JPH02197352A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPH02197352A
JPH02197352A JP1448389A JP1448389A JPH02197352A JP H02197352 A JPH02197352 A JP H02197352A JP 1448389 A JP1448389 A JP 1448389A JP 1448389 A JP1448389 A JP 1448389A JP H02197352 A JPH02197352 A JP H02197352A
Authority
JP
Japan
Prior art keywords
mold
cooling
air
supplying
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1448389A
Other languages
Japanese (ja)
Inventor
Koichi Tozawa
戸澤 宏一
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1448389A priority Critical patent/JPH02197352A/en
Publication of JPH02197352A publication Critical patent/JPH02197352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve slow cooling ratio and to reduce longitudinal crack in shell by arranging multiple number of vent holes opening to the atmosphere between cooling water passage in a mold and surface of the mold and communicating the vent holes with header for supplying fluid as controllable to supplying rate. CONSTITUTION:Each vent hole 4 is communicated with the header 4 for supplying air, etc., and by allowing to flow the air into vent hole from there, control of delicate cooling capacity and cooling of coating layer 3 can be executed. The air is supplied to the supplying header 4a through a supplying rate controller. By this method, the developing ratio of the longitudinal crack of the cast slab can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、緩冷却率を向上して鋳片の縦割れの防止効
果を高めた連続鋳造用鋳型に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a continuous casting mold that has an improved slow cooling rate and is more effective in preventing longitudinal cracking of slabs.

〔従来の技術〕[Conventional technology]

一般に、鋼の連続鋳造用金型は、その素材として銅又は
銅合金を主体に製作されている。このように銅を主体と
する理由の一つは、その熱伝導率が大きいために溶鋼の
初期凝固を含むS7?型内での鋳片形成には不可欠な急
速冷却に適する点である。
Generally, molds for continuous casting of steel are mainly made of copper or copper alloy. One of the reasons why copper is used as the main material is that it has high thermal conductivity, which includes the initial solidification of molten steel. This makes it suitable for rapid cooling, which is essential for forming slabs in molds.

最近の高速鋳造操業では鋳型材自身の熱伝導率に依存す
る他に、鋳型内の抜熱性能をさらに向上させる方策をも
採り入れている。
In recent high-speed casting operations, in addition to relying on the thermal conductivity of the mold material itself, measures have also been taken to further improve the heat removal performance within the mold.

また、一方、連続鋳造鋳片に発生ずる表面欠陥の一つで
ある縦割れについては、特にδ→T変態を伴う中炭鋼域
における発生が皆無になっていない。この縦割れ発生の
メカニズムは、溶鋼が冷却され凝固シェルが形成される
過程で、潤滑剤であるハウダー層厚の不均一によって部
分的に冷却速度が遅くなり、シェル層が不均一になる。
On the other hand, vertical cracks, which are one of the surface defects that occur in continuously cast slabs, have not completely disappeared, especially in the medium-coal steel region that involves δ→T transformation. The mechanism of vertical cracking is that during the process in which molten steel is cooled and a solidified shell is formed, the cooling rate is partially slowed down due to uneven thickness of the howder layer, which is a lubricant, and the shell layer becomes uneven.

また同時に凝固における収縮が発生し、ざらに鋼種によ
っては変態による収1jhも付加されて薄いシェル部分
に引張り応力が作用する結果、縦割れが生じる。
At the same time, shrinkage occurs during solidification, and depending on the steel type, shrinkage due to transformation is also added, and tensile stress acts on the thin shell portion, resulting in vertical cracking.

そこで、このような縦割れ発生を防止するために、凝固
初期における急速冷却による不均一を防止する緩冷却法
が、すでに種々提案されている。
Therefore, in order to prevent the occurrence of such vertical cracks, various slow cooling methods have already been proposed to prevent unevenness due to rapid cooling in the initial stage of solidification.

例えば、(1)鋳型内表面を波形にしたり(特開昭53
−28027号)、内表面に鋳込み方向へ細溝を設りた
り(特開昭61−92756号) 、(2)鋳型内面に
ポーラスめっきを施したり(特開昭55−1566,4
2号、銅156643号) 、(3)金属製熱抵抗材を
鋳型上部に埋め込んだ方法(特開昭54 = 5 s、
 25号)などがある。
For example, (1) the inner surface of the mold may be made corrugated (Japanese Patent Laid-Open No. 53
-28027), providing narrow grooves in the casting direction on the inner surface (JP-A-61-92756), and (2) applying porous plating to the inner surface of the mold (JP-A-55-1566, 4).
No. 2, Copper No. 156643), (3) Method of embedding a metal heat resistance material in the upper part of the mold (Japanese Patent Application Laid-Open No. 1983 = 5 s,
No. 25).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記(1)の方法では溝部にパウダーが
付着して早期に機能が低下する。(2)の方法では溶鋼
による気孔の封じ込めによる気孔内のエア膨張によって
コーティングに割れが生じてしまい、冷却均一の制御が
結果として保てない。(3)については緩冷却率は10
%程度しか得られず、さらに緩冷却率を向上するには厚
みが大きくなり、製造コストの上昇を招く等の問題があ
る。
However, in the method (1) above, powder adheres to the grooves and the function deteriorates early. In method (2), cracks occur in the coating due to expansion of air in the pores due to sealing of the pores by molten steel, and uniform control of cooling cannot be maintained as a result. For (3), the slow cooling rate is 10
%, and further improving the slow cooling rate requires increasing the thickness, leading to problems such as an increase in manufacturing costs.

この発明は、このような従来の問題点にかんがみてなさ
れたものであって、鋳型の銅板内に通気孔を設ける等に
より上記問題点を解決することを目的としている。
The present invention has been made in view of these conventional problems, and aims to solve the above problems by providing ventilation holes in the copper plate of the mold.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、連続鋳造機用鋳型において、該鋳型内に設
けた鋳型冷却水路と溶鋼に接触する鋳型表面との間に、
少なくとも一端を大気に開口した多数の通気孔を設ける
とともに、該通気孔は供給量の調節可能な流体の供給ヘ
ッダにより連通せしめた連続鋳造用鋳型としたものであ
る。
This invention provides, in a mold for a continuous casting machine, between a mold cooling channel provided in the mold and a mold surface that contacts molten steel.
The continuous casting mold is provided with a number of vent holes with at least one end open to the atmosphere, and the vent holes are communicated by a fluid supply header whose supply amount can be adjusted.

〔作用〕[Effect]

本発明は、上記のような構成としたため、銅板内に設け
た多数の通気孔により緩冷却率が著しく向上し、その結
果、鋳片(シェル)の縦割れ発生率を著しく低減させる
ことができた。また、通気孔の一端は大気に開口してい
るため、通気孔内のエアの膨張にも対応でき、さらに通
気孔に空気等の流体を流入させるとともにその流量を変
化させることにより、微妙な冷却能力の調整が可能とな
り、従来のような鋳型内面コーティングに割れの生ずる
ような不具合も発生しない。
Since the present invention has the above structure, the slow cooling rate is significantly improved due to the large number of ventilation holes provided in the copper plate, and as a result, the incidence of vertical cracking in the slab (shell) can be significantly reduced. Ta. In addition, since one end of the vent is open to the atmosphere, it can handle the expansion of the air inside the vent, and by allowing fluid such as air to flow into the vent and changing its flow rate, subtle cooling can be achieved. The capacity can be adjusted, and problems such as cracks in the inner coating of the mold do not occur as in the past.

〔実施例〕〔Example〕

以下、この発明を図面及びグラフ等を参照して説明する
Hereinafter, the present invention will be explained with reference to drawings, graphs, etc.

第1図は本発明に係る鋳型の縦断面図、第2図は第1図
における■−■断面を部分拡大した図である。図におい
て1は鋳型をなす銅板であって、2はこの銅板内に設け
た鋳型冷却水路(水冷孔)である。3は銅板1の溶鋼8
との接触面直近に通気孔4を形成するために設けたコー
ティング層である。
FIG. 1 is a longitudinal cross-sectional view of a mold according to the present invention, and FIG. 2 is a partially enlarged view of the cross section taken along the line 1--2 in FIG. In the figure, 1 is a copper plate forming a mold, and 2 is a mold cooling channel (water cooling hole) provided in this copper plate. 3 is molten steel 8 of copper plate 1
This is a coating layer provided to form ventilation holes 4 in the immediate vicinity of the contact surface.

本実施例における通気孔4の形成は以下のように行う。The ventilation holes 4 in this embodiment are formed as follows.

即ち、先ず銅板1の型内面となる側に多数の細溝を機械
加工等の手段により鋼の鋳込み方向に沿って形成し、こ
の細溝にワックスを充填するとともにその表面に導電化
処理を行い、銅板に金属めっきを施して所要膜厚を有す
る前記コーティング層3を形成する。しかる後にワック
スを加熱除去することによって除去後の空洞、すなわち
通気孔4が形成されることになる。また、各通気孔4は
空気等の供給用ヘッダ4aに連通していて、ここから通
気孔内に空気を流入することにより微妙な冷却能力の調
整ならびにコーティング層3の冷却を行うことが可能と
なっている。供給へラダ4aは図外の供給量洞部装置を
介して空気を供給される。
That is, first, a large number of narrow grooves are formed along the steel casting direction by machining or other means on the side that will become the inner surface of the mold of the copper plate 1, and these narrow grooves are filled with wax and the surface is subjected to conductive treatment. , the coating layer 3 having a required thickness is formed by metal plating a copper plate. Thereafter, by heating and removing the wax, a cavity after removal, that is, a vent hole 4 is formed. Furthermore, each vent hole 4 communicates with a header 4a for supplying air, etc., and by flowing air into the vent hole from here, it is possible to finely adjust the cooling capacity and cool the coating layer 3. It has become. The supply ladder 4a is supplied with air via a supply cavity device (not shown).

8は図外のタンデイツシュから浸漬ノズル9を介して型
内へ注湯された溶鋼であって、6はその溶鋼のメニスカ
スを示す。7はメニスカス6上に供給された潤滑剤とし
てのパウダーであって、コーティング層3と溶鋼8及び
その表面が凝固し始めたシェル5間の潤滑を図るもので
、シェル(鋳片)5の矢印f方向への引抜きを円滑にす
るためのものである。
8 is molten steel poured into the mold from a tundish (not shown) through an immersion nozzle 9, and 6 indicates a meniscus of the molten steel. 7 is a powder as a lubricant supplied onto the meniscus 6 to lubricate between the coating layer 3, the molten steel 8, and the shell 5 whose surface has begun to solidify. This is to facilitate pulling out in the f direction.

また、前記通気孔4の配設範囲については、第1図に示
すごとく、メニスカス6を前後に鋳片5の引抜き方向へ
の鋳型振動及び浸漬ノズル9により注湯に際しての湯面
振動の幅を考慮して、鋳型すなわち銅板1の上端から約
300mmの深さに形成すれば充分であが、鋳型下端ま
で全長にわたり形成してもよい。
Regarding the arrangement range of the ventilation holes 4, as shown in FIG. Taking this into account, it is sufficient to form it at a depth of about 300 mm from the upper end of the mold, that is, the copper plate 1, but it may be formed over the entire length to the lower end of the mold.

第3図は、本発明における鋳型熱伝達の状態を表したも
のであり、注湯された溶鋼の緩冷却率を計算すると次の
(1)式によって表すことができる。
FIG. 3 shows the state of mold heat transfer in the present invention, and when the slow cooling rate of poured molten steel is calculated, it can be expressed by the following equation (1).

なお、図中の各文字は以下の意味を示す。In addition, each character in the figure shows the following meaning.

αよ :溶鋼とコーテイング面間の熱伝達率α3 :通
気孔の熱伝達率 α8 :冷却水と鋳型間の熱伝達率 θ5 :溶鋼温度 θp :鋳型コーテイング面の温度 θ8 :通気孔のコーティング側温度 θ、二逆気孔の銅板側温度 θC:銅板の冷却水側温度 6w :冷却水温度 d、:コーティング厚め da :通気孔厚み do :銅板厚み λp :コーティング熱伝導率 λC:銅板熱伝導率 q−□ (θ5−θ8) αS λ、  α3  λ0  α8 da      1 α5   λ、    λ。
α: Heat transfer coefficient between molten steel and coating surface α3: Heat transfer coefficient of vent hole α8: Heat transfer coefficient between cooling water and mold θ5: Molten steel temperature θp: Temperature of mold coating surface θ8: Temperature of coating side of vent hole θ, temperature on the copper plate side of the double inverted pore θC: temperature on the cooling water side of the copper plate 6W: cooling water temperature d,: coating thickness da: ventilation hole thickness do: copper plate thickness λp: coating thermal conductivity λC: copper plate thermal conductivity q- □ (θ5-θ8) αS λ, α3 λ0 α8 da 1 α5 λ, λ.

α讐 但し、 q;単位面積当たりの抜熱量 へ9二木発明による鋳型を使用したときの減少抜熱量 △9/q:緩冷却率 第4図は、鋳型抜熱量と縦割れ評点を表したものであり
、70X10’kcaj2/n(h以下の抜熱量にする
ことによって、従来の縦割れ評点から大幅な低減が可能
になる。この場合、90 X ]、 O’kcaβ/r
rrhの抜熱量から緩冷却率20%を達成すれば、はぼ
縦割れ発生レベルを1.5以下に低減することが可能に
なる。ちなみに緩冷却率20%とした場合、(1)式に
よって第2図の構造において採るべき寸法を決定するこ
とができる。
α However, q: Reduced amount of heat removed when using the mold invented by Niki 9 to the amount of heat removed per unit area △9/q: Slow cooling rate Figure 4 shows the amount of heat removed from the mold and the longitudinal crack score. By making the amount of heat removed less than 70X10'kcaj2/n (h, it is possible to significantly reduce the conventional vertical crack rating. In this case, 90X], O'kcaβ/r
If a slow cooling rate of 20% is achieved based on the amount of heat removed by rrh, it becomes possible to reduce the vertical crack occurrence level to 1.5 or less. Incidentally, when the slow cooling rate is 20%, the dimensions to be taken in the structure shown in FIG. 2 can be determined by equation (1).

なお、鋳型(銅板)内の通気孔を設ける位置は、溶鋼側
鋳型表面の直下から水冷部までの間であれば、いずれの
個所でも効果がある。しかし実際には鋳型(銅板)表面
から0.1〜1. Ommの範囲に設けるのが望ましい
。これは、0.1胴以下であると鋳型面の摩耗及び静鉄
圧等により通気孔が破損してしまうからである。また通
気孔による緩冷却の効果は、通気孔が鋳型(銅板)表面
から離れるに従って小さくなる。よってl +ntn以
内の範囲が好ましい。また、通気孔は鋳型(銅板)上部
から下部まで貫通させてもよいが、少なくとも一端を大
気に開放させればよい。これによって、鋳型温度が上昇
して通気孔内の気体が膨張してもそのために問題が生じ
ることばない。さらに該通気孔に空気等を流すことによ
りα8が変化し、微妙な冷却能力のコントロールが可能
となるとともに、コーティング層3の冷却を行うことが
できる。通気孔に流す流体は空気等の気体が一般的であ
るが液体であってもよい。
Note that it is effective to provide the vent hole in the mold (copper plate) anywhere from just below the surface of the mold on the molten steel side to the water cooling section. However, in reality, the distance from the surface of the mold (copper plate) is 0.1 to 1. It is desirable to provide it in the range of 0mm. This is because if the diameter is less than 0.1, the ventilation holes will be damaged due to abrasion of the mold surface and static iron pressure. Furthermore, the effect of slow cooling by the ventilation holes decreases as the ventilation holes move away from the surface of the mold (copper plate). Therefore, a range within l + ntn is preferable. Further, the ventilation hole may penetrate from the upper part of the mold (copper plate) to the lower part, but it is sufficient if at least one end is opened to the atmosphere. This ensures that problems will not arise if the mold temperature increases and the gas in the vent expands. Further, by flowing air or the like through the ventilation hole, α8 changes, making it possible to delicately control the cooling capacity and cooling the coating layer 3. The fluid flowing through the vents is generally a gas such as air, but it may also be a liquid.

第2図に示した通気孔4の形状axb、ビッヂPを、緩
冷却率20%で設定した形状寸法、a−〇、5.  b
=0.5.  P=1.mm、  dp=0.1mm 
(通気孔は鋳型上部で開放とし、上部から300mmの
深さとした通気孔にはl Xl 0−6Nnf/Sの空
気を流した)鋳型を用いて鋳造し、縦割れ評点を従来の
ものと比較したグラフを第4図に示す。図中、白丸印は
従来構造鋳型の場合、黒丸印は本発明による鋳型の場合
であって、縦割れ発生を約50%低減させることができ
た。また、通気孔に空気を流さない場合に比べ、コーテ
ィング層の寿命が2乃至3倍延長された。
The shape and dimensions of the vent hole 4 shown in FIG. b
=0.5. P=1. mm, dp=0.1mm
(The vent hole was open at the top of the mold, and air of lXl 0-6Nnf/S was flowed through the vent hole, which was 300 mm deep from the top.) The mold was used for casting, and the vertical crack rating was compared with the conventional one. The resulting graph is shown in Figure 4. In the figure, the white circles indicate the case of the conventional mold structure, and the black circles indicate the case of the mold according to the present invention, and it was possible to reduce the occurrence of vertical cracks by about 50%. Additionally, the lifespan of the coating layer was extended two to three times compared to when no air was allowed to flow through the vents.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、従来例のように
縦内面溝部にパウダーが付着したり、使用中に摩耗によ
って溝形状が保持できなくなって不均一冷却状態を生ず
ることもなく、且つ通気孔内のエアの膨張にも対応でき
、微妙な冷却能のコントロール機能を有するとともに、
緩冷却率を大幅に向上できることにより、シェルの箱割
れを大幅に低減することができた。
As explained above, according to the present invention, there is no possibility of powder adhering to the vertical inner grooves or the groove shape cannot be maintained due to wear during use, resulting in non-uniform cooling conditions, as is the case with conventional examples. It can respond to the expansion of air inside the vents, and has a delicate control function for cooling performance.
By significantly improving the slow cooling rate, we were able to significantly reduce box cracking of the shell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る鋳型の縦断面図、第2図は第1図
における■−■断面拡大図、第3図は本発明における鋳
型熱伝達の状態を示す概念図、第4図は鋳型抜熱量と縦
割れ評点との関係を本発明と従来例とて比較したグラフ
である。 1・・・・・・鋳型(銅板)、2・・・・・・鋳型冷却
水路、4・・・・・・通気孔、 4a・・・・・・流体の供給ヘッダ、 8・・・・・・ 溶鋼。
Fig. 1 is a vertical cross-sectional view of a mold according to the present invention, Fig. 2 is an enlarged cross-sectional view taken along the line ■-■ in Fig. 1, Fig. 3 is a conceptual diagram showing the state of mold heat transfer in the present invention, and Fig. 4 is a cross-sectional view of the mold according to the present invention. It is a graph comparing the relationship between the amount of heat removed from the mold and the vertical crack score between the present invention and a conventional example. 1...Mold (copper plate), 2...Mold cooling channel, 4...Vent hole, 4a...Fluid supply header, 8... ... Molten steel.

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造機用鋳型において、該鋳型内に設けた鋳
型冷却水路と溶鋼に接触する鋳型表面との間に、少なく
とも一端を大気に開口した多数の通気孔を設けるととも
に、該通気孔は供給量の調節可能な流体の供給ヘッダに
より連通せしめたことを特徴とする連続鋳造用鋳型。
(1) In a mold for a continuous casting machine, a large number of ventilation holes with at least one end open to the atmosphere are provided between the mold cooling channel provided in the mold and the mold surface that comes into contact with the molten steel, and the ventilation holes are A mold for continuous casting, characterized in that the mold is connected by a fluid supply header whose supply amount can be adjusted.
JP1448389A 1989-01-24 1989-01-24 Mold for continuous casting Pending JPH02197352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1448389A JPH02197352A (en) 1989-01-24 1989-01-24 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1448389A JPH02197352A (en) 1989-01-24 1989-01-24 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPH02197352A true JPH02197352A (en) 1990-08-03

Family

ID=11862299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1448389A Pending JPH02197352A (en) 1989-01-24 1989-01-24 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPH02197352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404932A (en) * 1990-10-17 1995-04-11 Outokumpu Castform Oy Apparatus and method for intensifying cooling in the casting of metal objects

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404932A (en) * 1990-10-17 1995-04-11 Outokumpu Castform Oy Apparatus and method for intensifying cooling in the casting of metal objects

Similar Documents

Publication Publication Date Title
US5176197A (en) Continuous caster mold and continuous casting process
JP4303809B2 (en) Continuous casting mold
JP4109321B2 (en) Improved continuous mold and continuous casting process
US4545423A (en) Refractory coating of edge-dam blocks for the purpose of preventing longitudinal bands of sinkage in the product of a continuous casting machine
US4911226A (en) Method and apparatus for continuously casting strip steel
JPH02197352A (en) Mold for continuous casting
JP4836303B2 (en) Continuous casting mold
EP0448773B1 (en) Continuous caster mold and continuous casting process
JP2950152B2 (en) Continuous casting mold for slab
JP3179069B2 (en) Mold for continuous casting of steel
JPH10193041A (en) Mold for continuously casting molten steel
JP2016540649A (en) Mold for casting molten steel
JP3101069B2 (en) Continuous casting method
KR102312118B1 (en) Apparatus for continuous casting process of steel material by controlling width-directional soft reduction and method of continuous casting using the same
JPH0451256B2 (en)
JPH01170551A (en) Mold for continuously casting steel
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JPH10193042A (en) Mold for continuously casting molten steel
JP3244508B2 (en) Continuous casting mold
CN114054693A (en) Crystallizer for horizontal continuous casting of non-ferrous alloy
KR100807569B1 (en) Short side mould for preventing surface defect of slab when continuous casting
JPH028819B2 (en)
KR200188747Y1 (en) Device of continuous thin slab casting for twin roll type
JP2006130552A (en) Mold for continuous casting
JPH0133254Y2 (en)