JPH0219649A - Fuel injection valve - Google Patents

Fuel injection valve

Info

Publication number
JPH0219649A
JPH0219649A JP16948788A JP16948788A JPH0219649A JP H0219649 A JPH0219649 A JP H0219649A JP 16948788 A JP16948788 A JP 16948788A JP 16948788 A JP16948788 A JP 16948788A JP H0219649 A JPH0219649 A JP H0219649A
Authority
JP
Japan
Prior art keywords
valve
spray
fuel
fuel injection
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16948788A
Other languages
Japanese (ja)
Inventor
Naotaka Shirabe
調 尚孝
Hiroatsu Yamada
浩敦 山田
Kiyoshi Nakanishi
清 中西
Keiso Takeda
啓壮 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP16948788A priority Critical patent/JPH0219649A/en
Publication of JPH0219649A publication Critical patent/JPH0219649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To make a fuel injection valve simple in structure, dispense with any high-grade machining and there are variations in each product as well as to make it spray such fuel as improved in atomization by installing an atomizing member with an inner chamber, a projection and a spray port at the tip. CONSTITUTION:An atomizing member 60 is set up in the tip of a fuel injection valve 1. This atomizing member 60 has an inner chamber 62 where an injection nozzle 14 is opened at the side of the injection valve 1. In addition, in this inner chamber 62, it has a sectional area narrower than an opening area of the nozzle 14 concentric with a center shaft of the nozzle 14, and also has a columnar projection 64 formed projectingly in opposition to the nozzle 14 at a constant distance. In addition, it has plural numbers of spray nozzles 66 formed in the circumference of the columnar projection 64 in the inner chamber 62. With this constitution, fuel sprayed out of the nozzle 14 of the hole-type fuel injection valve 1 collides with the columnar projection 64 and is atomized and, after being improved in atomization, it is sprayed out of the spray nozzle 66.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、内燃機関に燃料を供給するための燃料噴射弁
に関する。
The present invention relates to a fuel injection valve for supplying fuel to an internal combustion engine.

【従来技術】[Prior art]

従来、燃料噴射弁において、ニードル弁の先端に噴射孔
から突出するピントル全持つビントルタイプとニードル
弁の先端にビントルを持たないホールタイプとがある。 そして、ビントルクイブに比べて、ホールタイプの燃料
噴射弁は、ニードル弁先端の加工性が容易であること、
噴射孔部分に異物や汚れが付着した場合の噴射量特性へ
の影警が少ないこと等の長所がある。 しかし、燃料噴射弁にとって最も重要な特性の一つであ
る噴霧の微粒化の点において、ホールタイプはビントル
タイプに比べて劣る。即ち、ビントルタイプでは噴射さ
れた燃料がビントルにより中空円錐薄膜状に引き千切ら
れるため、燃料の微粒化が効果的に生じるが、ホールタ
イプでは噴射孔から直接に燃料が噴射されるためザラタ
ー平均粒径でいえば、ホールタイプの噴霧粒径はビント
ルクイブの噴霧粒径の3〜4倍も大きい。 この問題点を解決するホールタイプの燃料噴射弁として
、 日本電装公開技報 整理番号53−117が公開されて
おり、以下にその内容を説明する。 電磁式燃料噴射弁のボディの先端部の噴孔の下流にアダ
プタが設けられており、このアダプタにはかさ状の噴流
衝突物体が設けられている。そのかさ状の噴流衝突物体
は複数本のえだ部にてアダプタの筒部に一体的に固定支
持されている。この構成により、噴孔より噴射された燃
料噴流は、かさ状の噴流衝突物体で円錐薄膜状にされ、
すきまによりうずく引きちぎられる結果、噴出する燃料
の微粒化が促進される。 このホールタイプの燃料噴射弁においては、旦、噴孔よ
り噴射された燃料噴流が、更に、すきまより噴出する際
に微粒化されるのであり、明らかに、噴孔の径に対して
かさ状の噴流衝突物体の凸形状は大きく、燃料の微粒化
が促進されるのは、かさ状の噴流衝突物体の円錐面であ
り、その裾部とアダプタの筒部によって形成された円形
状の0゜5M程度のすきまである。
Conventionally, there are two types of fuel injection valves: a pintle type that has a pintle at the tip of the needle valve that protrudes from the injection hole, and a hole type that does not have a pintle at the tip of the needle valve. In addition, compared to the Vintorquive, hole-type fuel injection valves are easier to process at the tip of the needle valve.
It has the advantage that there is little influence on the injection quantity characteristics when foreign matter or dirt adheres to the injection hole. However, the Hall type is inferior to the Vintle type in terms of spray atomization, which is one of the most important characteristics for a fuel injector. In other words, in the case of the bottle type, the injected fuel is torn into hollow conical thin films by the bottle, effectively atomizing the fuel, but in the case of the hole type, the fuel is injected directly from the injection hole, so the Sallator average In terms of particle size, the atomized particle size of the Hall type is 3 to 4 times larger than the atomized particle size of the Vintorquive. As a hole-type fuel injection valve that solves this problem, Nippondenso Publication Technical Report No. 53-117 has been published, and its contents will be explained below. An adapter is provided downstream of the nozzle hole at the tip of the body of the electromagnetic fuel injection valve, and this adapter is provided with an umbrella-shaped jet impingement object. The umbrella-shaped jet colliding object is integrally fixedly supported on the cylindrical portion of the adapter by a plurality of ridges. With this configuration, the fuel jet injected from the nozzle hole is formed into a conical thin film shape by the umbrella-shaped jet colliding object.
As a result of being torn apart by the gaps, the atomization of the ejected fuel is promoted. In this hole-type fuel injection valve, the fuel jet injected from the nozzle hole is further atomized when it is ejected from the gap, and it is clear that the fuel jet is atomized when it is ejected from the gap. The convex shape of the jet colliding object is large, and it is the conical surface of the umbrella-shaped jet colliding object that promotes atomization of the fuel, and the circular 0°5M formed by the skirt and the cylindrical part of the adapter. There is a certain amount of gap.

【発明が解決しようとする課題】[Problem to be solved by the invention]

一般にホールタイプの燃料噴射弁は、ビントルタイプの
燃料噴射弁に比較して、噴出される噴霧粒径が大きいた
め、冷間時のエンジン始動時等では排気ガス中のHCが
多くなる等のエミッション不良や、点火プラグにHC成
分が多量に付着して点火プラグがくすぶったりする問題
があった。 又、上述した公開技報にあるホールタイプの燃料噴射弁
において、所望の噴霧粒径を得るには、かさ状の噴流衝
突物体の裾部とアダプタの筒部によって形成された円形
状の0.5鮒程度のすきまの製作寸法精度が大きく影響
する。換言すると、加工等における寸法管理が重要で、
このすきまがばらつくと製品毎の噴霧粒径のバラツキと
なるという問題があった。 本発明は、上記の課題を解決するために成されたもので
あり、その目的とするところは、ホールタイプの燃料噴
射弁の噴射孔下流に設けた別部材の噴霧部材を追加する
という、簡単な構成で高度な機械加工を必要とすること
なく、製品毎のバラツキが無い、充分に微粒化、霧化向
上された燃料を噴射することができるホールタイプの燃
料噴射弁を提供することである。
In general, Hall type fuel injection valves eject a larger spray particle size than bottle type fuel injection valves, so when starting a cold engine, etc., the amount of HC in the exhaust gas may increase. There were problems with poor emissions and a large amount of HC components adhering to the spark plug, causing the spark plug to smolder. In addition, in the hole-type fuel injection valve described in the above-mentioned technical report, in order to obtain the desired spray particle size, a circular 0.5 mm diameter formed by the skirt of the umbrella-shaped jet colliding object and the cylindrical portion of the adapter is required. The manufacturing dimensional accuracy of the gap of about 5 carp has a large effect. In other words, dimensional control during processing etc. is important.
When this gap varies, there is a problem in that the spray particle size varies from product to product. The present invention has been made to solve the above-mentioned problems, and its purpose is to simply add a separate spray member provided downstream of the injection hole of a hole-type fuel injection valve. To provide a hole-type fuel injection valve that can inject fuel that is sufficiently atomized and atomized without the need for advanced machining, has a uniform configuration, and has no variation from product to product. .

【課題を解決するための手段】[Means to solve the problem]

上記課題を解決するための発明の構成は、弁部材と、こ
の弁部材が着座する弁座及びこの弁座の下流側に連設し
た噴射孔を有する弁本体とを備えたホールタイプの燃料
噴射弁において、前記燃料噴射弁の先端には噴霧部材が
配設されており、この噴霧部材は、前記噴射弁側で前記
噴射孔が開口する内室と、この内室において前記噴射孔
の中心軸と同軸で、前記噴射孔の開口面積よりも狭い断
面積を有し、前記噴射孔に対し一定距離を隔てて、前記
噴射孔に対向して突出して形成された突起と、前記内室
において前記突起の周囲に形成された複数の噴霧孔とを
有することを特徴とする。
The structure of the invention for solving the above problems is a hole-type fuel injection system that includes a valve member, a valve seat on which the valve member is seated, and a valve body having an injection hole continuous to the downstream side of the valve seat. In the valve, a spray member is disposed at the tip of the fuel injection valve, and the spray member has an inner chamber in which the injection hole opens on the side of the injection valve, and a central axis of the injection hole in the inner chamber. a protrusion that is coaxial with the injection hole, has a cross-sectional area narrower than the opening area of the injection hole, is spaced apart from the injection hole by a certain distance, and is formed to protrude opposite the injection hole; It is characterized by having a plurality of spray holes formed around the protrusion.

【作用】[Effect]

ホールタイプの燃料噴射弁の噴射孔より噴射された燃料
は噴射弁の先端に配設された噴霧部材の噴射孔に対向し
て突出して形成された突起に衝突し微粒化、霧化向上さ
れた後、その底部の突起の周囲に形成された複数の噴霧
孔からそれぞれ噴射される。
Fuel injected from the injection hole of a hole-type fuel injection valve collides with a protrusion formed in a protruding manner opposite to the injection hole of a spray member disposed at the tip of the injection valve, resulting in improved atomization and atomization. Then, the spray is sprayed from a plurality of spray holes formed around the protrusion at the bottom.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。 第1図には、本発明の実施例に係る内燃機関用電磁式燃
料噴射弁1が組み込まれた、例えば車輌に用いて好適な
燃料供給システムが示されている。 その燃料供給システムは燃料タンク2を有しており、該
燃料タンク2から電磁ポンプ3により圧送される燃料は
、フィルタ4を通過して供給路6に送られ、その供給路
6を通って圧力制御弁7に送られる。そして、供給路6
内の加圧燃料は分岐管8を通って燃料噴射弁1の流入口
9に送られる。 本発明による電磁式燃料噴射弁lは一般的には火花点火
式内燃機関の吸気管内へ燃料を供給する。 燃料は比較的蒸気圧の低いガソリンが用いられる。 この燃料の供給圧は250kPa程度の比較的低圧であ
る。又、この供給圧は圧力制御弁7によって吸気管内の
圧力に対して一定の差圧に調圧されている。 電磁式燃料噴射弁1は弁本体11と弁ケース12とを有
し、その弁ケース12の先端部19をかしめて弁本体1
1に押し付けることによって、弁本体11と弁ケース1
2とは一体に連結されている。 弁本体11には案内孔17が形成され、その案内孔17
に収容された細長いニードル形式の弁部材20には2つ
の摺動部21及び22が備えられ、これら摺動部21及
び22は弁部材20を滑らかに摺動させるために、案内
孔17の壁面に対して数鴻の間隙が得られるよう嵌合さ
れている。 弁部材20の後端と弁ケース12との間にはディスク状
のストッパ31が間挿固定され、弁部材20に備えられ
たフランジ32がそのストッパ31に当接することによ
って弁部材20の開位置が定まるようになっている。そ
して、弁部材20の後端部はそのストッパ31を貫通し
て弁ケース12のアーマチュア36内に延び入っている
。 弁ケース12内には弁部材20を駆動してその弁部材2
0を閉位置と開位置との間で移動させる電磁アクチュエ
ータ35が配備されている。その電磁アクチュエータ3
5は弁部材20の後端部に連結されたアーマチュア36
と、弁ケース12に対して固定した関係をなして、従っ
て弁本体11に対し固定した関係をなして装備されたス
テータ37と、そのステータ37のまわりに巻装された
電磁コイル38とを有している。アーマチュア36は復
帰用コイルばね39によって閉位置へ向けて、すなわち
第1図において下方に付勢されており、電磁コイル38
に電流が供給されると電磁力が発生し、この電磁力によ
ってアーマチュア36はコイルばね39の付勢力に抗し
てステータ37へ向けて吸引され、フランジ32がスト
ッパ31に当接することにより弁部材20は開位置を占
める。電磁コイル38への電流の供給が停止すると、弁
部材20は復帰用コイルはね39の付勢力によってステ
ータ37から離れる方向に移動し、弁部材20のシール
部23が弁座16に当接することによってその弁部材2
0は閉位置を占める。電磁コイル38は端子41を介し
てマイクロコンピュータを含む電子制御回路42に接続
され、その電子制御回路42が電磁コイル38への電流
の供給及び供給停止を制御するようになっている。 ステータ37にはフランジ43が一体をなして備えられ
、そのフランジ43は弁ケース12の後端に固定して取
り付けられている。ステータ37に対し反対側のそのフ
ランジ43の端面からは分岐管8に接続される継手部4
4が一体をなして延びており、その継手部44内にはフ
ィルタ46が配備されているとともに、復帰用コイルは
ね39の付勢力を調節するだめのアジヤスティングバイ
ブ47が配備されている。そして、そのアジヤスティン
グバイブ47の内部通路48の上流側端部は継手部44
を介して分岐管8に連通し、内部通路48の下流側端部
はアーマチュア36の開口部50を介して内部空間52
に連通している。 又、第2図及び第3図に示されるように、噴霧部材60
は、その噴霧部材60の先端部61を燃料噴射弁1の弁
本体11にかしめて押し付けることにより弁本体11と
一体に連結されている。 噴霧部材60には内室62が形成され、その内室62の
上部には弁本体11の噴射孔14が開口しており、その
噴射孔14の中心軸上、内室62の底部には噴射孔14
に対向して柱状突起64が設けられ、その柱状突起64
の周囲には柱状突起64に対して、同ピツチ円径上で等
角度にて複数(本実施例においては3孔)の噴霧孔6B
−が配設されている。 次に、本噴射弁1の作動について説明する。電子制御回
路42から電磁アクチュエータ35の電磁コイル38に
電流が供給されていない時、弁部材20は復帰用コイル
ばね39の付勢力によって閉位置を占め、その閉位置に
おいて、弁部材20のシール部23は弁本体11の弁座
16に当接し、内燃機関への燃料の供給を停止している
。 電子制御回路42から電磁コイル38に電流が供給され
ると、弁部材20は復帰用コイルばね39の付勢力に抗
してステータ37に吸引され、フランジ32がストッパ
31に当接するまで移動して弁部材20は開位置を占め
る。分岐管8からの加圧燃料はフィルタ46、アジヤス
ティングバイブ47の内部通路48、アーマチュア36
の開口部50.アーマチュア36の内部空間52、弁部
材20の燃料通路54、弁部材20のフランジ32の外
周部、弁部材20のシール部23と弁本体11の弁座1
6との間隙及び噴射孔14を通って噴霧部材60の内室
62に噴射される。 次に、第2図及び第3図を参照して、噴霧部材60の作
用について述べる。 燃料噴射弁1の弁本体11に設けた噴射孔14から、そ
の下流に設けられた噴霧部材60の内室62に噴射され
た燃料噴流は、噴霧部材60の衝突部である柱状突起6
4に衝突されることにより、充分に微粒化、霧化向上さ
れエンジンが要求する噴霧粒径にされた後、その下流の
複数の噴霧孔66から、図示しない吸気管内又はシリン
ダ内に、後述のエンジンが要求する噴霧角度に調整され
て噴射される。 発明者らの実験によると、この時の噴霧粒径は柱状突起
64の先端径aと噴射孔14の径dとの比a / dと
、複数の噴霧孔66の合計断面積n・πA3/4と噴射
孔14の断面積πd2/4との比n(A/d)2とによ
って決定されることが分かり、第4図及び第5図のグラ
フが得られた。これらのグラフから、a/dが0.5以
下であり、かつn(A/d)2が20以上で、エンジン
が要求する噴霧粒径を達成できることが分る。 又、発明者らの検討によると、噴霧孔66の数は3孔程
度(n=3)で、充分に霧化向上した燃料噴射弁1を提
供できることを確認できた。 更に、発明者らの実験によって、噴射孔14で計量され
た燃料は、第2図に示す如く噴射孔14と柱状突起64
との距離をDとした時、D/dの値が2以上であれば、
計量精度を損なうことなく複数の噴霧孔66から噴射で
きることが判明した。 尚、発明者らの実験によると、噴霧角度は柱状突起64
の下流に設けられた複数の噴霧孔66で規制されること
が判明した。つまり、柱状突起64に衝突し分散された
噴霧は、第6図に示す如く角度βで噴霧孔66の内壁6
8の点Pに衝突し、長さfだけ噴霧孔66の内壁68に
沿い外空間へ噴射される。 但し、この時の角度βは流体力学的に決まりa/d=1
−cosβ+(sinβ/π)・log ((1+si
nβ)/(1−5inβ))を満たすβで与えられる。 噴霧角度はこの長さfによって決まることが分り、第7
図のグラフが得られた。このグラフから、0.6≦f≦
2.0に長さfを設定することにより、エンジンが要求
する吸気管壁に燃料が付着しない噴霧角度に設定可能な
ことが分る。 上記のように、本実施例の燃料噴射弁の噴霧の微粒化、
霧化向上は、内室62に形成された柱状突起64と噴射
孔14との幾何学的寸法によって。 決定されるため、その柱状突起64の加工寸法のみを管
理すれば良く、加工が容易であるという効果を有してい
る。
The present invention will be described below based on specific examples. FIG. 1 shows a fuel supply system suitable for use in a vehicle, for example, in which an electromagnetic fuel injection valve 1 for an internal combustion engine according to an embodiment of the present invention is incorporated. The fuel supply system has a fuel tank 2, and the fuel that is pumped from the fuel tank 2 by an electromagnetic pump 3 passes through a filter 4 and is sent to a supply path 6. It is sent to the control valve 7. And supply route 6
The pressurized fuel inside is sent to the inlet 9 of the fuel injection valve 1 through the branch pipe 8. The electromagnetic fuel injection valve l according to the invention generally supplies fuel into the intake pipe of a spark-ignition internal combustion engine. The fuel used is gasoline, which has a relatively low vapor pressure. The supply pressure of this fuel is relatively low, about 250 kPa. Further, this supply pressure is regulated to a constant differential pressure with respect to the pressure in the intake pipe by a pressure control valve 7. The electromagnetic fuel injection valve 1 has a valve body 11 and a valve case 12, and the valve body 1 is assembled by caulking the tip 19 of the valve case 12.
1, the valve body 11 and valve case 1 are
2 are integrally connected. A guide hole 17 is formed in the valve body 11, and the guide hole 17
The elongated needle-type valve member 20 housed in is provided with two sliding parts 21 and 22, and these sliding parts 21 and 22 are arranged on the wall surface of the guide hole 17 in order to smoothly slide the valve member 20. They are fitted so that there is a gap of several inches between them. A disk-shaped stopper 31 is interposed and fixed between the rear end of the valve member 20 and the valve case 12, and when the flange 32 provided on the valve member 20 comes into contact with the stopper 31, the valve member 20 is moved to the open position. is now determined. The rear end portion of the valve member 20 passes through the stopper 31 and extends into the armature 36 of the valve case 12. Inside the valve case 12, a valve member 20 is driven and the valve member 2 is inserted into the valve case 12.
An electromagnetic actuator 35 is provided for moving the 0 between closed and open positions. The electromagnetic actuator 3
5 is an armature 36 connected to the rear end of the valve member 20
and a stator 37 mounted in a fixed relationship to the valve case 12 and therefore in a fixed relationship to the valve body 11, and an electromagnetic coil 38 wound around the stator 37. are doing. The armature 36 is urged toward the closed position by a return coil spring 39, that is, downwardly in FIG. 1, and the electromagnetic coil 38
When a current is supplied to , an electromagnetic force is generated, and this electromagnetic force attracts the armature 36 toward the stator 37 against the biasing force of the coil spring 39, and the flange 32 comes into contact with the stopper 31, causing the valve member to close. 20 occupies the open position. When the supply of current to the electromagnetic coil 38 is stopped, the valve member 20 is moved away from the stator 37 by the urging force of the return coil spring 39, and the seal portion 23 of the valve member 20 comes into contact with the valve seat 16. By the valve member 2
0 occupies the closed position. The electromagnetic coil 38 is connected to an electronic control circuit 42 including a microcomputer via a terminal 41, and the electronic control circuit 42 controls supply and termination of current to the electromagnetic coil 38. The stator 37 is integrally provided with a flange 43, which is fixedly attached to the rear end of the valve case 12. A joint portion 4 connected to the branch pipe 8 from the end face of the flange 43 on the opposite side to the stator 37
A filter 46 is disposed within the joint portion 44, and an adjusting vibrator 47 for adjusting the biasing force of the return coil spring 39 is disposed. The upstream end of the internal passage 48 of the adjusting vibe 47 is connected to the joint portion 44.
The downstream end of the internal passageway 48 is connected to the internal space 52 through an opening 50 of the armature 36.
is connected to. Further, as shown in FIGS. 2 and 3, a spray member 60
is integrally connected to the valve body 11 of the fuel injection valve 1 by caulking and pressing the tip 61 of the spray member 60 against the valve body 11 of the fuel injection valve 1. The spray member 60 has an inner chamber 62 formed therein, and the injection hole 14 of the valve body 11 is opened in the upper part of the inner chamber 62. On the central axis of the injection hole 14 and at the bottom of the inner chamber 62, an injection hole 14 is opened. Hole 14
A columnar projection 64 is provided opposite to the columnar projection 64 .
A plurality of (three holes in this embodiment) spray holes 6B are arranged around the columnar projection 64 at equal angles on the same pitch circle diameter.
- is provided. Next, the operation of the present injection valve 1 will be explained. When no current is supplied from the electronic control circuit 42 to the electromagnetic coil 38 of the electromagnetic actuator 35, the valve member 20 occupies the closed position by the biasing force of the return coil spring 39, and in the closed position, the sealing portion of the valve member 20 closes. 23 contacts the valve seat 16 of the valve body 11, stopping the supply of fuel to the internal combustion engine. When electric current is supplied from the electronic control circuit 42 to the electromagnetic coil 38, the valve member 20 is attracted to the stator 37 against the urging force of the return coil spring 39, and moves until the flange 32 comes into contact with the stopper 31. Valve member 20 occupies an open position. The pressurized fuel from the branch pipe 8 is passed through the filter 46, the internal passage 48 of the adjusting vibe 47, and the armature 36.
opening 50. The internal space 52 of the armature 36 , the fuel passage 54 of the valve member 20 , the outer circumference of the flange 32 of the valve member 20 , the seal portion 23 of the valve member 20 and the valve seat 1 of the valve body 11
6 and through the injection hole 14 into the inner chamber 62 of the spray member 60. Next, the operation of the spray member 60 will be described with reference to FIGS. 2 and 3. The fuel jet injected from the injection hole 14 provided in the valve body 11 of the fuel injection valve 1 into the inner chamber 62 of the spray member 60 provided downstream of the injection hole 14 collides with the columnar protrusion 6 which is the colliding portion of the spray member 60.
4, the particles are sufficiently atomized and atomized to a spray particle size required by the engine, and then from a plurality of spray holes 66 downstream thereof into the intake pipe or cylinder (not shown), as described below. The spray is adjusted to the spray angle required by the engine and injected. According to experiments conducted by the inventors, the spray particle size at this time is determined by the ratio a/d of the tip diameter a of the columnar protrusion 64 and the diameter d of the injection hole 14, and the total cross-sectional area of the plurality of spray holes 66 n·πA3/ 4 and the ratio n(A/d)2 of the cross-sectional area πd2/4 of the injection hole 14, and the graphs shown in FIGS. 4 and 5 were obtained. These graphs show that when a/d is 0.5 or less and n(A/d)2 is 20 or more, the spray particle size required by the engine can be achieved. Further, according to the studies conducted by the inventors, it was confirmed that the number of spray holes 66 is about three (n=3), and it is possible to provide the fuel injection valve 1 with sufficiently improved atomization. Further, according to experiments conducted by the inventors, the fuel metered at the injection hole 14 is distributed between the injection hole 14 and the columnar protrusion 64 as shown in FIG.
When the distance from the
It has been found that spraying can be performed from a plurality of spray holes 66 without impairing metering accuracy. According to the experiments conducted by the inventors, the spray angle was determined by the columnar projection 64.
It has been found that this is regulated by a plurality of spray holes 66 provided downstream of. In other words, the spray that collides with the columnar protrusion 64 and is dispersed hits the inner wall of the spray hole 66 at an angle β as shown in FIG.
8, and is injected into the outside space along the inner wall 68 of the spray hole 66 by a length f. However, the angle β at this time is determined hydrodynamically and a/d=1
−cosβ+(sinβ/π)・log ((1+si
It is given by β that satisfies nβ)/(1-5inβ)). It turns out that the spray angle is determined by this length f, and the seventh
The graph in Figure was obtained. From this graph, 0.6≦f≦
It can be seen that by setting the length f to 2.0, it is possible to set the spray angle so that the fuel does not adhere to the intake pipe wall as required by the engine. As mentioned above, the atomization of the spray of the fuel injection valve of this example,
Atomization is improved by the geometric dimensions of the columnar projections 64 formed in the inner chamber 62 and the injection holes 14. Since it is determined, only the machining dimensions of the columnar protrusion 64 need be managed, and the machining is easy.

【発明の効果】【Effect of the invention】

以上説明したように、本発明によれば、燃料噴射弁の先
端に内室、突起及び噴霧孔を有する噴霧部材を設けると
いう簡易な構成で、高度な機械加工を必要とすることな
く、製品毎のバラツキが無い、充分に微粒化、霧化向上
された燃料を噴射することができるという優れた効果が
ある。
As explained above, according to the present invention, a simple configuration in which a spray member having an inner chamber, a protrusion, and a spray hole is provided at the tip of a fuel injection valve can be used for each product without requiring sophisticated machining. This has the excellent effect of being able to inject fuel that is sufficiently atomized and atomized without any variation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の具体的な一実施例に係る燃料噴射弁を
示す縦断面図。第2図は第1図の燃料噴射弁先端の部分
拡大縦断面図。第3図は第2図の■−■線に沿った横断
面図。第4図は本発明に係る燃料噴射弁におけるa /
 dに対する噴霧粒径の変化を示すグラフ。第5図は本
発明に係る燃料噴射弁における n(A/d)2に対す
る噴霧粒径の変化を示すグラフ。第6図は角度β、点P
1長さfの関係を説明するための第2図と同様の部分拡
大縦断面図。第7図は本発明に係る燃料噴射弁における
fに対する噴霧角の変化を示すグラフである。 1 燃料噴射弁 11 弁本体 12 弁ケース14 
噴射孔 16 弁座 20 弁部材23 シール部 3
5 電磁アクチュエータフィルタ 柱状突起 噴霧部材 噴霧孔 内室
FIG. 1 is a longitudinal sectional view showing a fuel injection valve according to a specific embodiment of the present invention. FIG. 2 is a partially enlarged vertical cross-sectional view of the tip of the fuel injection valve shown in FIG. FIG. 3 is a cross-sectional view taken along the line ■-■ in FIG. 2. FIG. 4 shows a/a in the fuel injection valve according to the present invention.
Graph showing changes in spray particle size versus d. FIG. 5 is a graph showing the change in spray particle size with respect to n(A/d)2 in the fuel injection valve according to the present invention. Figure 6 shows angle β, point P
1 is a partially enlarged vertical cross-sectional view similar to FIG. 2 for explaining the relationship between length f; FIG. 7 is a graph showing the change in spray angle with respect to f in the fuel injection valve according to the present invention. 1 Fuel injection valve 11 Valve body 12 Valve case 14
Injection hole 16 Valve seat 20 Valve member 23 Seal portion 3
5 Electromagnetic actuator filter columnar projection spray member spray hole inner chamber

Claims (1)

【特許請求の範囲】[Claims]  弁部材と、この弁部材が着座する弁座及びこの弁座の
下流側に連設した噴射孔を有する弁本体とを備えたホー
ルタイプの燃料噴射弁において、前記燃料噴射弁の先端
には噴霧部材が配設されており、この噴霧部材は、前記
噴射弁側で前記噴射孔が開口する内室と、この内室にお
いて前記噴射孔の中心軸と同軸で、前記噴射孔の開口面
積よりも狭い断面積を有し、前記噴射孔に対し一定距離
を隔てて、前記噴射孔に対向して突出して形成された突
起と、前記内室において前記突起の周囲に形成された複
数の噴霧孔とを有することを特徴とする燃料噴射弁。
In a hole-type fuel injection valve comprising a valve member, a valve seat on which the valve member is seated, and a valve body having an injection hole connected to the downstream side of the valve seat, the tip of the fuel injection valve is provided with a spray. A member is disposed, and the spray member has an inner chamber in which the injection hole opens on the side of the injection valve, and is coaxial with the central axis of the injection hole in this inner chamber and has an area larger than the opening area of the injection hole. a projection having a narrow cross-sectional area and protruding from and facing the injection hole at a certain distance from the injection hole; and a plurality of spray holes formed around the projection in the inner chamber. A fuel injection valve characterized by having:
JP16948788A 1988-07-07 1988-07-07 Fuel injection valve Pending JPH0219649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16948788A JPH0219649A (en) 1988-07-07 1988-07-07 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16948788A JPH0219649A (en) 1988-07-07 1988-07-07 Fuel injection valve

Publications (1)

Publication Number Publication Date
JPH0219649A true JPH0219649A (en) 1990-01-23

Family

ID=15887441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16948788A Pending JPH0219649A (en) 1988-07-07 1988-07-07 Fuel injection valve

Country Status (1)

Country Link
JP (1) JPH0219649A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521377A (en) * 2018-04-25 2021-08-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Fuel injector valve seat assembly including insert placement retention features

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021521377A (en) * 2018-04-25 2021-08-26 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Fuel injector valve seat assembly including insert placement retention features
US11898526B2 (en) 2018-04-25 2024-02-13 Robert Bosch Gmbh Fuel injector valve seat assembly including insert locating and retention features

Similar Documents

Publication Publication Date Title
US6405946B1 (en) Fluid injection nozzle
US5323966A (en) Apparatus for injecting a fuel-air mixture
US4771948A (en) Combination of a fuel injection valve and a nozzle
KR930004967B1 (en) Electronic fuel injector
US5996912A (en) Flat needle for pressurized swirl fuel injector
US6769625B2 (en) Spray pattern control with non-angled orifices in fuel injection metering disc
US6789754B2 (en) Spray pattern control with angular orientation in fuel injector and method
US4903898A (en) Fuel injection valve
US6929197B2 (en) Generally circular spray pattern control with non-angled orifices in fuel injection metering disc and method
JP4024144B2 (en) Fuel injection device
EP0740069B1 (en) Fuel injection apparatus for an internal combustion engine
US5085369A (en) Fuel injector
US7303144B2 (en) Reduction in hydrocarbon emission via spray pattern control through fuel pressure control in fuel injection systems
US6789752B2 (en) Fuel injection
JPH05209572A (en) Electromagnetically actuating injection valve
JPH0219649A (en) Fuel injection valve
US5711281A (en) Fuel injector with air atomization
US6764027B2 (en) Fuel injection valve
JPH02125956A (en) Electromagnetic type fuel injection valve
JP2564373B2 (en) Electromagnetic fuel injection valve
JP3183027B2 (en) Electronically controlled air-assisted injection valve
JPH0231785B2 (en) DENJISHIKINENRYOFUNSHABEN
JP3129188B2 (en) Fuel injection device for internal combustion engine
JPH08200187A (en) Fuel injection valve
JPH04116264A (en) Electromagnetic fuel injection valve