JPH02196018A - Nd2cuo4-type oxide superconductor - Google Patents

Nd2cuo4-type oxide superconductor

Info

Publication number
JPH02196018A
JPH02196018A JP1013918A JP1391889A JPH02196018A JP H02196018 A JPH02196018 A JP H02196018A JP 1013918 A JP1013918 A JP 1013918A JP 1391889 A JP1391889 A JP 1391889A JP H02196018 A JPH02196018 A JP H02196018A
Authority
JP
Japan
Prior art keywords
oxide superconductor
oxygen
nd2cuo4
elements
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1013918A
Other languages
Japanese (ja)
Inventor
Masahiko Hiratani
正彦 平谷
Shoichi Akamatsu
赤松 正一
Shinichiro Saito
斎藤 真一郎
Katsumi Miyauchi
宮内 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1013918A priority Critical patent/JPH02196018A/en
Publication of JPH02196018A publication Critical patent/JPH02196018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the useful oxide superconductor to be used at above the liquefied He temp. by specifying the crystal structure. CONSTITUTION:The oxides of the rare-earth elements other than Ce, Pr, Tb, Tm, Yb, Lu, and Se, the oxides, carbonate, peroxide, etc., of the alkali (alkaline earth) elements, namely Ba, Sr, Ca, and Na, and cupric oxide are mixed as the raw material in a desired cationic ratio. The mixture is heated in an oxidizing atmosphere, then crushed, mixed, and formed. The formed product is subjected to a reaction in the atmosphere of Ar, O2, etc., to eliminate the lattice defect of O2. Consequently, the oxide superconductor shown by the chemical formula (Ln is Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, and Y, M is Ba, Sr, Ca, and Na, 0.001<=x<=0.15) and having an Nd2CuO4-type crystal structure is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物超電導体に係り、液体ヘリウム温度(4
K)以上の温度で利用するのに好適な超電導体に関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an oxide superconductor, and relates to an oxide superconductor at a liquid helium temperature (4
The present invention relates to superconductors suitable for use at temperatures above K).

〔従来の技術〕[Conventional technology]

これまでに見い出されている銅酸化物超電導体の結晶構
造は、すべてペロブスカイト関連構造に分類される。こ
こで、ペロブスカイトと呼ぶ結晶゛構造には、■銅と酸
素の形作る配位多面体において銅を中心元素として酸素
が八面体6配位の立体配置をとる構造、■銅に配位して
いる酸素が1個もしくは2個欠損して、銅と酸素の形作
る配位多面体の立体配置がピラミツド型5配位もしくは
平面4配位であるような結晶構造、■上記3種類の配位
多面体が積層しているような結晶構造、などが含まれる
。これらペロブスカイト関連構造では、銅の原子座標を
(0,O,O)とすると酸素の原子座標は、(1/2.
O,O)、(0,1/2.0)、(0,O,z)(z≠
0)の近傍に位置する。
All the crystal structures of cuprate superconductors discovered so far are classified as perovskite-related structures. Here, the crystal structure called perovskite includes: (1) a structure in which copper is the central element in a coordination polyhedron formed by copper and oxygen, and oxygen has an octahedral six-coordination configuration; (2) oxygen coordinated to copper; crystal structure in which one or two of the above are missing and the configuration of the coordination polyhedron formed by copper and oxygen is a pyramidal five-coordination or a planar four-coordination; This includes crystal structures such as In these perovskite-related structures, if the atomic coordinates of copper are (0, O, O), the atomic coordinates of oxygen are (1/2.
O, O), (0, 1/2.0), (0, O, z) (z≠
0).

一方、Nd2Cub4型構造では、カチオンの原子座標
は典型的なペロブスカイト関連構造として知られている
La2Cub4と、はぼ等価である。しかし、酸素は上
記ペロブスカイト構造とは一部異なる座標に位置し、銅
原子に対して、(1/2,0゜2)および(0,1/2
.z)(z=oおよび2≠0)に位置する。したがって
、Nd2Cub4型構造は、結晶中に銅と酸素(2=0
)の形作る平面4配位の立体配置が存在する点ではペロ
ブスカイト関連構造に分類されるが、他の酸素(2≠0
)が八面体6配位の立体配置のいずれの座標にも位置し
ない点で、ペロジスカイ1−構造とは異なる。
On the other hand, in the Nd2Cub4 type structure, the atomic coordinates of the cation are approximately equivalent to La2Cub4, which is known as a typical perovskite-related structure. However, oxygen is located at partially different coordinates from the perovskite structure, and with respect to copper atoms, (1/2,0°2) and (0,1/2
.. z) (z=o and 2≠0). Therefore, the Nd2Cub4 type structure has copper and oxygen (2=0
), it is classified as a perovskite-related structure in that it has a four-coordinate planar configuration;
) is not located at any coordinate of the octahedral six-coordinated configuration, which is different from the perodisky 1-structure.

銅酸化物超電導体における超電導の発現機構は未だ明ら
かではないが、結晶構造の観点から眺めるといずれの超
電導体においても、平面4配位のクラスターが2次元的
に結合して形成するCu−0平面が、結晶構造中に存在
する。同様の2次元面はN d 2 Cu OI型構造
においても見られる。
The mechanism by which superconductivity occurs in cuprate superconductors is not yet clear, but from the perspective of crystal structure, in any superconductor, Cu-0 is formed by two-dimensional bonding of clusters with 4-planar coordination. Planes exist in the crystal structure. Similar two-dimensional surfaces are also found in N d 2 Cu OI type structures.

Nd2CuO4型構造の化合物どして、化学式をLn、
CaO2で表わしたとき元素L nがL aよりイオン
半径の小さいNd、Sm、Eu、Gdなどが、知らJ1
4ている。これら化合物に関する記載は、R,Gran
de、 Hk、Muller−Busehbaum a
nd M、5chilIeizer。
For compounds with Nd2CuO4 type structure, the chemical formula is Ln,
Nd, Sm, Eu, Gd, etc., in which the element L n has a smaller ionic radius than L a when expressed as CaO2, are known J1
There are 4. Descriptions regarding these compounds are provided by R, Gran
de, Hk, Muller-Busehbaum a.
nd M, 5chilIeizer.

Z、 anorg、 allg、 Chew、、 42
8 (1977) 120゜Hk、Muller−Bu
schbaum and WJollschlaHer
Z, anorg, allg, Chew,, 42
8 (1977) 120°Hk, Muller-Bu
schbaum and WJollschlaHer
.

Z、 anorg、 allg、 Chew、 414
 (1975) 76゜などに見られる。
Z, anorg, allg, Chew, 414
(1975) seen at 76°.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

いずれにぜよ、Nd2Cub4型構造の超電導体は見い
出されていない。本発明の目的は、Nd2Cub4型構
造の超電導体を提供することにある。
In any case, a superconductor with an Nd2Cub4 type structure has not been found. An object of the present invention is to provide a superconductor having an Nd2Cub4 type structure.

〔問題点を解決するための手段〕[Means for solving problems]

まず、Cu=02次元面にホールを導入することを目的
として、希土類元素を、アルカリ土類元素(Ca、Sr
、Ba)もしくはアルカリ元素(Na、K)で一部置換
する。一般に、これら置換体において酸素の格子欠損が
生成しなしつればC+1−02次元面に有効にホールが
導入される。
First, for the purpose of introducing holes into the Cu=02-dimensional plane, rare earth elements were added to alkaline earth elements (Ca, Sr
, Ba) or an alkali element (Na, K). Generally, if oxygen lattice defects are generated in these substitution products, holes are effectively introduced into the C+1-02 dimensional plane.

しかし、アルカリ(土類)元素での置換によって、酸素
の格子欠損が形成されてホールが導入されないことは十
分考えられる。そこで、酸素の格子欠損の形成を防ぐた
めに、100気圧程度の高圧酸素下での合成も考慮に入
れる。
However, it is quite conceivable that substitution with an alkali (earth) element causes oxygen lattice defects to be formed and holes are not introduced. Therefore, in order to prevent the formation of oxygen lattice defects, consideration is given to synthesis under high pressure oxygen of about 100 atmospheres.

置換量は組成式を(Ln、−xMx)2Cu044(L
n=希土類元素、M=アルカリ土類もしくはアルカリ元
素)で表わしたとぎ、アルカリ土類元素し3ついては0
.02≦x≦0.15、アルカリ元素については0.0
1≦x≦0.08の範囲が好ましい。但し、20 K以
上の高いオンセットTcを得るためには、Xの範囲は、
アルカリ土類元素については0.08≦x≦0.12、
アルカリ元素については0.04≦x≦0゜06の範囲
にあることが望ましい。このXの範囲が規定されること
について、まだ理論的な解明は成されていないが、(T
ma、5r)2Cub4についても同様のことが知られ
ている。
The amount of substitution is determined by changing the composition formula to (Ln, -xMx)2Cu044(L
n = rare earth element, M = alkaline earth or alkali element), and for alkaline earth elements and 3, 0
.. 02≦x≦0.15, 0.0 for alkali elements
The range of 1≦x≦0.08 is preferable. However, in order to obtain a high onset Tc of 20 K or more, the range of
For alkaline earth elements, 0.08≦x≦0.12,
The alkali element is preferably in the range of 0.04≦x≦0°06. Although no theoretical elucidation has yet been made regarding how the range of X is defined, (T
The same thing is known for ma, 5r)2Cub4.

化合物は、−船釣な粉体試料を出発原料とし7て用いる
同相反応によって容易に合成される。例えば、希土類元
素については酸化物を、アルカリ及びアルカリ土類元素
については酸化物、炭酸塩。
The compounds are easily synthesized by in-phase reactions using raw powder samples as starting materials. For example, oxides for rare earth elements, oxides and carbonates for alkali and alkaline earth elements.

過酸化物などを、銅については酸化第2銅を出発原料と
して用いる。各原料粉を目的のカチオン比率にしたがっ
て混合し、空気、酸素中などの酸化性雰囲気で反応が1
−分促進される温度まで加熱して、数時間保持しさらに
反応を促進させる。合成した化合物粉を粉砕、混合した
後錠剤状に成型する。反応を完結させるためにAr、酸
素等の雰囲気でさらに数時間反応させる。反応温度2反
応時間は出発原料7組成9反応雰囲気などによって異な
るが、第1段階の反応については、800−950℃、
第2段階の反応については900−i−200℃の温度
範囲が一般的である。反応時間については、6時間以上
12時間前後が一般的である。
For copper, cupric oxide is used as a starting material. Mix each raw material powder according to the desired cation ratio, and the reaction will be 1 in an oxidizing atmosphere such as air or oxygen.
Heat to a temperature that accelerates the reaction for - minutes and hold for several hours to further accelerate the reaction. The synthesized compound powder is crushed, mixed, and then molded into tablets. In order to complete the reaction, the reaction is continued for several hours in an atmosphere of Ar, oxygen, etc. Reaction temperature 2 Reaction time varies depending on starting materials 7 composition 9 reaction atmosphere, etc., but for the first stage reaction, 800-950°C,
A temperature range of 900-i-200<0>C is common for the second stage reaction. The reaction time is generally 6 hours or more and around 12 hours.

以上の合成の結果、酸素の格子欠損が形成されている場
合には、さきに述べたように高圧酸素下での焼鈍が必要
である。結晶格子中を酸素が十分拡散する温度まで加熱
して、酸素の格子欠損を消滅させる。典型的な温度とし
て、本特許の結晶構造の場合には最低400℃以上、焼
鈍時間を短くするためには600℃前後で12時間前後
焼鈍することが望ましい。
If oxygen lattice defects are formed as a result of the above synthesis, annealing under high pressure oxygen is required as described above. The crystal lattice is heated to a temperature at which oxygen is sufficiently diffused to eliminate oxygen lattice defects. In the case of the crystal structure of this patent, a typical temperature is at least 400° C. or higher, and in order to shorten the annealing time, it is desirable to anneal at around 600° C. for around 12 hours.

〔作用〕[Effect]

希土類元素のうぢ、Ce、Pr、Tbは四価を取りうる
ので除外され、Tm、Y’b、Lu、Scはイオン半径
が小さすぎて結晶構造が安定に保たれないので除外され
る。アルカリ(土類)元素のうち、Mg、Be、Liも
イオン半径が小さすぎるので除外される。つまり、(L
n、M)2CuO4で表現される化学式について、Ln
=Nd、Pm。
The rare earth elements U, Ce, Pr, and Tb are excluded because they can be tetravalent, and Tm, Y'b, Lu, and Sc are excluded because their ionic radii are too small to maintain a stable crystal structure. Among the alkali (earth) elements, Mg, Be, and Li are also excluded because their ionic radii are too small. In other words, (L
For the chemical formula expressed as n, M)2CuO4, Ln
=Nd, Pm.

Sm、Eu、Gd、Dy、Ho、Er、Y、および、M
=Ba、Sr、Ca、Naが構成元素として考えられる
。これらの元素の組合せは多数考えられるが、構成元素
の組合せに関しては何等の制約も課されない。また、こ
れ以外の希土類元素。
Sm, Eu, Gd, Dy, Ho, Er, Y, and M
=Ba, Sr, Ca, and Na are considered as constituent elements. Although many combinations of these elements are possible, no restrictions are imposed on the combinations of constituent elements. Also, other rare earth elements.

アルカリ(土類)元素であっても格子定数に有意な増大
をもたらせない程度であれば、結晶中に含まれてもよい
。したがって、一つの化合物中に複数の希土類元素およ
び複数のアルカリ・アルカリ土類元素が含まれてもよい
Alkali (earth) elements may be included in the crystal as long as they do not significantly increase the lattice constant. Therefore, one compound may contain a plurality of rare earth elements and a plurality of alkali/alkaline earth elements.

〔実施例〕〔Example〕

以下に本発明の実施例を挙げ、さらに詳細に説明する。 Examples of the present invention will be given below and will be explained in more detail.

まず、酸化第二銅(Cub) 、希土類元素源として酸
化ネオジウム(Nd、03)、酸化サマリウム(Sm2
0.)、酸化ユウロピウム(Eu20.)のうちいずれ
か一種、アルカリ土類元素源として炭酸カルシウム(C
aCOs) 、炭酸ストロンチウム(SrCO□)のう
ちのいずれか一種、アルカリ元素源として過酸化ナトリ
ウム(Na20)を化学式%式%1 M:アルカリ土類元素)もしくは (Lno、 ssMo、 os)zcuoy (L n
 :希土類元素、M:アルカリ元素)に従って混合した
。次に、各混合粉末を空気中で、800〜900℃で1
2時間仮焼した後炉冷した。仮焼粉を粉砕・混合したの
ち錠剤に成型し、Ar気流中800℃で12時間反応さ
せて単相の化合物を得た。これを、1気圧酸素気流中も
しくは100気圧酸素中で800℃、12時間加熱した
後炉冷した。
First, cupric oxide (Cub), neodymium oxide (Nd, 03) and samarium oxide (Sm2) are used as rare earth element sources.
0. ), any one of europium oxide (Eu20.), and calcium carbonate (C) as an alkaline earth element source.
aCOs), any one of strontium carbonate (SrCO□), sodium peroxide (Na20) as an alkali element source, chemical formula % formula %1 M: alkaline earth element) or (Lno, ssMo, os)zcuoy (L n
: rare earth element, M: alkali element). Next, each mixed powder was mixed in air at 800 to 900°C for 1 hour.
After being calcined for 2 hours, it was cooled in the furnace. The calcined powder was crushed and mixed, then molded into tablets, and reacted in an Ar stream at 800° C. for 12 hours to obtain a single-phase compound. This was heated at 800° C. for 12 hours in an oxygen stream of 1 atm or 100 atm, and then cooled in a furnace.

X線回折パターンの結果から、合成された相はいずれも
Nd2CuO4型構造であった。また、電量滴定により
銅の平均原子価を求め、化合物中の酸素含有量を概算し
た。直流磁化率の測定から超電導臨界温度および超電導
の体積分率を求めた。
From the results of the X-ray diffraction patterns, all of the synthesized phases had a Nd2CuO4 type structure. In addition, the average valence of copper was determined by coulometric titration, and the oxygen content in the compound was roughly estimated. The superconducting critical temperature and superconducting volume fraction were determined from the measurement of DC magnetic susceptibility.

表に全ての試料について、組成2合成条件、オンセット
Tc(磁化率が負を示しはじめる温度)。
The table shows composition 2 synthesis conditions and onset Tc (temperature at which the magnetic susceptibility begins to show a negative value) for all samples.

ファイナルTc(磁化率が負の一定の値を示しはじめる
温度)、試料中の完全反磁性を示した部分の体積分率、
を合わせて示した。ファイナルTcは低いもので12K
、高いもので45にであった。
final Tc (the temperature at which the magnetic susceptibility begins to show a constant negative value), the volume fraction of the part in the sample that exhibits complete diamagnetic property,
are shown together. The final Tc is low, 12K.
The highest one was 45.

オンセットTcは高いもので53にであったが、常伝導
状態での抵抗率は著しい半導体変化を示した。
Although the onset Tc was as high as 53, the resistivity in the normal state showed a significant semiconductor change.

表に挙げていない系、(Ln、M)= (E r。Systems not listed in the table, (Ln, M) = (E r.

S r)、(Pm、S r)、(Pm、Ca)、(Gd
S r), (Pm, S r), (Pm, Ca), (Gd
.

s rL (adt ea)、(Dy+ Ca)、(D
y。
s rL (adt ea), (Dy+ Ca), (D
y.

S r)、(Ho、S r)、(Ho、Ca)、(Er
S r), (Ho, S r), (Ho, Ca), (Er
.

S r)、 (E r、 Ca)についても実験した結
果、ファイナルTcで15〜40にの超電導体が得られ
た。また、異なる組成については、アルカリ土類置換系
について、Xが0.08〜0.12の範囲にあるときは
x=0.1と同程度のTcが得られた。これよりも大き
いXと小さいXの場合には、Tcは小さくなり、x<0
.01とx > 0 、2の場合にはもはや大きな反磁
性のシグナルは観測されなかった。
As a result of experiments on Sr) and (Er, Ca), superconductors with a final Tc of 15 to 40 were obtained. Regarding different compositions, when X was in the range of 0.08 to 0.12 for alkaline earth substitution systems, Tc comparable to that of x=0.1 was obtained. For X larger and smaller X, Tc becomes smaller and x<0
.. 01 and x > 0, 2, no large diamagnetic signal was observed.

〔発明の効果〕〔Effect of the invention〕

本発明は、Nd2CuO4型構造の超電導体を提供する
ことができる。
The present invention can provide a superconductor with an Nd2CuO4 type structure.

Claims (1)

【特許請求の範囲】 1、結晶構造がNd_2CuO_4型構造であることを
特徴とする酸化物超電導体。 2、化学式が(Ln_1_−_xMx)_2CuO_4
_−_δ(Ln=Nd、Pm、Sm、Eu、Gd、Dy
、Ho、Er、Y、M:M=Ba、Sr、Ca、Na)
で表現される特許請求の範囲第1項記載の酸化物超電導
体。 3、xの範囲が0.01≦x≦0.15の範囲であるこ
とを特徴とする特許請求の範囲第1項ないし第2項記載
の酸化物超電導体。
[Claims] 1. An oxide superconductor characterized in that its crystal structure is an Nd_2CuO_4 type structure. 2. The chemical formula is (Ln_1_-_xMx)_2CuO_4
_−_δ(Ln=Nd, Pm, Sm, Eu, Gd, Dy
, Ho, Er, Y, M: M=Ba, Sr, Ca, Na)
An oxide superconductor according to claim 1, which is expressed as: 3. The oxide superconductor according to claim 1 or 2, wherein the range of x is 0.01≦x≦0.15.
JP1013918A 1989-01-25 1989-01-25 Nd2cuo4-type oxide superconductor Pending JPH02196018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013918A JPH02196018A (en) 1989-01-25 1989-01-25 Nd2cuo4-type oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013918A JPH02196018A (en) 1989-01-25 1989-01-25 Nd2cuo4-type oxide superconductor

Publications (1)

Publication Number Publication Date
JPH02196018A true JPH02196018A (en) 1990-08-02

Family

ID=11846552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013918A Pending JPH02196018A (en) 1989-01-25 1989-01-25 Nd2cuo4-type oxide superconductor

Country Status (1)

Country Link
JP (1) JPH02196018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296721A (en) * 1989-05-12 1990-12-07 Mitsubishi Materials Corp Oxide superconductor and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296721A (en) * 1989-05-12 1990-12-07 Mitsubishi Materials Corp Oxide superconductor and its manufacture

Similar Documents

Publication Publication Date Title
Hong et al. Phase Composition and Compatibilities in the Bi‐Sr‐Ca‐Cu Quaternary Oxide System at 800° C in Air
US5703021A (en) Process for making high temperature Bi-Sr-Ca-Cu oxide superconductor
US4898851A (en) Process for making 90 k superconductors using a spray dried oxalate precursor
US4990488A (en) Superconductors Bi-Sr-Cu-O
US4861753A (en) Process for making superconductors using barium nitrate
Khasanova et al. Superconductivity at 10.2 K in the K–Bi–O system
Abbattista et al. Some equilibrium relationships in the barium rich part of the BaO CuO O system
Retoux et al. Superconducting properties and structural study of Bi2− xPbxSr2Ca1− xYxCu2O8 (0≤ x≤ 1)
JPH02196018A (en) Nd2cuo4-type oxide superconductor
Chen et al. High-Pressure Synthesis and Structure of the New Spinel-Related Series LnCu2O4 (Ln= Nd, Gd, Er, Lu, Y)
JPH02133322A (en) Bi-pb-sr-ba-ca-cu-o superconducting material
US5208214A (en) Multiphase superconductor and process for its production
JPH02503789A (en) Improved manufacturing method for 90K superconductor
US5036043A (en) Process for making 90 K superconductors
CA1341621C (en) Superconductivity in an oxide compound system without rare earth
Hodorowicz et al. The Ln-Ba-Cu “184” oxide phase: Characterization, synthesis mechanism, and solid solubility limits in air for selected Ln
US4835136A (en) Lanthanum: sodium copper superconducting metal oxide compositions and process for manufacture
Tatsuki et al. New oxychlorides, T∗-type CaRCuO3Cl (R= Y, Ho and Er), prepared under high pressure
Sastry et al. Synthesis of the new high pressure Vernier phase Sr 0.74 CuO 2
JPH02137723A (en) Oxide superconductor
EP0287749A1 (en) New layered copper oxide superconductor compounds
JPH0214871A (en) Production of copper oxide superconductor
JP2748942B2 (en) Oxide superconductor
WO1988009555A1 (en) Improved process for making 90 k superconductors
Baszczuk et al. Ba4In2− x (CO3) 1+ xO6− 2.5 x and Ba4In0. 8Cu1. 6 (CO3) 0.6 O6. 2—new indium oxycarbonates closely related to n= 3 Ruddlesden–Popper phases