JPH02195899A - Determination of glycoprotein and determination reagent - Google Patents

Determination of glycoprotein and determination reagent

Info

Publication number
JPH02195899A
JPH02195899A JP1565789A JP1565789A JPH02195899A JP H02195899 A JPH02195899 A JP H02195899A JP 1565789 A JP1565789 A JP 1565789A JP 1565789 A JP1565789 A JP 1565789A JP H02195899 A JPH02195899 A JP H02195899A
Authority
JP
Japan
Prior art keywords
hydrogen
reagent
amount
glycoprotein
nadp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1565789A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kondo
近藤 恵晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP1565789A priority Critical patent/JPH02195899A/en
Publication of JPH02195899A publication Critical patent/JPH02195899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To easily perform the quantitative determination of glycoprotein useful as an index reflecting the average blood sugar level for the diagnosis of diabetes, without being influenced with interference substances by using a specific hydrogen donor, a reagent and an oxido-reductase. CONSTITUTION:An oxido-reductase (e.g. sorbitol dehydrogenase or mannitol dehydrogenase) is added to a specimen containing a glyco protein (preferably a mixture produced by isolating a lysine residue acting as a sugar-bonding site of a glycoprotein) using a CH-OH group as a hydrogen donor and (1) NAD<+> and/or NADP<+> or (2) oxygen molecule as a hydrogen receptor. The glycoprotein can be determined by measuring (1) the consumption of NADH and/or NADPH or (2) the consumption of oxygen or the generation of hydrogen peroxide.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は糖化蛋白の測定法および測定試薬に関する。さ
らに詳しくは、たとえば糖尿病診断のための長期の平均
的血糖値を反映する指標等として有用な糖化蛋白の測定
法及び測定試薬に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method and reagent for measuring glycated proteins. More specifically, the present invention relates to a method and reagent for measuring glycated proteins useful as an index reflecting long-term average blood sugar levels for diabetes diagnosis, for example.

[従来の技術] 従来、糖化蛋白の測定法としてはアルカリ条件下におけ
る糖化蛋白の還元力を利用する方法、アフイニテイクロ
マトグラフイー法、チオバルビッール酸法、高速液体ク
ロマトグラフィー法、ラジオイムノアッセイ法、酵素免
疫測定法などが知られている 〔例えば、クリニカ・シ
ミ力・アクタ(CIin、 Chim、 Acta)第
127巻、第87〜95頁(1982年)、糖尿病第2
5巻、第963〜968頁(1982年)、ダイアベト
ロシア(Diabetologia)第21巻、第94
〜98頁(1981年)、ジャーナル・オブ・クリニカ
ル・ケミストリー・アンド・クリニカル・バイオケミス
トリー(J、 C11n、 Chem、 Cl1n。
[Prior art] Conventional methods for measuring glycated proteins include methods that utilize the reducing power of glycated proteins under alkaline conditions, affinity chromatography, thiobarbic acid method, high performance liquid chromatography, radioimmunoassay, and enzyme methods. Immunoassay methods are known [for example, CIin, Chim, Acta, Vol. 127, pp. 87-95 (1982), Diabetes No. 2].
5, pp. 963-968 (1982), Diabetologia, vol. 21, 94
~98 pages (1981), Journal of Clinical Chemistry and Clinical Biochemistry (J, C11n, Chem, C11n.

Biochem、 )第19巻、第81〜87頁(19
81年)、糖尿病第29巻、第581〜590頁(19
86年)、糖尿病節29巻補冊2、第340頁(198
6年)〕。
Biochem, ) Volume 19, pp. 81-87 (19
81), Diabetes Vol. 29, pp. 581-590 (19
1986), Diabetes Section Vol. 29 Supplement 2, p. 340 (198
6 years)].

[発明が解決しようとする課題] しかしながら従来の方法には干渉物質の影響を受ける、
操作が複雑で手間がかかるなどの問題点がある。
[Problem to be solved by the invention] However, conventional methods are affected by interfering substances.
There are problems such as complicated and time-consuming operations.

[課題を解決するための手段] 本発明者らは干渉物質の影響を受けず、かつ簡便な糖化
蛋白測定法および測定試薬を得るべく鋭意検討した結果
本発明に到達した。すなわち本発明はCH−OH基を水
素供与体とし、(INAD+および/またはNADP+
または(2)酸素分子を水素受容体とする酸化還元酵素
を糖化蛋白に作用させ(1)NADHおよび/またはN
ADPHの消費量または(2)酸素の消費量または過酸
化水素の発生量を測定する糖化蛋白の測定法;糖化蛋白
の糖結合部位であるリジン残基を遊離させて得られる混
合物にCH−OH基を水素供与体としく1)NAD+お
よび/またはNADP+または(2)酸素分子を水素受
容体とする酸化還元酵素を作用させ、(1)NADHお
よび/またはNADPHの消費量または(2)酸素の消
費量または過酸化水素の発生量を測定する糖化蛋白の測
定法;およびCH−OH基を水素供与体としく1)NA
D+および/またはNADP+または(2)酸素分子を
水素受容体とする酸化還元酵素を含有してなる糖化蛋白
測定試薬である。
[Means for Solving the Problems] The present inventors have arrived at the present invention as a result of intensive studies aimed at obtaining a method and a measuring reagent for measuring glycated proteins that are simple and unaffected by interfering substances. That is, in the present invention, CH-OH group is used as a hydrogen donor, and (INAD+ and/or NADP+
or (2) act on glycated proteins with an oxidoreductase that uses oxygen molecules as hydrogen acceptors (1) NADH and/or N
A method for measuring glycated proteins that measures the amount of ADPH consumed or (2) the amount of oxygen consumed or the amount of hydrogen peroxide generated; group as a hydrogen donor and act on an oxidoreductase that uses 1) NAD+ and/or NADP+ or (2) an oxygen molecule as a hydrogen acceptor. A measurement method for glycated proteins that measures the amount consumed or the amount of hydrogen peroxide generated; and 1) NA using CH-OH group as a hydrogen donor.
This is a reagent for measuring glycated proteins containing D+ and/or NADP+ or (2) an oxidoreductase that uses oxygen molecules as hydrogen acceptors.

本発明においてCH−OH基を水素供与体としNAD+
および/またはNADP+または(2)酸素分子を水素
受容体とする酸化還元酵素としては、蛋白に糖が非酵素
的に結合することによって生成するカルボニル基に作用
する酵素であればいずれでもよい。このような酸化還元
酵素の例としてソルビトールデヒドロゲナーゼ、マンニ
トールデヒドロゲナーゼ、マンニトール−1−リン酸デ
ヒドロゲナーゼ、D−キシルロースレダクターゼ、グル
コネート−5−デヒドロゲナーゼ等のデヒドロゲナーゼ
等を挙げることができる。これらのうち好ましいのはソ
ルビトールデヒドロゲナーゼおよびマンニトールデヒド
ロゲナーゼである。
In the present invention, CH-OH group is used as a hydrogen donor and NAD+
and/or NADP+ or (2) The oxidoreductase that uses an oxygen molecule as a hydrogen acceptor may be any enzyme as long as it acts on a carbonyl group produced by non-enzymatic binding of sugar to a protein. Examples of such oxidoreductases include dehydrogenases such as sorbitol dehydrogenase, mannitol dehydrogenase, mannitol-1-phosphate dehydrogenase, D-xylulose reductase, and gluconate-5-dehydrogenase. Preferred among these are sorbitol dehydrogenase and mannitol dehydrogenase.

NAD”、NADP+および酸素分子は使用する酵素に
応じて使い分けられる。
NAD'', NADP+ and oxygen molecules are used depending on the enzyme used.

本発明の測定対象物である糖化蛋白としてはグルコース
等のアルドースが蛋白のりジン残基等のアミノ基と非酵
素的に反応し、さらにアマトリ転移して生じるものがあ
げられる。たとえばフルクトサミン(糖化血清蛋白)、
糖化アルブミン、ヘモグロビンAI(:などがある。
Glycated proteins that are the measurement targets of the present invention include those produced by non-enzymatic reaction of aldose such as glucose with amino groups such as lysine residues of proteins, and further amatric transfer. For example, fructosamine (glycated serum protein),
Glycated albumin, hemoglobin AI (:, etc.)

本発明の測定を行なうための酸化還元酵素反応の条件は
使用する酸化還元酵素について通常用いられる条件でよ
い。たとえばバイオケミカル・ジャーナル(Bioch
em、J、 )第83巻、第135〜144頁(196
2年)、ジャーナル・オブ・バイオロジカル・ケミスト
リー (J、 Biol、 Chem、 )  第23
8巻、第1598〜1603頁(1963年)に記載の
反応条件を用いることができる。例えばソルビトールデ
ヒドロゲナーゼを用いる場合の反応条件は次の通りであ
る。
Conditions for the oxidoreductase reaction for carrying out the measurements of the present invention may be those commonly used for the oxidoreductase used. For example, Biochemical Journal
Em, J.) Volume 83, pp. 135-144 (196
2nd year), Journal of Biological Chemistry (J, Biol, Chem, ) No. 23
The reaction conditions described in Vol. 8, pp. 1598-1603 (1963) can be used. For example, the reaction conditions when using sorbitol dehydrogenase are as follows.

酸化還元酵素添加量は通常0.01〜100/mQ 、
好ましくは0.1〜IU/ydである。NADHおよび
/またはNADPHの添加量は通常0.001〜1 m
g/d、好ましくは0.01〜0.1■/ydである。
The amount of oxidoreductase added is usually 0.01 to 100/mQ,
Preferably it is 0.1 to IU/yd. The amount of NADH and/or NADPH added is usually 0.001 to 1 m
g/d, preferably 0.01 to 0.1 .mu./yd.

反応液のpHは通常4〜10、好ましくは6〜8である
。反応温度は通常10〜60℃、好ましくは30〜40
℃である。反応時間は通常1〜60分、好ましくは5〜
20分である。反応には通常緩衝液が用いられるが、緩
衝液としては酵素反応に通常用いられるものならば特に
制限されず、0.O1〜0.1Mのリン酸緩衝液等を用
いることができる。
The pH of the reaction solution is usually 4-10, preferably 6-8. The reaction temperature is usually 10-60°C, preferably 30-40°C.
It is ℃. The reaction time is usually 1 to 60 minutes, preferably 5 to 60 minutes.
It is 20 minutes. A buffer is usually used in the reaction, but there are no particular restrictions on the buffer as long as it is one commonly used in enzyme reactions. A phosphate buffer solution of O1 to 0.1M or the like can be used.

またマンニトールデヒドロゲナーゼを用いる場合の反応
条件は、反応液のpHが通常5〜10、好ましくは7〜
9、反応温度が通常5〜50℃、好ましくは20〜30
℃である以外はソルビトールデヒドロゲナーゼの場合と
同様の条件を用いることができる。
In addition, the reaction conditions when using mannitol dehydrogenase are such that the pH of the reaction solution is usually 5 to 10, preferably 7 to 10.
9. Reaction temperature is usually 5 to 50°C, preferably 20 to 30°C
The same conditions as for sorbitol dehydrogenase can be used except that the temperature is .degree.

酸化還元酵素、NADHおよび/またはNADPH,お
よび糖化蛋白は同時に加えてもよく、逐次加えてもよい
。逐次加える場合1.加える順序は制限されない。
The oxidoreductase, NADH and/or NADPH, and glycated protein may be added simultaneously or sequentially. When adding sequentially 1. The order of addition is not restricted.

酸化還元酵素は糖化蛋白に直接作用させてもよいが、あ
らかじめ糖の結合部位であるリジン残基等を遊離させて
得られる混合物に作用させることによりさらに効率よく
反応が進行し好ましい。糖が結合したりジン残基等を遊
離させる方法は通常の方法でよく、酵素法、化学法があ
る。酵素法では糖化蛋白に作用してリジン残基等を遊離
させることができる酵素ならばいずれでも使用すること
ができる。カルボキシペプチダーゼB1パパイン等のエ
ンドペプチダーゼまたはアミノペプチダーゼ等のエキソ
ペプチダーゼのいずれも使用することができる。化学法
としては塩酸等を用いる加水分解法がある。これらのう
ち好ましいのは酵素法である。
Although the oxidoreductase may be allowed to act directly on the glycated protein, it is preferable to act on a mixture obtained by liberating lysine residues, etc., which are sugar binding sites, because the reaction proceeds more efficiently. The methods for binding sugars and releasing gin residues may be any conventional methods, including enzymatic methods and chemical methods. In the enzymatic method, any enzyme that can act on glycated proteins to release lysine residues etc. can be used. Either an endopeptidase such as carboxypeptidase B1 papain or an exopeptidase such as aminopeptidase can be used. As a chemical method, there is a hydrolysis method using hydrochloric acid or the like. Among these, the enzyme method is preferred.

酵素法によりリジン残基等を遊離させる際の反応条件は
通常の反応条件でよく、エンドペプチダーゼを用いる場
合は、例えばジャーナル・オブ・バイオロジカ)Lt−
ケミストリー(J、 Biol、 Chem、 )第2
37巻、第3094〜3099頁(1962年)、同第
207巻第515〜531頁(1954年)に記載の反
応条件を、またエキソペプチダーゼを用いる場合は、た
とえばメソッズ・イン・エンザイモロジー(Meth、
 En−zymol、 )第19巻、第514〜521
頁(1970年)に記載の反応条件をそれぞれ用いるこ
とができる。
The reaction conditions for liberating lysine residues etc. by the enzymatic method may be normal reaction conditions, and when using endopeptidase, for example,
Chemistry (J, Biol, Chem, ) 2nd
37, pp. 3094-3099 (1962) and vol. 207, pp. 515-531 (1954), and when using exopeptidase, for example, Methods in Enzymology (1954). Meth,
En-zymol, ) Volume 19, Nos. 514-521
(1970) can be used.

リジン残基等を遊離させる酵素と酸化還元酵素は逐次添
加してもよく、同時に添加してもよい。
The enzyme that releases lysine residues and the like and the oxidoreductase may be added sequentially or simultaneously.

CH−OH基を水素供与体とし、NAD+および/また
はNADP+を水素受容体とする酸化還元酵素による反
応は反応式: %式% 酸化還元酵素R1−NH−CH2−CH(。H)−R’
 + NAD、および/またはNADP” (式中Rは蛋白分子またはリジンの残基を、R′はアル
ドースの残基を表す) にしたがって進行し、NADHおよび/またはNADP
Hの消費を伴う。NADHおよび/またはNADPHの
消費量は存在する糖化蛋白の濃度に比例する。したがっ
て、NADHおよび/またはNADPHの消費量を測定
すれば、糖化蛋白の濃度を知ることができる。NADH
および/またはNADPHの消費量はたとえば340n
mにおける吸光度により測定することができる。
The reaction by an oxidoreductase using the CH-OH group as a hydrogen donor and NAD+ and/or NADP+ as a hydrogen acceptor is the reaction formula: %Formula% oxidoreductaseR1-NH-CH2-CH(.H)-R'
+ NAD, and/or NADP" (wherein R represents a protein molecule or a lysine residue, R' represents an aldose residue), and NADH and/or NADP
Accompanied by consumption of H. The consumption of NADH and/or NADPH is proportional to the concentration of glycated proteins present. Therefore, by measuring the consumption amount of NADH and/or NADPH, the concentration of glycated protein can be determined. NADH
and/or NADPH consumption is e.g. 340n
It can be measured by absorbance at m.

本発明の測定法ではCH−OH基を水素供与体としNA
D+および/またはNADP+を水素受容体とする酸化
還元酵素の他にCH−OH基を水素供与体とし、酸素分
子を水素受容体とする酸化還元酵素を用いることもでき
る。このような酵素による反応は、(1)酸素の消費ま
たは(2)酸素の消費および過酸化水素の発生を伴う。
In the measurement method of the present invention, CH-OH group is used as a hydrogen donor and NA
In addition to oxidoreductases that use D+ and/or NADP+ as hydrogen acceptors, oxidoreductases that use CH-OH groups as hydrogen donors and oxygen molecules as hydrogen acceptors can also be used. Such enzymatic reactions involve (1) consumption of oxygen or (2) consumption of oxygen and generation of hydrogen peroxide.

酸素の消費量または過酸化水素の発生量は存在する糖化
蛋白の濃度に比例する。したがって、酸素の消費量また
は過酸化水素の発生量を測定すれば糖化蛋白の濃度を知
ることができる。酸素の消費量および過酸化水素の発生
量の測定は通常の方法で行なうことができる。酸素の消
費量は、たとえば酸素電極によりまた過酸化水素の発生
量は、たとえばパーオキシダーゼによる発色反応を用い
て測定することができる。
The amount of oxygen consumed or hydrogen peroxide generated is proportional to the concentration of glycated proteins present. Therefore, the concentration of glycated proteins can be determined by measuring the amount of oxygen consumed or the amount of hydrogen peroxide generated. The amount of oxygen consumed and the amount of hydrogen peroxide generated can be measured by conventional methods. The amount of oxygen consumed can be measured, for example, using an oxygen electrode, and the amount of hydrogen peroxide generated can be measured, for example, using a color reaction using peroxidase.

測定には通常標準物質が必要であるが、標準物質として
はアマトリ転移物ならば特に制限されず合成アマトリ転
移物などを用いることができる。
A standard substance is usually required for measurement, but the standard substance is not particularly limited as long as it is an amatri transition product, and synthetic amatri transition products and the like can be used.

本発明の測定法を糖尿病診断のための臨床検査に利用す
る場合、糖化蛋白を含有する検体は通常臨床検査に用い
られる全血、血しよう、血清のいずれでもよい。これら
はそのまま測定に供してもよいが、あらかじめ透析など
の前処理を行なったのち測定に供してもよい。検体量と
しては通常1〜i、oooltg 好ましくは1O−1
001tffを用いる。
When the measuring method of the present invention is used in a clinical test for diagnosing diabetes, the sample containing glycated proteins may be any of the whole blood, blood serum, and serum commonly used in clinical tests. These may be subjected to measurement as they are, or may be subjected to pretreatment such as dialysis before being subjected to measurement. The amount of sample is usually 1 to i, oooltg, preferably 1O-1
001tff is used.

本発明の測定法で用いる酸化還元酵素、パーオキシダー
ゼ等の酵素は溶液状態で用いてもよいが固定化して用い
ることもできる。固定化した酸化還元酵素、パーオキシ
ダーゼ等はカラム型式、バッチ型式等のいずれの型式で
も用いることができる。
Enzymes such as oxidoreductase and peroxidase used in the measurement method of the present invention may be used in a solution state, but they can also be used in an immobilized state. The immobilized oxidoreductase, peroxidase, etc. can be used in any format such as column format or batch format.

本発明の測定法は用手法で実施することもできるが臨床
検査等で通常用いられる自動分析装置で実施すればさら
に効果的である。
Although the measuring method of the present invention can be carried out manually, it is more effective if carried out using an automatic analyzer commonly used in clinical tests.

測定結果は糖化蛋白の濃度で表現してもよいが同時に検
体中に含まれる全蛋白濃度を測定すれば全蛋白濃度に対
する糖化蛋白濃度の比率で表現することもできる。全蛋
白濃度の測定法としては通常の方法でよく、たとえば2
80nmにおける吸光度を測定する方法、ロウクー法(
Lowry法)をあげることができる。
The measurement result may be expressed as the concentration of glycated protein, but if the total protein concentration contained in the sample is measured at the same time, it can also be expressed as the ratio of the glycated protein concentration to the total protein concentration. The total protein concentration can be measured by any conventional method, for example 2
A method for measuring absorbance at 80 nm, the Loucou method (
Lowry method).

[実施例] 次に本発明を実施例により具体的に説明するが本発明は
以下の実施例によって限定されるものではない。
[Examples] Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.

実施例1 (1)糖化蛋白測定試薬 酵素試薬:ソルビトールデヒドロゲナーゼ(シグマ社製
、3.lU/mg) 8mgを0.05Mリン酸緩衝液
(pH7,5)1muに溶解し、凍結乾燥した。
Example 1 (1) Glycated protein measurement reagent Enzyme reagent: 8 mg of sorbitol dehydrogenase (manufactured by Sigma, 3.1U/mg) was dissolved in 1 mu of 0.05 M phosphate buffer (pH 7,5) and freeze-dried.

NADH試薬:NADH・2Na (和光紬薬工業■製
)0.5mgを0.05Mリン酸緩衝液(pH7,5)
ldに溶解し、凍結乾燥した。
NADH reagent: 0.5 mg of NADH・2Na (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd.) in 0.05 M phosphate buffer (pH 7.5)
It was dissolved in ld and lyophilized.

(2)リジン残基遊離試薬 パパイン溶液(シグマ社製、600U/m1) 400
 p、 9゜、カルボキシペプチダーゼB溶液(シグマ
社製、2.300U/艷)200μ2、システィン20
■を0.05Mリン酸緩衝液(pH7,5)1mに溶解
し、凍結乾燥した。
(2) Lysine residue releasing reagent papain solution (manufactured by Sigma, 600 U/ml) 400
p, 9°, carboxypeptidase B solution (manufactured by Sigma, 2.300U/barrel) 200μ2, cysteine 20
(2) was dissolved in 1 m of 0.05M phosphate buffer (pH 7.5) and freeze-dried.

(3)標準物質 リジンのアミノ基にグルコースを結合させて得た物質2
6■を0.05Mリン酸緩衝液(pH7,5)1戒に溶
解し、凍結乾燥した。
(3) Substance 2 obtained by bonding glucose to the amino group of standard material lysine
6■ was dissolved in one volume of 0.05M phosphate buffer (pH 7,5) and freeze-dried.

比較例1 糖尿病患者および正常者の血清を生理食塩水に対して透
析した。透析後の血清100μ2に蒸留水を加え、全量
を500μ党とした。1mole/R濃度の蓚酸500
μ2を加え、100℃で5時間加熱した。次いで600
 g / ffi濃度のトリクロル酢酸200μ2を加
え除蛋白した。除蛋白後の上清液に50mmol/R濃
度のチオバルビッール酸300μ2を加え、37℃で1
5分間インキュベーションした。室温に20分間放置し
たのち443nmにおける吸光度を測定した。なお標準
溶液には5−ハイドロキシメチルフルフラール溶液を用
い、除蛋白後の血清サンプルと同様゛に操作した。血清
中の糖化蛋白濃度(C)は次式により算出した。測定結
果は第1図に示す。
Comparative Example 1 Sera from diabetic patients and normal subjects were dialyzed against physiological saline. Distilled water was added to 100μ2 of the serum after dialysis to make a total volume of 500μ. Oxalic acid 500 at a concentration of 1 mole/R
μ2 was added and heated at 100° C. for 5 hours. then 600
Protein was removed by adding 200μ2 of trichloroacetic acid at a concentration of g/ffi. 300 μ2 of thiobarbic acid with a concentration of 50 mmol/R was added to the supernatant after protein removal, and the mixture was incubated at 37°C for 1 hour.
Incubated for 5 minutes. After being left at room temperature for 20 minutes, the absorbance at 443 nm was measured. Note that a 5-hydroxymethylfurfural solution was used as the standard solution, and the procedure was performed in the same manner as for the serum sample after protein removal. Glycated protein concentration (C) in serum was calculated using the following formula. The measurement results are shown in Figure 1.

AS:サンプルを測定したときの吸光度A1.:標準物
質を測定したときの吸光度C14:標準物質濃度(nm
ol/mQ)実施例2 糖化蛋白測定試薬(酵素試薬、NADH試薬)、リジン
残基遊離試薬、標準物質に蒸留水を1mflずつ加え溶
液とし、比較例と同じ血清サンプルについて以下の方法
で糖化蛋白を測定した。
AS: Absorbance A1 when measuring a sample. : Absorbance when measuring standard substance C14: Standard substance concentration (nm
ol/mQ) Example 2 Add 1 mfl each of distilled water to the glycated protein measuring reagent (enzyme reagent, NADH reagent), lysine residue release reagent, and standard substance to make a solution, and measure the glycated protein using the same serum sample as in the comparative example using the following method. was measured.

未透析の血清100μQに0.05Mリン酸緩衝液(p
i−17,5) 1mff1およびリジン残基遊離試薬
100μ氾を加え、37℃で15分間インキュベーショ
ンした。
0.05M phosphate buffer (p
i-17,5) 1mff1 and 100μ of lysine residue release reagent were added and incubated at 37°C for 15 minutes.

ついでNADH試薬250μQを加えて340nmの吸
光度を測定した(ASI)。次いで酵素試薬50μ氾を
加え、37℃で15分間インキュベーションした後34
0nmの吸光度を測定した(AS2)。標準物質につい
ても同様の操作をおこなった。酵素試薬を加える前後の
吸光度をそれぞれA4.■、A、2とする。血清中の糖
化蛋白濃度は次式により算出した。測定結果は第1図に
示す。干渉物質を透析により除去して測定した比較例の
測定結果とよく相関している。
Then, 250 μQ of NADH reagent was added and the absorbance at 340 nm was measured (ASI). A 50μ flood of enzyme reagent was then added and after a 15 minute incubation at 37°C.
Absorbance at 0 nm was measured (AS2). The same operation was performed for the standard material. The absorbance before and after adding the enzyme reagent is measured as A4. ■, A, 2. Glycated protein concentration in serum was calculated using the following formula. The measurement results are shown in Figure 1. It correlates well with the measurement results of the comparative example, which was measured after removing the interfering substances by dialysis.

すなわち、本測定法はあらかじめ干渉物質を除去しなく
てもその影響を受けることなく正しい糖化蛋白濃度を測
定できることを示している。
In other words, this measurement method shows that it is possible to accurately measure the concentration of glycated protein without having to remove interfering substances beforehand.

/A、: ASl−AS2 AA+<: AJ  AR2 C+<  :標準物質濃度(nmol/rn!Q)[発
明の効果] 本発明の測定法および測定試薬は特異性の高い酵素を用
いるため、従来の測定法では避けられなかった干渉物質
(たとえばアスコルビン酸、尿酸、グルタチオン、ED
TA−2Naなど)の影響を受けない。また、糖化蛋白
を含有する検体からカラムクロマトグラフィー等の方法
によって糖化蛋白を分離するなどの複雑な操作を必要と
しない等の優れた効果を奏する。
/A,: ASl-AS2 AA+<: AJ AR2 C+<: Standard substance concentration (nmol/rn!Q) [Effects of the invention] Since the measurement method and measurement reagent of the present invention use highly specific enzymes, they are different from conventional ones. Interfering substances that cannot be avoided in the measurement method (e.g. ascorbic acid, uric acid, glutathione, ED)
TA-2Na, etc.). Further, it has excellent effects such as not requiring complicated operations such as separating glycated proteins from a sample containing glycated proteins by a method such as column chromatography.

糖尿病の診断あるいは糖尿病患者の血糖コントロールの
指標の一つに血糖値がある。しかしながら、血糖値は食
事等の影響で短期間に激しく変動するためこれだけでは
正確な診断あるいは血糖コントロールの把握ができない
。そこで長期(1週間〜数ケ月)の平均的血糖値を反映
する指標が注目され診断等に用いられている。本発明は
このような診断等の目的に有効に利用し得る。
Blood sugar level is one of the indicators for diagnosing diabetes or for controlling blood sugar in diabetic patients. However, since blood sugar levels fluctuate drastically over a short period of time due to the influence of meals, etc., accurate diagnosis or understanding of blood sugar control cannot be made using this alone. Therefore, indicators that reflect long-term (one week to several months) average blood sugar levels are attracting attention and being used for diagnosis and the like. The present invention can be effectively utilized for purposes such as such diagnosis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は比較例1の測定結果と実施例2の測定結果の相
関図である。 図面 第1図 (nmol/mQ) 実施例2による測疋値
FIG. 1 is a correlation diagram between the measurement results of Comparative Example 1 and the measurement results of Example 2. Figure 1 (nmol/mQ) Measured values according to Example 2

Claims (1)

【特許請求の範囲】 1、CH−OH基を水素供与体とし、(1)NAD^+
および/またはNADP^+または(2)酸素分子を水
素受容体とする酸化還元酵素を糖化蛋白に作用させ(1
)NADHおよび/またはNADPHの消費量または(
2)酸素の消費量または過酸化水素の発生量を測定する
糖化蛋白の測定法。 2、糖化蛋白の糖結合部位であるリジン残基を遊離させ
て得られる混合物にCH−OH基を水素供与体とし(1
)NAD^+および/またはNADP^+または(2)
酸素分子を水素受容体とする酸化還元酵素を作用させ、
(1)NADHおよび/またはNADPHの消費量また
は(2)酸素の消費量または過酸化水素の発生量を測定
する糖化蛋白の測定法。 3、CH−OH基を水素供与体とし、(1)NAD^+
および/またはNADP^+または(2)酸素分子を水
素受容体とする酸化還元酵素を含有してなる糖化蛋白測
定試薬。
[Claims] 1. CH-OH group is used as a hydrogen donor, (1) NAD^+
and/or NADP^+ or (2) oxidoreductase that uses oxygen molecules as hydrogen acceptors to act on glycated proteins (1
) NADH and/or NADPH consumption or (
2) A method for measuring glycated proteins that measures the amount of oxygen consumed or the amount of hydrogen peroxide generated. 2. Using a CH-OH group as a hydrogen donor (1
)NAD^+ and/or NADP^+ or (2)
Activates redox enzymes that use oxygen molecules as hydrogen acceptors,
A method for measuring glycated proteins that measures (1) the amount of NADH and/or NADPH consumed or (2) the amount of oxygen consumed or the amount of hydrogen peroxide generated. 3. Using CH-OH group as a hydrogen donor, (1) NAD^+
and/or NADP^+ or (2) a reagent for measuring glycated proteins containing an oxidoreductase that uses oxygen molecules as hydrogen acceptors.
JP1565789A 1989-01-25 1989-01-25 Determination of glycoprotein and determination reagent Pending JPH02195899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1565789A JPH02195899A (en) 1989-01-25 1989-01-25 Determination of glycoprotein and determination reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1565789A JPH02195899A (en) 1989-01-25 1989-01-25 Determination of glycoprotein and determination reagent

Publications (1)

Publication Number Publication Date
JPH02195899A true JPH02195899A (en) 1990-08-02

Family

ID=11894802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1565789A Pending JPH02195899A (en) 1989-01-25 1989-01-25 Determination of glycoprotein and determination reagent

Country Status (1)

Country Link
JP (1) JPH02195899A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709457A1 (en) 1994-10-05 1996-05-01 Kyoto Daiichi Kagaku Co., Ltd. Fructosyl amino acid oxidase and process for producing the same
US6127138A (en) * 1997-04-24 2000-10-03 Kyoto Daiichi Kagaku Co., Ltd. Method of enzymatically measuring glycated protein
US7250269B2 (en) 2001-01-31 2007-07-31 Asahi Kasei Pharma Corporation Composition for assaying glycoprotein
KR102073759B1 (en) * 2019-02-14 2020-02-05 주식회사 에이치앤비나인 Composition comprising NADH for preventing or treating metabolic disease

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709457A1 (en) 1994-10-05 1996-05-01 Kyoto Daiichi Kagaku Co., Ltd. Fructosyl amino acid oxidase and process for producing the same
US5712138A (en) * 1994-10-05 1998-01-27 Kyoto Daiichi Kagaku Co., Ltd. Fructosyl amino acid oxidase
US6127138A (en) * 1997-04-24 2000-10-03 Kyoto Daiichi Kagaku Co., Ltd. Method of enzymatically measuring glycated protein
US7250269B2 (en) 2001-01-31 2007-07-31 Asahi Kasei Pharma Corporation Composition for assaying glycoprotein
EP2107123A2 (en) 2001-01-31 2009-10-07 Asahi Kasei Pharma Corporation Composition for assaying glycated proteins
EP2107376A2 (en) 2001-01-31 2009-10-07 Asahi Kasei Pharma Corporation Composition for assaying glycated proteins
EP2236618A2 (en) 2001-01-31 2010-10-06 Asahi Kasei Pharma Corporation Compositions for assaying glycoprotein
EP2248909A1 (en) 2001-01-31 2010-11-10 Asahi Kasei Pharma Corporation Compositions for assaying glycoprotein
US8105800B2 (en) 2001-01-31 2012-01-31 Asahi Kasei Pharma Corporation Composition for assaying glycated proteins
KR102073759B1 (en) * 2019-02-14 2020-02-05 주식회사 에이치앤비나인 Composition comprising NADH for preventing or treating metabolic disease

Similar Documents

Publication Publication Date Title
JP3971702B2 (en) Method for selective measurement of glycated hemoglobin
JP5829766B2 (en) Hemolytic reagent composition for quantitative analysis of hemoglobin A1c using enzymatic method
AU694039B2 (en) Determination of glycated proteins
JP5004367B2 (en) Method for detecting mild glucose intolerance or insulin secretion deficiency
US5288606A (en) Reagent for specific determination of fructosamine
CS250227B2 (en) Testing system for substances&#39; determination liquids
JPS61240163A (en) Method of testing cis-diol or glycocylated hemoglobin and reagent for test used for said method
Kameya et al. Electrochemical sensing system employing fructosamine 6‐kinase enables glycated albumin measurement requiring no proteolytic digestion
US5147781A (en) Enzyme electrode and assay for determining LDH5
JP3036708B2 (en) Highly sensitive method for quantifying D-glucose-6-phosphate and composition for quantification
RU2184778C2 (en) System of coenzyme reduction, set for enzymatic assay of concentration of analyzed substance and enzymatic method of assay of concentration of analyzed substance
JPH02195899A (en) Determination of glycoprotein and determination reagent
JPH02195900A (en) Determination of glycoprotein and determination reagent
JP5261180B2 (en) Postprandial hyperglycemia marker, measuring method thereof and use thereof
JPH0365760B2 (en)
Kelly et al. Amperometric immunosensor for lactate dehydrogenase LD-1
JP4260542B2 (en) Method for measuring ketoamine in polymer
JP3934498B2 (en) Quantitative method and reagent using protease-containing reagent
JP4014088B2 (en) Method for eliminating glycated amino acids
JP3981190B2 (en) Cholesterol determination method and reagent for determination
JP3034986B2 (en) Highly sensitive method for quantifying D-sorbitol or D-fructose and composition for quantification
JP3034984B2 (en) Highly sensitive method and composition for quantification of D-galactose
JP2006149230A (en) Method for determining ratio of glycated protein
JPS6131954A (en) Maltose sensor
WO2001071024A1 (en) Method of assaying glycated albumin