups to form J, Sag. iv+
1979+ I sr, J, Chem, + V
It is described in ol-18+ p46. Other suitable hydrophobic layering solutions are found in the literature such as McConne L 1.

第2の疎水性N(脂質層)を説明する。The second hydrophobic N (lipid layer) will be explained.

脂質層は受容体蛋白質と同時に面上に沈着させ例えば後
述する表面活性剤透析技法を使用する。
The lipid layer is deposited on the surface simultaneously with the receptor protein using, for example, the surfactant dialysis technique described below.

脂質層は面上に保持され、第1の疎水性層と相互作用し
て上述の位置を保つ。極性ヘッド群は面から外を向き、
個々の脂質分子は膜の面内を自由に拡散する。この屓に
適切な脂質の例はMcConnal 1等の文献がある
。第1第2の層内の脂質は交叉結合又は重合して層内の
拡散を減少させる。
The lipid layer is held on the surface and interacts with the first hydrophobic layer to maintain said position. The polar head group faces outward from the surface,
Individual lipid molecules diffuse freely in the plane of the membrane. Examples of suitable lipids for this purpose are found in McConnal et al. Lipids within the first and second layers may cross-link or polymerize to reduce diffusion within the layers.

第2の実体を説明する。The second entity will be explained.

第2の実体は蛋白質又は蛋白質状の化合物であり、好適
な例で受容体蛋白質とする。第2の実体は両層内の疎水
性物と相互作用して両層構造内に拘束される。
The second entity is a protein or protein-like compound, preferably a receptor protein. The second entity interacts with the hydrophobes within both layers and becomes constrained within the bilayer structure.

好適な例で、第2の実体は両層内を自由に動き配座再構
成を行う蛋白質とする。21[1の一般紙の蛋白質を生
物膜に組合せ9周辺蛋白質を膜の親水性面に組合せ、主
要蛋白質を膜の疎水性内部に挿入する。本発明の好適な
膜構造は主要膜蛋白質を使用し、特に両膜眉間の結合部
を2回以上交叉するポリペプチドチェーンを有する蛋白
質とする。
In a preferred example, the second entity is a protein that moves freely within both layers and undergoes conformational rearrangement. 21 [1] Assemble the proteins on the general paper into the biofilm, 9. Assemble the peripheral proteins on the hydrophilic side of the membrane, and insert the main proteins into the hydrophobic interior of the membrane. A preferred membrane structure of the present invention uses a major membrane protein, particularly a protein having a polypeptide chain that crosses the glabellar junction of both membranes two or more times.

この膜間蛋白質は生物感知過程5例えば光感知蛋白質ロ
ドプシンによる光の感知のために特に重要である。
This intermembrane protein is particularly important for biological sensing processes 5, such as the sensing of light by the light-sensing protein rhodopsin.

上述した通り9本発明の膜構造の主要な特性は自然の膜
の二層に酷似した蛋白質を囲む環境を形成し、蛋白質は
膜蛋白質機能に好適な環境内に保持される。
As mentioned above, 9 the key properties of the membrane structure of the present invention create an environment surrounding proteins that closely resembles the bilayers of natural membranes, and proteins are retained within an environment suitable for membrane protein function.

補助電子回路を説明する。Describe the auxiliary electronic circuit.

第2図は通常の絶縁ゲート電界効果トランジスタ(IG
FET)30を示し、既知の標準技法を使用して膜構造
8に作動結合する。簡単に説明すれば。
Figure 2 shows a typical insulated gate field effect transistor (IG).
FET) 30 is shown and operatively coupled to membrane structure 8 using known standard techniques. Let me explain it simply.

IGFE730はp型シリコンで形成したベース32を
有する。これを処理してドレン部34とソース部36に
n型シリコンを形成する。ソース部とドレン部に金属接
点を被覆し次に絶縁物39を取付け、絶縁物39の頂部
に金属層を被覆してゲート電極38を形成する。面上の
荷電キャリアの密度を調節してゲート電荷がソース36
とドレン34の間の電流を制御する。この電流はデバイ
スの面での電界の感知精度となる。デバイスは本質的に
絶縁シリコン面のキャリアの電荷従属蓄積又は放散に応
答する。
IGFE 730 has a base 32 made of p-type silicon. This is processed to form n-type silicon in the drain section 34 and source section 36. The source and drain portions are coated with metal contacts, then an insulator 39 is attached, and a metal layer is coated on top of the insulator 39 to form a gate electrode 38. The gate charge is adjusted to the source 36 by adjusting the density of charge carriers on the surface.
and the drain 34. This current provides the precision with which the electric field is sensed in the plane of the device. The device essentially responds to charge-dependent accumulation or dissipation of carriers in an insulating silicon surface.

本発明による膜蛋白質機能に伴う電荷運動を測定するた
めに、第2図の通常のIGFET構造を改造して金属ゲ
ート電極38に代えて第1図に示す面詰金膜組立体8と
する。このシステムにおいて、膜はIGFETのゲート
部分として作用する。このデバイスを所要のエポキシ等
のポリマーのカプセルに包み9面詰合膜のゲート部分を
分析剤を含む溶液に露出する。絶縁材がソースとドレン
電極を含むデバイスの他の部分を隔離する。使用の際に
測定溶液内の基準電極を加えて溶液に電気的に接触させ
る必要がある。
In order to measure the charge movement associated with membrane protein function according to the present invention, the conventional IGFET structure shown in FIG. 2 is modified to replace the metal gate electrode 38 with the surface-filled gold film assembly 8 shown in FIG. In this system, the membrane acts as the gate portion of the IGFET. This device is encapsulated in a polymer such as epoxy, and the gate portion of the nine-sided membrane is exposed to a solution containing an analytical agent. Insulating material isolates other parts of the device including the source and drain electrodes. During use, it is necessary to add a reference electrode within the measurement solution to make electrical contact with the solution.

基質即ち支持部材を選択して、刺激との相互作用に際し
て変化する両胸質層のある特性に応答させる0例えば、
電気的に応答する基質例えば電界効果トランジスタは受
容体蛋白質と刺激の相互作用によって誘起される電荷運
動を感知する。光応答基板は刺激との相互作用に際して
フィルムの光特性の変化を感知する。この種の基板の例
は米国特許第4591550号に記載される。他の基板
の例は光ファイバーである。通常、基板面は改造して膜
構造8の疎水性層に結合するに必要とする化学的能動群
とする。好適な基板はガラス、酸化プラチナ、二酸化珪
素、硝酸珪素、被覆シリコン等の長チェーン炭化水素を
誘導し得る面とする。面は平面又は非平面とし、ビード
面、平面共に使用できる。他の好適な基板は上述のMc
Connallの文献に記載がある。
The substrate or support member may be selected to respond to certain properties of both thoracic layers that change upon interaction with a stimulus, e.g.
Electrically responsive substrates, such as field effect transistors, sense charge movement induced by the interaction of receptor proteins and stimuli. A photoresponsive substrate senses changes in the optical properties of the film upon interaction with a stimulus. An example of this type of substrate is described in US Pat. No. 4,591,550. Another example of a substrate is an optical fiber. Typically, the substrate surface is modified to provide the chemically active groups necessary to bond to the hydrophobic layer of the membrane structure 8. Suitable substrates are surfaces capable of introducing long chain hydrocarbons such as glass, platinum oxide, silicon dioxide, silicon nitrate, coated silicon, and the like. The surface can be flat or non-flat, and both bead and flat surfaces can be used. Other suitable substrates are Mc
It is described in the literature by Connall.

製造について説明する。Manufacturing will be explained.

本発明の膜構造は直接基板面上に改造表面活性剤透析技
法を使用して形成する。露出ヒドロキシル等の反応群を
有する面を各種のオルガノシランと反応させて二層の第
1の層を形成する。例えば基板を長チェーン脂肪酸を面
群に結合して疎水性とし1例えばオクタドエシルトリク
ロロシランと反応させる。二層の第2の層は表面活性剤
透析と同時に蛋白質を組合せて沈着させる蛋白質と二層
の他のリーフレットは、共有結合の二層の内部アルキル
群リーフレットに疎水性相互作用によって基板面に保持
する。
The membrane structure of the present invention is formed directly on the substrate surface using a modified surfactant dialysis technique. The surface with reactive groups such as exposed hydroxyls is reacted with various organosilanes to form the first layer of the bilayer. For example, the substrate can be made hydrophobic by attaching long chain fatty acids to the face groups and reacted with, for example, octadoethyltrichlorosilane. The second layer of the bilayer is simultaneously deposited with surfactant dialysis in combination with the protein, and the other leaflet of the bilayer is covalently bound to the substrate surface by hydrophobic interactions to the internal alkyl group leaflets of the bilayer. do.

表面活性剤透析において、脂質・蛋白質・表面活性剤の
溶液から表面活性剤は徐々に除去され。
In surfactant dialysis, the surfactant is gradually removed from a solution of lipids, proteins, and surfactants.

脂質と蛋白質は再結合して小嚢の二層構造を形成する0
表面活性剤は蛋白質に対して非変性とし。
Lipids and proteins recombine to form the bilayer structure of the vesicle0
The surfactant is non-denaturing to proteins.

比較的高い臨界ミセル濃度を有し、透析による除去を容
易とする。オクチルグルコサイド及びデオキシクロレー
トは最も好適である。透析間に所要の疎水性面が形成さ
れれば、脂質と蛋白質を所要量駆動して面を改良し自由
浮動小量でなくする。
It has a relatively high critical micelle concentration, making it easy to remove by dialysis. Octyl glucoside and deoxychlorate are most preferred. Once the required hydrophobic surface is formed during dialysis, the required amount of lipids and proteins are driven to improve the surface and eliminate the free floating mass.

この技法によって創造された構造は9組成と電気的特性
が基板面上の二層膜の形成に合致する。
The structures created by this technique are consistent in composition and electrical properties with the formation of a bilayer film on the substrate surface.

光受容蛋白質ロドプシンを次の通りに膜構造に組合せる
。Sm1th et al、+1982.Meth、E
nzymol、。
The photoreceptor protein rhodopsin is assembled into a membrane structure as follows. Smlth et al, +1982. Meth, E.
nzymol,.

Vol、81.p、57の方法によって、レチナールロ
ッド外側セグメント円板を除外し9表面活性剤オクチル
グルコサイド(OG)によって溶液化し、流透析装置の
の室C内に置き、第3図に示し、溶液化した膜溶液を平
面支持部材10に接触させ、支持部材は予めオクタドエ
シルトリクロロシランで処理してアルキル化する。透析
l1llAを使用して透析を行い第3図に示す直線濃度
勾配でオクチルグルコサイドを5hr以上で50mMか
らOmMとし1次に表面活性剤のないバッファーで11
3hr透析する。懸濁液内の脂質と蛋白質の量が面上に
単層を形成するに必要な量以上であれば多量の小量が形
成される。平面担体をバッファー溶液に浸漬することに
よって小嚢を除去し得る。
Vol, 81. 57, the retinal rod outer segment disc was removed and solubilized with the surfactant octyl glucoside (OG) and placed in chamber C of a flow dialysis machine, as shown in Figure 3, and solubilized. The membrane solution is brought into contact with the planar support member 10, which has previously been treated with octadoethyltrichlorosilane to alkylate it. Dialysis was performed using 11llA, and octyl glucoside was adjusted from 50mM to OmM over 5 hours using the linear concentration gradient shown in Figure 3.
Dialysis for 3 hours. If the amount of lipid and protein in the suspension is greater than or equal to that required to form a monolayer on the surface, a large amount of small amounts will be formed. The vesicles may be removed by dipping the planar carrier into a buffer solution.

形成された基質の特性はアルキル化面上の膜状構造の形
成に合致する。37μ−の直径のガラスビードのロドプ
シン含有量は145i28μgのロドプシンがビード1
g当り含有である。これは面2600に当り1個のロド
プシン(Rh)分子に相当し、天然のディスク膜に予期
した2 500−.3600K に相当する。ビードの
脂質含有量は83土15moI燐酸塩(P)/mol 
Rhと計算される。この値は天然のディスク膜に対する
報告の50−50−1O0P/mol Rbに近似する
。この結果から1本発明面結合構造の組成は所要の膜疑
似二層となる。
The properties of the formed substrate are consistent with the formation of a film-like structure on the alkylated surface. The rhodopsin content of a glass bead with a diameter of 37 μ- is 145 i. 28 μg of rhodopsin is
Contains per gram. This corresponds to 1 rhodopsin (Rh) molecule per 2600 faces, which is the expected 2500-. Equivalent to 3600K. The lipid content of the beads is 83 soil 15 moI phosphate (P)/mol
It is calculated as Rh. This value is close to the reported 50-50-1 O0P/mol Rb for natural disk membranes. From this result, the composition of the surface-bonded structure of the present invention becomes a required film pseudo-bilayer.

上述の組立体を平面プラチナ電極の酸化面上に形成し、
電気特性を周期的ボルトアンメーターによって計測する
時は、 /1III定抵抗は10 ohmcniであり
キャパシタンスは0.2−0.5uF/c%である。こ
の結果は天然膜の標準値、抵抗10’−10’ohmc
nl、キャパシタンスIuF/aII!に近似する。
forming the above assembly on the oxidized surface of a planar platinum electrode;
When electrical properties are measured by a periodic voltammeter, the /1III constant resistance is 10 ohm cni and the capacitance is 0.2-0.5 uF/c%. This result is the standard value of natural film, resistance 10'-10'ohmc
nl, capacitance IuF/aII! Approximate to

使用について説明する。Explain its use.

本発明による膜組立体は蛋白質に反応する実体の検出、
又は二層内の他の実体の検出に使用できる。例えば、二
層内の蛋白質は人間のインターロイキン2 (IL−2
)受容体とし、Leonard et al、、198
2Nature(Lond) 、 Vol、300. 
pp、267 =69に記載がある。
The membrane assembly according to the present invention detects entities that react with proteins;
or can be used to detect other entities within the bilayer. For example, the protein within the bilayer is human interleukin 2 (IL-2
) receptor, Leonard et al., 198
2Nature (Lond), Vol, 300.
It is described in pp. 267 = 69.

デバイスを使用して血清等の生体流体内のIL−2を測
定して患者の免疫状態に関する情報を得る。
The device is used to measure IL-2 in biological fluids such as serum to obtain information regarding the patient's immune status.

本発明を使用して他の膜受容体及び形質導入素子9例え
ば視覚嗅覚神経伝達素子、ホルモン受容体等に反応する
実体の検出又は測定を行い得る。
The present invention may be used to detect or measure entities responsive to other membrane receptors and transduction elements 9 such as visual olfactory neurotransmitter elements, hormonal receptors, and the like.

生物学と電子、光学システムの組合せは新奇なセンサを
提供し、適切な膜受容体蛋白質を選択することによって
特殊性を定める。
The combination of biological and electronic and optical systems provides a novel sensor, defined by specialization by selecting the appropriate membrane receptor protein.

化学的に感受性の受容体に基くセンサを設計すれば各種
の生物学的に能動の化合物例えばホルモン、神経伝達素
子、毒素等の応答する。このデバイスは天然の刺激にも
、受容体と刺激との相互作用を禁止する化合物にも応答
する。この化学的感受性のデバイスは広い通用例があり
5毒素検出と分析、薬品調査、医学診断、薬学スクリー
ニングを含む。
Chemically sensitive receptor-based sensors can be designed to respond to a variety of biologically active compounds such as hormones, neurotransmitters, toxins, and the like. The device responds to both natural stimuli and compounds that inhibit the interaction of the receptor with the stimulus. This chemically sensitive device has wide applications including toxin detection and analysis, drug research, medical diagnostics, and pharmaceutical screening.

他の実施例として1例えば本発明の膜構造は表面活性剤
透析でなく、既知の技法例えばLangmuirBlo
dgettの技法を使用して構成することもできる。
In another embodiment, for example, the membrane structure of the present invention is not subjected to surfactant dialysis, but using known techniques such as LangmuirBlo.
It can also be configured using the dgett technique.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は膜疑イ以組立体の線図、第2図は絶縁ゲート電
界効果トランジスタの断面図、第3図は本発明の装置の
形成に好適な透析装置の図である。 818.膜構造 100.支持部材 !4.16...
疎水性屓171.脂質分子 206.受容体蛋白質分子
309.絶縁ゲート電界効果トランジスタ320.ベー
ス 341.ドレン 369.ソース381.ゲート電
極 391.絶縁物 図面の浄書(内容に変更なし) (外4名: 手 続 補 正 書 1゜ 事件の表示 平成1年特許願第120209号 2、発明の名称 膜バイオセンサ 3゜ 補正をする者 事件との関係  特工1出願人 住所 名 称  イージー・アンド壷ジー・インコーホレーテ
ッド4、代理人 住 所  東京都千代田区大手町二丁l:12番1号新
大手町ビル 206区 5、補正の対象 出願人の代表者芯を記載した願書
FIG. 1 is a diagrammatic representation of a membrane cell assembly, FIG. 2 is a cross-sectional view of an insulated gate field effect transistor, and FIG. 3 is a diagram of a dialysis device suitable for forming the device of the present invention. 818. Membrane structure 100. Supporting members! 4.16. .. ..
Hydrophobic layer 171. Lipid molecules 206. Receptor protein molecule 309. Insulated gate field effect transistor 320. Base 341. Drain 369. Source 381. Gate electrode 391. Engraving of insulator drawing (no change in content) (4 others: Procedural amendment 1゜Display of case 1999 Patent Application No. 120209 2, Name of invention Membrane biosensor 3゜Relationship with the case Tokuko 1 Applicant address Name: Easy & Tsubo G Incorporated 4, Agent address: 12-1 Otemachi 2-chome, Chiyoda-ku, Tokyo 206-ku 5, Shin-Otemachi Building, Applicant subject to amendment Application form stating the representative of

Claims (1)

【特許請求の範囲】 1、第1の実体を検出するデバイスであって、面を有す
る支持部材と、 該面に非拡散に結合した第1の疎水性層と、第1の層に
重ねて二層を形成する第2の疎水性層と、 該二層内に位置決めされ第1の実体に反応性の第2の実
体とを備え、該第2の実体は該二層内にある時に第1の
実体と反応してに層構造の検出可能特性の部分的変化を
生じ得ることを特徴とする膜バイオセンサ。 2、前記第1又は第2の疎水性層は少なくとも6個の炭
素原子を有する脂肪族チェーンを有する複数の分子を含
む請求項1記載のセンサ。 3、前記第1の実体を化学的実体とする請求項1記載の
センサ。 4、前記第1の実体を物理的刺激とする請求項1記載の
センサ。 5、前記第2の実体を前記二層内を自由に動き得る蛋白
質とする請求項1記載のセンサ。6、前記検出可能の特
性を電気的特性とする請求項1記載のセンサ。 7、前記検出可能の特性を光学的特性とする請求項1記
載のセンサ。 8、前記蛋白質を受容体蛋白質とする請求項1記載のセ
ンサ。 9、前記第1第2の疎水性層は重合又は交叉結合部を有
する請求項5記載のセンサ。 10、前記第2の実体は第1の実体と反応して第1第2
の実体が非共有結合した親和錯体を形成する請求項1記
載のセンサ。 11、膜バイオセンサを製造する方法であって、 a)剛性基板上に第1の疎水性層を形成し、 b)第2の実体を疎水性液と洗剤とに混合して混合液を
形成し、 c)基板に混合液を接触させ、 d)混合液を透析して混合液から洗剤を除去することを
特徴とする膜バイオセンサを製造する方法。
[Claims] 1. A device for detecting a first entity, comprising: a support member having a surface; a first hydrophobic layer bonded to the surface in a non-diffusion manner; a second hydrophobic layer forming a bilayer; and a second entity positioned within the bilayer and reactive to the first entity, the second entity being reactive to the first entity when within the bilayer. A membrane biosensor characterized in that it is capable of causing a partial change in the detectable properties of a layered structure upon reaction with an entity of 1. 2. The sensor of claim 1, wherein the first or second hydrophobic layer comprises a plurality of molecules having aliphatic chains having at least 6 carbon atoms. 3. The sensor according to claim 1, wherein the first entity is a chemical entity. 4. The sensor according to claim 1, wherein the first entity is a physical stimulus. 5. The sensor according to claim 1, wherein the second entity is a protein that can move freely within the two layers. 6. The sensor according to claim 1, wherein the detectable characteristic is an electrical characteristic. 7. The sensor according to claim 1, wherein the detectable characteristic is an optical characteristic. 8. The sensor according to claim 1, wherein the protein is a receptor protein. 9. The sensor according to claim 5, wherein the first and second hydrophobic layers have a polymerized or cross-linked portion. 10. The second entity reacts with the first entity to form the first and second entities.
The sensor of claim 1, wherein the entities form a non-covalently bonded affinity complex. 11. A method of manufacturing a membrane biosensor, comprising: a) forming a first hydrophobic layer on a rigid substrate; and b) mixing a second entity with a hydrophobic liquid and a detergent to form a mixture. A method for producing a membrane biosensor, comprising: c) contacting a mixed solution with a substrate; and d) dialyzing the mixed solution to remove a detergent from the mixed solution.
JP1120209A 1988-05-13 1989-05-12 Membrane bio sensor Pending JPH0219767A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US19389488A 1988-05-13 1988-05-13
US193894 1998-11-18

Publications (1)

Publication Number Publication Date
JPH0219767A true JPH0219767A (en) 1990-01-23

Family

ID=22715455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120209A Pending JPH0219767A (en) 1988-05-13 1989-05-12 Membrane bio sensor

Country Status (4)

Country Link
JP (1) JPH0219767A (en)
DE (1) DE3915554A1 (en)
FR (1) FR2631449B1 (en)
GB (1) GB2218808B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160391A (en) * 1991-04-15 1992-11-03 James River Ii, Inc. Method for the formation of a clamped wave seal structure
US5240133A (en) * 1991-04-15 1993-08-31 James River Paper Company, Inc. Clamped-wave lid seal structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2688065B1 (en) * 1992-02-28 1994-12-23 Thomson Csf MOLECULAR SENSOR.
DE4339584A1 (en) * 1993-11-20 1995-05-24 Thomas Dr Hertel Process and assembly for controlled reversible charging of measuring cell with microorganisms
US5719033A (en) * 1995-06-28 1998-02-17 Motorola, Inc. Thin film transistor bio/chemical sensor
EP3647779A1 (en) * 2018-11-05 2020-05-06 Imec VZW Field-effect transistor-based biosensor comprising electrolyte-screening layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490216A (en) * 1983-02-03 1984-12-25 Molecular Devices Corporation Lipid membrane electroanalytical elements and method of analysis therewith
US4661442A (en) * 1984-06-20 1987-04-28 Irt Corporation Producing lipid-protein membranes for chemical detection
US4661235A (en) * 1984-08-03 1987-04-28 Krull Ulrich J Chemo-receptive lipid based membrane transducers
GB8617868D0 (en) * 1986-07-22 1986-08-28 Natural Environment Res Lipid coated electrodes
GB8622788D0 (en) * 1986-09-22 1986-10-29 Atomic Energy Authority Uk Sensor
US4859538A (en) * 1986-11-20 1989-08-22 Ribi Hans O Novel lipid-protein compositions and articles and methods for their preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160391A (en) * 1991-04-15 1992-11-03 James River Ii, Inc. Method for the formation of a clamped wave seal structure
US5240133A (en) * 1991-04-15 1993-08-31 James River Paper Company, Inc. Clamped-wave lid seal structure

Also Published As

Publication number Publication date
FR2631449A1 (en) 1989-11-17
FR2631449B1 (en) 1993-08-06
DE3915554A1 (en) 1989-11-16
GB2218808A (en) 1989-11-22
GB2218808B (en) 1992-09-30

Similar Documents

Publication Publication Date Title
US4920047A (en) Electrical detection of the immune reaction
Bergveld A critical evaluation of direct electrical protein detection methods
Owicki et al. The light-addressable potentiometric sensor: principles and biological applications
Nikolelis et al. Biosensors based on thin lipid films and liposomes
Nikolelis et al. Ammonium ion minisensors from self-assembled bilayer lipid membranes using gramicidin as an ionophore. Modulation of ammonium selectivity by platelet-activating factor
Köper Insulating tethered bilayer lipid membranes to study membrane proteins
Schasfoort et al. Possibilities and limitations of direct detection of protein charges by means of an immunological field-effect transistor
US5001048A (en) Electrical biosensor containing a biological receptor immobilized and stabilized in a protein film
Hianik et al. Immunosensors based on supported lipid membranes, protein films and liposomes modified by antibodies
Anrather et al. Supported membrane nanodevices
Tien et al. Supported bilayer lipid membranes as ion and molecular probes
EP0363401A4 (en) Optimized capacitive sensor for chemical analysis and measurement
Ottova et al. Self-assembled BLMs: biomembrane models and biosensor applications
Trojanowicz Miniaturized biochemical sensing devices based on planar bilayer lipid membranes
Andreou et al. Flow injection monitoring of aflatoxin M1 in milk and milk preparations using filter-supported bilayer lipid membranes
Marrakchi et al. A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40
Berney et al. A differential capacitive biosensor using polyethylene glycol to overlay the biolayer
JPH0219767A (en) Membrane bio sensor
Ameur et al. Impedimetric measurements on polarized functionalized platinum electrodes: application to direct immunosensing
Hianik Electrostriction and dynamics of solid supported lipid films
Steinem et al. Proton translocation across bacteriorhodopsin containing solid supported lipid bilayers
Tien Bilayer lipid membrane‐based electrochemical biosensors
Kochev et al. From'bulk'to'interfacial'types of sensors
Luo et al. Ion channel sensor
Nikolelis et al. Bilayer lipid membranes and other lipid-based methods