JPH02196104A - Fiber reinforced ceramic turbine blade - Google Patents

Fiber reinforced ceramic turbine blade

Info

Publication number
JPH02196104A
JPH02196104A JP1419189A JP1419189A JPH02196104A JP H02196104 A JPH02196104 A JP H02196104A JP 1419189 A JP1419189 A JP 1419189A JP 1419189 A JP1419189 A JP 1419189A JP H02196104 A JPH02196104 A JP H02196104A
Authority
JP
Japan
Prior art keywords
blade
fibers
reinforced
ceramic
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1419189A
Other languages
Japanese (ja)
Other versions
JP2861015B2 (en
Inventor
Tadashi Sasa
佐々 正
Arata Koga
古賀 新
Kaoru Miyahara
宮原 薫
Takashi Sugita
杉田 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP1014191A priority Critical patent/JP2861015B2/en
Publication of JPH02196104A publication Critical patent/JPH02196104A/en
Application granted granted Critical
Publication of JP2861015B2 publication Critical patent/JP2861015B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make manufacturing and assembling easy while to improve strength in the required direction by forming a through such process turbine blade as laminating ceramic films having a hollow part in the center part and reinforced with such as long fibers arranged in every direction, across a range from the innermost layer part to the outermost layer part. CONSTITUTION:A bucket 1 is formed of a blade part 2 for receiving high temperature, high pressure gas flow, a platform part 3 connected to the blade part 2, and a dovetail part 4 held in a disc to be a rotation axis. Together with forming respective parts 3, 4 in an integral construction, a recessed part 3a in to which the blade part 2 is fitted is formed in the platform part 3. In this case, the blade part 2 is formed of a laminated body 6 in the center part of which a hollow part 5 is present. The laminated body 6 is formed in a stream- line shape in its section while is formed of ceramic films 7 composed of long fibers or short fibers laminated in parallel across a range from the innermost layer part to the outermost layer part. And respective fibers are arranged in different directions in respective layers.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明は繊維強化セラミックタービン真に係り、特にセ
ラミック繊維で強化された翼部を有するセラミックター
ビン真において、翼部の強度および靭性を高め製作性を
向上することのできる繊維強化セラミックタービン真に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application J] The present invention relates to a fiber-reinforced ceramic turbine, and more particularly, to a ceramic turbine having an airfoil reinforced with ceramic fibers, which is manufactured by increasing the strength and toughness of the airfoil. The present invention relates to fiber-reinforced ceramic turbines that can improve performance.

[従来の技術J] 発電用、輸送用に採用されるガスタービンのタービン翼
は高温高速化に対応することが要求される。このため、
この種のタービン翼には強度および靭性が必要であり、
近年ではセラミック繊維で強化されたセラミック翼部が
注目されるに至っている。
[Prior Art J] Turbine blades of gas turbines used for power generation and transportation are required to handle high temperatures and high speeds. For this reason,
This type of turbine blade requires strength and toughness;
In recent years, ceramic wing parts reinforced with ceramic fibers have been attracting attention.

一般に、繊維強化セラミック翼部は長繊維による場合と
短繊維による場合とに大別され、長繊維の場合には翼部
全体に−tJk構造として1次元、2次元または3次元
の連続繊維による補強がなされていた。また、短繊維の
場合には翼部全体にほとんどランダム方位の短繊維が分
散されていた。
In general, fiber-reinforced ceramic wing parts are roughly divided into those made of long fibers and those made of short fibers. In the case of long fibers, the entire wing part is reinforced with one-dimensional, two-dimensional, or three-dimensional continuous fibers as a -tJk structure. was being done. Furthermore, in the case of short fibers, the short fibers were almost randomly oriented dispersed throughout the wing.

[発明が解決しようとする課悲] ところで、翼部のうち複雑な形状の部分については前者
のように、長繊維を用いることば困雑であり、特に翼部
のうち締結部等の形状部分は形状が複雑なため製作性に
劣る問題があった。また、強度の必要な方位を考慮した
一体構造の長繊絆強化をすることが困籠であった。
[Challenges to be solved by the invention] By the way, it is difficult to use long fibers for parts of the wing parts that have complex shapes, as in the former case, and especially for parts of the wing parts that have shapes such as fastening parts. There was a problem with poor manufacturability due to the complicated shape. Additionally, it has been difficult to strengthen the long fiber bonds of an integrated structure, taking into account the direction in which strength is required.

他方、後者のように短繊維を用いた翼部にあっては複雑
な形状部分については容易に製作できるるか、必要な方
位の強度を高くすることができない問題があった。
On the other hand, the latter type of wing section using short fibers has problems in that it is not easy to manufacture parts with complex shapes, or it is not possible to increase the strength in the required directions.

本発明は上記問題点を有効に解決すべく創案されたもの
である。
The present invention has been devised to effectively solve the above problems.

本発明は翼部の製作性、組立性を向上すると共に必要な
方位の強度を高めることのできる繊維強化セラミックタ
ービン翼を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fiber-reinforced ceramic turbine blade that can improve the manufacturability and assemblability of the blade part and increase the strength in required directions.

[課題を解決するための手段と作用] 本発明は、中心部に空洞を有し、一方向または二次元的
に配向した長繊維あるいは短繊維により強化されたセラ
ミック膜を最内層部から最外層部に亘って積層してなる
ものであり、特に強度、靭性が必要な翼部を繊維強化セ
ラミック膜の積層構造にし、そのセラミック膜−層毎に
繊維配向の方位を変えることにより、繊維の方位を多次
元的に配向できるようにしたものである。
[Means and effects for solving the problem] The present invention provides a ceramic membrane having a cavity in the center and reinforced with long fibers or short fibers oriented in one direction or two dimensions, from the innermost layer to the outermost layer. The wing section, which requires particularly strength and toughness, has a laminated structure of fiber-reinforced ceramic membranes, and by changing the direction of fiber orientation for each layer of the ceramic membrane, the direction of the fibers can be adjusted. This allows for multidimensional orientation.

[実施例] 以下本発明の一実施例を添付図面に従って詳述する。[Example] An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図はタービン翼のうちの高温高圧ガス流で回転駆動
される動翼を示したものである。
FIG. 1 shows a rotor blade of a turbine blade that is rotationally driven by a high-temperature, high-pressure gas flow.

図示するように、動翼1は実質的に高温高圧ガス流を受
ける翼部2と、その翼部2に連結されるプラットフォー
ム部3と、回転軸となるディスクに保持されるダブテー
ル部4とから主に構成される。
As shown in the figure, the rotor blade 1 consists of a blade section 2 which receives a flow of high-temperature, high-pressure gas, a platform section 3 connected to the blade section 2, and a dovetail section 4 held by a disk serving as a rotating shaft. Mainly composed of

これらプラットフォーム部3およびダブテール部4は一
体構造に成形され、そのプラットフォーム部3には翼部
2の基端部を保持するための凹部3aが形成される。
The platform portion 3 and the dovetail portion 4 are integrally formed, and the platform portion 3 is formed with a recess 3 a for holding the base end portion of the wing portion 2 .

特に、翼部2はその中央部(軸心部)に空洞部5を有す
る積層体6により構成される。この積層体6は第2図お
よび第3図に示すように、断面流線形に形成されると共
にその最内層部から最外層部に亘って平行に積層された
長繊維あるいは短繊維からなるセラミック膜7により構
成される0図示例においてはセラミックIN!7が最内
層部・中間層部および最外層部からなる3層構造に積層
される。
In particular, the wing section 2 is constituted by a laminate 6 having a cavity 5 in its center (axial center). As shown in FIGS. 2 and 3, this laminate 6 has a streamlined cross-section and is made of ceramic membranes made of long fibers or short fibers laminated in parallel from the innermost layer to the outermost layer. In the illustrated example, ceramic IN! 7 are laminated into a three-layer structure consisting of an innermost layer, an intermediate layer, and an outermost layer.

また、これらセラック膜7の繊維は各層毎に互いに異な
る方位に配向される。
Further, the fibers of these shellac membranes 7 are oriented in different directions for each layer.

具体的にはセラミック膜7は一方向に配向されあるいは
2次元的に織物状に配向されたセラミック長繊維、一方
向に配向されあるいは面内の方位がランダムに配向され
ても2次元的に配向されたセラミック短繊維で強化され
たセラミックスにより構成される。
Specifically, the ceramic membrane 7 includes ceramic long fibers oriented in one direction or two-dimensionally oriented in a fabric-like manner, or ceramic fibers oriented in one direction or two-dimensionally oriented even if the in-plane orientation is randomly oriented. Constructed of ceramics reinforced with short ceramic fibers.

たとえば、一方向に配向された炭化ゲイ素ウィスカによ
り強化された炭化ケイ素セラミック膜7を積層して翼部
2を形成する。
For example, the wings 2 are formed by stacking silicon carbide ceramic membranes 7 reinforced with unidirectionally oriented silicon carbide whiskers.

また、プラットフォーム部3およびダブテール部4は等
方向セラミックスで形成される。すなわち、繊維強化さ
れないセラミックスあるいは短繊維による強化がなされ
てもその方位゛がランダムなセラミックスで形成される
Moreover, the platform part 3 and the dovetail part 4 are formed of isotropic ceramics. In other words, even if the ceramic is not reinforced with fibers or reinforced with short fibers, the orientation is random.

たとえば、ランダム方向の炭化ケイ素ウィスカにより強
化された窒化ケイ素セラミックスからなるプラットフォ
ーム部3およびダブテール部4が形成され、これに上記
翼部2を接合してタービン動翼lを形成する。この動翼
1は回転軸を形成する金属性ディスクに嵌合され取り付
けられる。
For example, a platform portion 3 and a dovetail portion 4 made of silicon nitride ceramics reinforced with randomly oriented silicon carbide whiskers are formed, and the blade portion 2 is joined to these to form a turbine rotor blade l. The rotor blade 1 is fitted and attached to a metal disk forming a rotating shaft.

したがって、翼部2を構成する積層体6の各セラミック
M7の繊維を各層毎に互いに異なった方位に配向するこ
とにより、繊維の方位を多次元的に組み合せて配向させ
ることが可能になる。このため、複雑な形状部分に対応
でき、製作性が高められると共に、必要な方位の強度・
靭性をコントロールし高めることができる。
Therefore, by orienting the fibers of each ceramic M7 of the laminate 6 constituting the wing section 2 in different directions for each layer, it becomes possible to combine and orient the fiber directions multidimensionally. For this reason, it is possible to handle parts with complex shapes, improve manufacturability, and provide strength and strength in the required direction.
Toughness can be controlled and increased.

また、翼部2の中央部(軸心部)に形成される空洞部5
を冷却用空間部として利用できる。すなわち、ダブテー
ル部4には翼部2の空洞部5に連通する通路4aが形成
され、この通路4aを介して翼部2の空洞部5に冷却用
空気を供給することにより、動翼全体の冷却ができる。
In addition, a cavity 5 formed in the center part (axis center part) of the wing part 2
can be used as a cooling space. That is, a passage 4a communicating with the cavity 5 of the blade part 2 is formed in the dovetail part 4, and by supplying cooling air to the cavity 5 of the blade part 2 through this passage 4a, the entire rotor blade is cooled. Can be cooled.

特に、タービン入口温度が超高温化されている場合に有
効である。高速高回転下ではタービン入口温度1500
℃、周速700 m/Sの条件下でも耐久性が得られる
結果を得た。
This is particularly effective when the turbine inlet temperature is extremely high. At high speed and high rotation, the turbine inlet temperature is 1500℃.
℃ and a circumferential speed of 700 m/s.

また、この場合、翼部2に空洞部5が形成されるため、
熱容量が小さくなりタービン起動停止時の非定常熱応力
が小さくなると共に、軽量化されるので、動翼どしては
遠心力による応力が小さくなる。
Moreover, in this case, since the cavity 5 is formed in the wing section 2,
Since the heat capacity is small, the unsteady thermal stress at the time of starting and stopping the turbine is reduced, and the weight is also reduced, so the stress caused by centrifugal force on the rotor blades is reduced.

さらに、翼部2の空洞部5には池のセラミック部材ある
いは金属部材を挿入貫通することができる。したがって
、翼部2の締結を容易になし得、組立性が向上する。
Further, a ceramic member or a metal member can be inserted into and passed through the cavity 5 of the wing portion 2. Therefore, the wing portion 2 can be easily fastened, and the ease of assembly is improved.

たとえば、第4図および第5図に示すように、プラット
フォーム部3の中央部が翼部2の空洞部5内に延出され
、その延出部8は中空部8内に挿入保持される。この場
合、その延出部8の1ラツトフオ一ム部3およびダブテ
ール部4は上記実施例と同様に、等方向セラミックスで
形成する。
For example, as shown in FIGS. 4 and 5, the central portion of the platform portion 3 extends into the hollow portion 5 of the wing portion 2, and the extending portion 8 is inserted and held within the hollow portion 8. In this case, the one-ratform portion 3 and dovetail portion 4 of the extending portion 8 are made of isotropic ceramics, as in the above embodiment.

そこで、翼部2の内部、プラットフォーム部およびダブ
テール部4をランダム配向の炭化ゲイ素ウィスカにより
強化された窒化ゲイ素セラミックスで構成することによ
り、動翼1は翼全体をランダム配向の炭化ウィスカ強化
セラミック膜のタービン翼と比較した場合に耐w撃性、
エロージョン、耐熱衝撃のいずれにおいてら優れた特性
が得られた。
Therefore, by configuring the inside of the blade section 2, the platform section, and the dovetail section 4 with GaN ceramics reinforced with randomly oriented GaN carbide whiskers, the rotor blade 1 can be constructed using a ceramic reinforced with randomly oriented GaN carbide whiskers. W shock resistance when compared to membrane turbine blades,
Excellent properties were obtained in both erosion and thermal shock resistance.

他方、第6図はタービン翼のうちの静翼を示したもので
あり、との静翼10には中央部(軸心部)に空洞部11
を有する翼部12が形成される。この翼部12は3層構
造の積層体13を有し、この積層体13はその最内層部
から最外層部に■って3種類の配向性繊維で強化された
炭化ケイ素セラミックス膜14が積層されることにより
構成される。
On the other hand, FIG. 6 shows a stator blade of a turbine blade, and the stator blade 10 has a cavity 11 in the center (axial center).
A wing portion 12 is formed. This wing section 12 has a laminate 13 with a three-layer structure, and this laminate 13 has a silicon carbide ceramic film 14 reinforced with three types of oriented fibers laminated from the innermost layer to the outermost layer. It is constituted by

本実施例においては最外層部が一方向配向炭化ケイ素ウ
ィスカー強化、中間層部が2次元織炭化ケイ素長繊維強
化、最内層部が2次元ランダム配向炭化ケイ素短繊維強
化で構成される。
In this example, the outermost layer is reinforced with unidirectionally oriented silicon carbide whiskers, the middle layer is reinforced with two-dimensionally woven silicon carbide long fibers, and the innermost layer is reinforced with two-dimensionally randomly oriented silicon carbide short fibers.

したがって、上記実施例と同様に、セラミック膜14が
各層毎に互いに異なる方位に配向されるので、繊維方位
が多次元的に配向され、翼部12の強度を高めることが
できる。
Therefore, as in the above embodiment, since the ceramic membrane 14 is oriented in different directions for each layer, the fiber orientation is multidimensionally oriented, and the strength of the wing portion 12 can be increased.

また、翼部12の空洞部11にはロッド15が挿入嵌合
され、このロッド15にはシェラウド16および締結部
17が一体的に形成される。これらロッド15、シェラ
ウド16および締結部17は等方向セラミックスすなわ
ち通常の炭化クイ素セラミックスで構成される。
Further, a rod 15 is inserted and fitted into the cavity 11 of the wing section 12, and a sheroud 16 and a fastening section 17 are integrally formed on this rod 15. The rod 15, shell 16, and fastening portion 17 are made of isotropic ceramics, that is, ordinary dihydrogen carbide ceramics.

このように構成された静翼10は翼全体を通常の炭化ケ
イ素セラミックスとした静翼と比較すると、飛翔粒子に
対する耐衝撃性および耐熱衝撃性において優れた特性を
発揮した。
The stator blade 10 constructed in this manner exhibited superior characteristics in impact resistance against flying particles and thermal shock resistance when compared with a stator blade whose entire blade was made of ordinary silicon carbide ceramics.

[発明の効果] 以上要するに、本発明によれば次の如き優れた効果を発
揮する。
[Effects of the Invention] In summary, the present invention exhibits the following excellent effects.

(1〕  中心部に空洞を有すると共に、長繊維あるい
は短繊維により強化されたセラミック膜を積層した翼部
を形成したので、翼部の複雑な形状部分にも対応でき、
製作性に優れる。
(1) The wing has a cavity in the center and is made of laminated ceramic membranes reinforced with long or short fibers, so it can accommodate complex shaped parts of the wing.
Excellent manufacturability.

(2)  セラミック膜の繊維配向方位は各層毎に最適
な方位を選定するので、繊維方位を多次元的に配向でき
、翼部の必要な方位の強度、靭性をコントロールし高め
ることができる。
(2) Since the optimal fiber orientation direction of the ceramic membrane is selected for each layer, the fiber orientation can be multidimensionally oriented, and the strength and toughness of the wing section can be controlled and increased in the required directions.

(3)  翼部以外の複雑形状部分を製作性に優れた等
方向セラミックスで形成し、1a維配向翼部を一体化さ
せるので、タービン翼としての製作性、設計性に漬れる
(3) Complex-shaped parts other than the blades are made of isodirectional ceramics that are highly manufacturable, and the 1a fiber oriented blades are integrated, making it easy to manufacture and design the turbine blade.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は動翼を示す断面図、第2図は第1図の■−■線
矢視図、第3図は動翼の翼部を示す斜視図、第4図は動
翼の他の実施例を示す断面図、第5図は第4図のV−v
線矢視図、第6図は静翼を示す断面図である。 図中、2.12は翼部、7,14はセラミックス膜であ
る。 特許出願人  石川島播磨重工業株式会社代理人弁理士
  絹   谷   信   雄第1図 檗2図 第3図 第4図 第5図 第6図
Figure 1 is a sectional view of the rotor blade, Figure 2 is a view taken along the line ■-■ in Figure 1, Figure 3 is a perspective view of the blade section of the rotor blade, and Figure 4 is a view of other parts of the rotor blade. A sectional view showing the embodiment, FIG. 5 is taken along V-v in FIG. 4.
The line arrow view and FIG. 6 are cross-sectional views showing the stationary blades. In the figure, 2 and 12 are wing portions, and 7 and 14 are ceramic membranes. Patent Applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Representative Patent Attorney Nobuo Kinutani Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1、中心部に空洞を有し、一方向または二次元的に配向
した長繊維あるいは短繊維により強化されたセラミック
膜を最内層部から最外層部に亘って積層してなることを
特徴とする繊維強化セラミックタービン翼。
1. It is characterized by having a cavity in the center and laminated from the innermost layer to the outermost layer of ceramic membranes reinforced with long fibers or short fibers oriented in one direction or two dimensions. Fiber-reinforced ceramic turbine blade.
JP1014191A 1989-01-25 1989-01-25 Fiber reinforced ceramic turbine blade Expired - Fee Related JP2861015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014191A JP2861015B2 (en) 1989-01-25 1989-01-25 Fiber reinforced ceramic turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014191A JP2861015B2 (en) 1989-01-25 1989-01-25 Fiber reinforced ceramic turbine blade

Publications (2)

Publication Number Publication Date
JPH02196104A true JPH02196104A (en) 1990-08-02
JP2861015B2 JP2861015B2 (en) 1999-02-24

Family

ID=11854236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014191A Expired - Fee Related JP2861015B2 (en) 1989-01-25 1989-01-25 Fiber reinforced ceramic turbine blade

Country Status (1)

Country Link
JP (1) JP2861015B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240797A (en) * 2004-02-23 2005-09-08 General Electric Co <Ge> USE OF BIASED FABRIC TO IMPROVE PROPERTIES OF SiC/SiC CERAMIC COMPOSITE FOR TURBINE ENGINE COMPONENT
JP2008151117A (en) * 2006-11-28 2008-07-03 General Electric Co <Ge> Cmc article having small complex feature
WO2015053911A1 (en) 2013-10-11 2015-04-16 United Technologies Corporation Cmc blade with monolithic ceramic platform and dovetail
JP2016033367A (en) * 2014-07-30 2016-03-10 日本精工株式会社 Spindle device and electrostatic coating device
US10358922B2 (en) 2016-11-10 2019-07-23 Rolls-Royce Corporation Turbine wheel with circumferentially-installed inter-blade heat shields

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436903A (en) * 1977-08-30 1979-03-19 Pioneer Electronic Corp Pickup arm
JPS59180005A (en) * 1983-03-28 1984-10-12 Shimadzu Corp Impeller
JPS61272402A (en) * 1985-05-29 1986-12-02 Ishikawajima Harima Heavy Ind Co Ltd Stationary blade and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436903A (en) * 1977-08-30 1979-03-19 Pioneer Electronic Corp Pickup arm
JPS59180005A (en) * 1983-03-28 1984-10-12 Shimadzu Corp Impeller
JPS61272402A (en) * 1985-05-29 1986-12-02 Ishikawajima Harima Heavy Ind Co Ltd Stationary blade and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005240797A (en) * 2004-02-23 2005-09-08 General Electric Co <Ge> USE OF BIASED FABRIC TO IMPROVE PROPERTIES OF SiC/SiC CERAMIC COMPOSITE FOR TURBINE ENGINE COMPONENT
JP2008151117A (en) * 2006-11-28 2008-07-03 General Electric Co <Ge> Cmc article having small complex feature
US9005382B2 (en) 2006-11-28 2015-04-14 General Electric Company Method of manufacturing CMC articles having small complex features
WO2015053911A1 (en) 2013-10-11 2015-04-16 United Technologies Corporation Cmc blade with monolithic ceramic platform and dovetail
EP3055509A4 (en) * 2013-10-11 2016-11-16 United Technologies Corp Cmc blade with monolithic ceramic platform and dovetail
US11021971B2 (en) 2013-10-11 2021-06-01 Raytheon Technologies Corporation CMC blade with monolithic ceramic platform and dovetail
JP2016033367A (en) * 2014-07-30 2016-03-10 日本精工株式会社 Spindle device and electrostatic coating device
US10358922B2 (en) 2016-11-10 2019-07-23 Rolls-Royce Corporation Turbine wheel with circumferentially-installed inter-blade heat shields

Also Published As

Publication number Publication date
JP2861015B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US5961287A (en) Twin-web rotor disk
US6190133B1 (en) High stiffness airoil and method of manufacture
US3799701A (en) Composite fan blade and method of construction
CA2430457C (en) Ceramic matrix composite gas turbine vane
JP3832987B2 (en) Gas turbine engine fan blades
JP5442709B2 (en) Subsonic and stationary ramjet engines
KR101184952B1 (en) Turbine wheel
US20210372286A1 (en) Distributed nested cell damping system
US20050169759A1 (en) Gas turbine flowpath structure
US20140212292A1 (en) Airfoil Member and Composite Platform Having Contoured Endwall
US8444389B1 (en) Multiple piece turbine rotor blade
US8241005B2 (en) Gas turbine engine centrifugal impeller
JP2003065002A (en) Steam turbine blade and steam turbine
JP2010038158A (en) Method and system for manufacturing blade
JP6179961B2 (en) Composite blade with unidirectional tape airfoil girder
US8202056B2 (en) Morphable composite structure
WO2011042863A2 (en) Bladeless working wheel useful as a turbomachine component
JPH02196104A (en) Fiber reinforced ceramic turbine blade
EP2182168A1 (en) Fabricated hybrid turbine blade
US4861229A (en) Ceramic-matrix composite nozzle assembly for a turbine engine
JP2874169B2 (en) Ceramic turbine parts
WO2020209847A1 (en) Three dimensional ceramic matrix composite wall structures fabricated by using pin weaving techniques
JP6205137B2 (en) A configuration to reduce interlaminar stress for composite turbine elements.
JPH10306702A (en) Gas turbine blade
JP2013256946A (en) Mechanical interlock for multi-material airfoil

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees