JPH02195883A - Cutting method of specific part of polyribonucleotide by ribozyme - Google Patents

Cutting method of specific part of polyribonucleotide by ribozyme

Info

Publication number
JPH02195883A
JPH02195883A JP63191072A JP19107288A JPH02195883A JP H02195883 A JPH02195883 A JP H02195883A JP 63191072 A JP63191072 A JP 63191072A JP 19107288 A JP19107288 A JP 19107288A JP H02195883 A JPH02195883 A JP H02195883A
Authority
JP
Japan
Prior art keywords
polyribonucleotide
nucleotide sequence
adenine
sequence represented
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63191072A
Other languages
Japanese (ja)
Other versions
JP2750127B2 (en
Inventor
Eiko Otsuka
栄子 大塚
Shigenori Iwai
岩井 成憲
Makoto Koizumi
誠 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Co Ltd
Original Assignee
Sankyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Co Ltd filed Critical Sankyo Co Ltd
Priority to JP63191072A priority Critical patent/JP2750127B2/en
Publication of JPH02195883A publication Critical patent/JPH02195883A/en
Application granted granted Critical
Publication of JP2750127B2 publication Critical patent/JP2750127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain polyribonucleotide useful for cutting and detoxication of viroid single chain cyclic RNA as a cause of plant dwarfing by constructing ribozyme having special nucleotide sequence and cutting activity at specific part in polyribonucleotide sequence. CONSTITUTION:A polyribonucleotide having nucleotide sequence expressed by formula I. A polyribonucleotide containing nucleotide sequence of C is cut at a part expressed by arrow by using (1) a polyribonucleotide containing nucleotide sequence A and not containing nucleotide sequence B, and a polyribonucleotide containing nucleotide sequence B and not containing nucleotide sequence C, or (2) a polyribonucleotide containing nucleotide sequence A and nucleotide sequence B, and not containing nucleotide sequence C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリリボヌクレオチド配列中の特定部位を切
断する触媒活性を有するリポザイムを構成するポリリボ
ヌクレオチドに関するものであり、また該触媒ポリリボ
ヌクレオチドを用いて、他のポリリボヌクレオチド配列
中の特定部位を切断する方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a polyribonucleotide constituting a lipozyme that has catalytic activity to cleave a specific site in a polyribonucleotide sequence, and also relates to This invention relates to a method of cleaving specific sites in other polyribonucleotide sequences using nucleotides.

本発明を産業上利用する一例として、各種植物の矯化の
病因と考えられているウィロイド−本鎖環状RNAを切
断し、無毒化する可能性が期待される。
As an example of the industrial application of the present invention, it is expected that it will be possible to cleave and detoxify viroid-main-stranded circular RNA, which is thought to be the cause of the disease of various plants.

(従来の技術) 自己切断活性を有するRNA、あるいはポリリボヌクレ
オチドについてはいくつかの報告例がある。Zaugら
は、テトラヒメナの前駆体リポソームRNAが自己切断
によりリポソームRNAを形成することを見出した(N
ature、 324.429−433゜(I986)
) 、 Hutchinsらは、アボガドサンブロッチ
ウイロイドの相補的DNAから得られるプラスおよびマ
イナスのRNA転写物がそれぞれ自己切断すること、更
に切断部位付近のヌクレオチド配列が高い相同性をもつ
ことを見出し、この異なるRNA転写物は切断部位付近
では類似した二次構造を有し、切断が特異配列中の特定
部位で起こることを予想した(Nucleic Ac1
d Res、 14.3627−3640、 (I98
6)) 、 UhlenbeckはT7RNAポリメラ
ーゼと合成りNAを用いて、このウィロイドのコンセン
サス配列を含む24n+erと19 rserのポリリ
ボヌクレオチドを合成し、24 merの特定部位にお
いて自己切断が起こることを見出した(Nature、
 328.596−600. (I987)の図1参照
)。
(Prior Art) There are several reported examples of RNA or polyribonucleotides having self-cleavage activity. Zaug et al. found that Tetrahymena precursor liposomal RNA forms liposomal RNA by self-cleavage (N
ature, 324.429-433° (I986)
), Hutchins et al. found that the positive and negative RNA transcripts obtained from the complementary DNA of avocado sun blotch viroid each self-cleaved, and that the nucleotide sequences near the cleavage site were highly homologous. RNA transcripts have similar secondary structures near the cleavage site, and we predicted that cleavage would occur at specific sites in specific sequences (Nucleic Ac1
d Res, 14.3627-3640, (I98
6) Uhlenbeck synthesized 24n+er and 19rser polyribonucleotides containing the consensus sequence of this viroid using T7 RNA polymerase and synthetic NA, and found that self-cleavage occurred at a specific site of the 24mer ( Nature,
328.596-600. (See Figure 1 of (I987)).

Epstainらは、イモリのサテライトDNAの鎖長
300程度の転写物が特定部位において自己切断するこ
とを見出し、このものの切断部位付近のヌクレオチド配
列がアボガドサンブロッチウイロイドの切断部位付近の
ヌクレオチド配列と類似していることを示した(Cel
l、 48.535−543. (I987))先に本
発明者らは、このイモリサテライトRNAの切断部位を
含む二種類の21 marのポリリボヌクレオチドを化
学合成し、このものについて二本鎖を形成させると一方
の鎖が特定の部位で切断されることを見出した(FEB
S Lett、、 228.228−230、 (I9
88)の図1参照)。同時に、自己切断に必須な配列を
調べ、9−14のA−U、10−13のC−G塩基対は
相互の入れ替えが可能であることを見出した。これらの
RNA、あるいはポリリボヌクレオチド切断活性を有す
るRNA、あるいはポリリボヌクレオチドはりボザイム
と総称されている。
Epstein et al. found that a transcript of newt satellite DNA with a chain length of about 300 strands self-cleaves at a specific site, and the nucleotide sequence near the cleavage site of this is similar to the nucleotide sequence near the cleavage site of avocado sun blotch viroid. (Cel
l, 48.535-543. (I987)) Previously, the present inventors chemically synthesized two types of 21-mar polyribonucleotides containing the cleavage site of this newt satellite RNA, and when they were formed into double strands, one strand was identified. It was found that the cleavage occurred at the site of (FEB).
S Lett,, 228.228-230, (I9
88), see Figure 1). At the same time, we investigated the sequences essential for self-cleavage and found that base pairs 9-14 A-U and base pairs 10-13 C-G can be exchanged with each other. These RNAs, or RNAs having polyribonucleotide cleaving activity, are collectively called polyribonucleotide cleavage enzymes.

しかし、従来見出されたりボザイムは全て自己切断を行
なうものであり、他のRNA、あるいはポリリボヌクレ
オチド分子を切断するものは見出されていない。
However, all of the bozymes that have been found so far self-cleave, and none that cleave other RNA or polyribonucleotide molecules have been found.

(発明が解決する課題) 本発明者らは、自己切断を行なわず他のポリリボヌクレ
オチドの特異配列を認識し、特定部位を切断するポリリ
ボヌクレオチドの配列について研究してきた。その結果
、特異配列を有するポリリボヌクレオチドを立体構造的
に認識する、二種の配列の異なる二分子のポリリボヌク
レオチド、もしくは、同一分子内に上記二種の配列を有
するポリリボヌクレオチドを用いて、前記特異配列を有
するポリリボヌクレオチドを切断する方法を見出し、本
発明を完成させた。即ち、本発明は、他のポリリボヌク
レオチドを特定の部位で切断する機能を有するリボザイ
ムを構成する特定の配列を含むポリリボヌクレオチドに
関するものであり、さらにこのポリリボヌクレオチドと
他の特定の配列を有するポリリボヌクレオチドによりリ
ボザイムを構成させて、特異配列をもった第三のポリリ
ボヌクレオチドの特定部位を切断する方法に関するもの
である。
(Problems to be Solved by the Invention) The present inventors have studied polyribonucleotide sequences that do not self-cleave but recognize specific sequences of other polyribonucleotides and cleave at specific sites. As a result, by using two molecules of polyribonucleotides with two different sequences, or polyribonucleotides having the above two types of sequences in the same molecule, which three-dimensionally recognizes a polyribonucleotide with a specific sequence, discovered a method for cleaving polyribonucleotides having the specific sequence, and completed the present invention. That is, the present invention relates to a polyribonucleotide containing a specific sequence constituting a ribozyme that has the function of cleaving other polyribonucleotides at a specific site, and further relates to a polyribonucleotide containing a specific sequence that constitutes a ribozyme that has the function of cleaving other polyribonucleotides at a specific site. The present invention relates to a method of cleaving a specific site of a third polyribonucleotide having a specific sequence by constructing a ribozyme from the polyribonucleotide having the specific sequence.

本発明は、式Cb)の■Aで表わされるヌクレオチド配
列を含み、Cで表わされるヌクレオチド配列を含まない
ポリリボヌクレオチド、及び、Bで表わされるヌクレオ
チド配列を含み、Cで表わされるヌクレオチド配列を含
まないポリリボヌクレオチドを用いるか、または、■A
で表わされるヌクレオチド配列、及び、Bで表わされる
ヌクレオチド配列を含み、Cで表わされるヌクレオチド
配列を含まないポリリボヌクレオチドを用いて、Cで表
わされるヌクレオチド配列を含むポリリボヌクレオチド
を矢印で示した部位において切断する方法に関する。: 3・115・ (式中、Uはウラシル、Aはアデニン、Cはシトシン、
Gはグアニンヌクレオチドを表わし、Rはウラシル、ア
デニン、シトシンヌクレオチドのいずれかを表わし、8
3〜S5と対応するX3〜X5、■1〜v2と対応する
Y1〜Y2、及び リ3〜v5と対応するz3〜Z5は
、これら三つの群の組合せにおいて整数番号が一致する
ものがそれぞれ相補的な水素結合を形成し得るウラシル
、アデニン、シトシン、グアニンヌクレオチドのいずれ
かを表わし、S、〜S2と対応するX□〜X! 、 V
a〜v4と対応するY3〜Y4 、及びZ1〜Z2と対
応するυ□〜v2は、三つの群の組合せのうち少なくと
も二つの群の組合せにおいて、整数番号が一致するもの
がそれぞれ相補的な水素結合を形成し得るウラシル、ア
デニン、シトシン、グアニンヌクレオチドのいずれかを
表わす。)。
The present invention is a polyribonucleotide containing the nucleotide sequence represented by A and not containing the nucleotide sequence represented by C of formula Cb); or use a polyribonucleotide that is not
Using a polyribonucleotide containing the nucleotide sequence represented by the nucleotide sequence represented by and the nucleotide sequence represented by B but not containing the nucleotide sequence represented by C, the polyribonucleotide containing the nucleotide sequence represented by C is indicated by an arrow. The present invention relates to a method of cutting at a cutting site. : 3・115・ (In the formula, U is uracil, A is adenine, C is cytosine,
G represents a guanine nucleotide, R represents any of uracil, adenine, or cytosine nucleotide, 8
X3 to X5 corresponding to 3 to S5, Y1 to Y2 corresponding to X□~X! represents any of uracil, adenine, cytosine, or guanine nucleotides that can form hydrogen bonds, and corresponds to S,~S2. , V
Y3-Y4 corresponding to a-v4 and υ□-v2 corresponding to Z1-Z2 are hydrogens with matching integer numbers in at least two group combinations among the three group combinations. Represents any uracil, adenine, cytosine, or guanine nucleotide that can form a bond. ).

特に、式(b)において、S、〜S2と対応するX!〜
X2、■3〜v4と対応するY3〜Y4、及びZ。
In particular, in formula (b), X! corresponding to S, ~S2! ~
Y3 to Y4 and Z corresponding to X2, ■3 to v4.

〜Z2と対応するり、〜J2がこれら三つの群の組合せ
において、整数番号が一致するものがそれぞれ相補的な
水素結合を形成し得るウラシ゛ル、アデニン、シ[・シ
ン、グアニンヌクレオチドのいずれかであるポリリボヌ
クレオチド切断方法に関する。
~Z2 corresponds to ~J2, or ~J2 is any of uracil, adenine, cy[-sine, or guanine nucleotides that can form complementary hydrogen bonds in the combination of these three groups, respectively, with matching integer numbers. This invention relates to a method for cleaving certain polyribonucleotides.

特に好ましくは、式(b)において、R、Sl、Wt 
、 (I1a 、 Xs 、Y3 、 Z2及び2.が
アデニンヌ’/L/オチドで、S2 、 Sl 、S、
t 、V2 、W4. Yt及びY4がシトシンヌクレ
オチドで、Vl、V4 、X2、 X3 、X4 、Y
2及びZ4がグアニンヌクレオチドで、Ss 、V3.
 W2、us 、Xs 、Zs 及びZ3がウラシルヌ
クレオチドであるポリリボヌクレオチド切断方法に関す
る。
Particularly preferably, in formula (b), R, Sl, Wt
, (I1a, Xs, Y3, Z2 and 2. are adenine'/L/otide, S2, Sl, S,
t, V2, W4. Yt and Y4 are cytosine nucleotides, Vl, V4, X2, X3, X4, Y
2 and Z4 are guanine nucleotides, Ss, V3.
The present invention relates to a polyribonucleotide cleavage method in which W2, us, Xs, Zs and Z3 are uracil nucleotides.

そして、式(b)のA鎖が、式(a)で表わされるヌク
レオチド配列を有するポリリボヌクレオチド: ”ACCCLIGAAAGCUG”      (a 
)(式中、Uはウラシル、Aはアデニン、Cはシトシン
、Gはグアニンヌクレオチドを表わす。)は。
The A chain of formula (b) is a polyribonucleotide having a nucleotide sequence represented by formula (a): "ACCCLIGAAAGCUG" (a
) (wherein U represents uracil, A represents adenine, C represents cytosine, and G represents guanine nucleotide).

新規なポリリボヌクレオチドであり、特に好ましし1゜ (発明が解決する手段) A)ポリリボヌクレオチド゛のへ゛ ポリリボヌクレオチド鎖の合成は、2′−水酸基および
5′−水酸基を保護した後の固相ホスホロアミダイト法
による単位ヌクレオチドの縮合により行なうことができ
る(続生化学実験講座1、遺伝子研究法1 、 pp、
35−61.1986年、東京化学同人)。即ち、テト
ラヒドラピラニル基等により2″−水酸基を保護し、ジ
メトキシトリチル基等により5′−水酸基を保護し、塩
基部を必要に応じて保護したヌクレオシドに対してホス
ホロアミダイトを反応させることにより、完全に保護さ
れた単位ヌクレオチド(ヌクレオシド 3’ −0−ホ
スホロアミダイト体)を得ることができる。ポリリボヌ
クレオチド鎖の伸長は、5′−水酸基がジメトキシトリ
チル基等により保護され、3′水酸基が架橋構造を経て
担体に結合している目的の塩基を含んだヌクレオシド樹
脂の5′−水酸基の保護基を除去し、目的の上記単位ヌ
クレオチドを順次反応させることにより行なえる。
A novel polyribonucleotide, particularly preferred 1. (Means to be solved by the invention) A) Synthesis of a polyribonucleotide chain from a polyribonucleotide is carried out after protecting the 2'-hydroxyl group and the 5'-hydroxyl group. This can be carried out by condensation of unit nucleotides using the solid-phase phosphoramidite method (Sequential Biochemistry Experiment Course 1, Gene Research Methods 1, pp.
35-61. 1986, Tokyo Kagaku Doujin). That is, the 2″-hydroxyl group is protected with a tetrahydrapyranyl group, etc., the 5′-hydroxyl group is protected with a dimethoxytrityl group, etc., and the base portion is protected as necessary, and a nucleoside is reacted with a phosphoramidite. By this method, a completely protected unit nucleotide (nucleoside 3'-0-phosphoramidite) can be obtained.The polyribonucleotide chain is elongated by protecting the 5'-hydroxyl group with a dimethoxytrityl group, etc., and converting the 3' This can be carried out by removing the protecting group of the 5'-hydroxyl group of a nucleoside resin containing the desired base, in which the hydroxyl group is bonded to the carrier via a crosslinked structure, and then reacting the desired unit nucleotides in sequence.

B)  基の71.および 次に、リン酸基についたメチル基の除去、アルカリ処理
によるポリリボヌクレオチド鎖の樹脂からの切り出し、
酸処理による2′−水酸基の保護基、5′−水酸基の保
護基および塩基部の保護基の除去と、これに続く脱塩処
理、逆相およびイオン交換クロマトグラフィー等を用い
ての精製操作により目的のポリリボヌクレオチド鎖を得
ることができる。
B) Group 71. Next, the methyl group attached to the phosphate group is removed, the polyribonucleotide chain is cut out from the resin by alkali treatment,
By removal of the 2'-hydroxyl protecting group, 5'-hydroxyl protecting group, and base moiety protecting group by acid treatment, followed by purification using desalting treatment, reversed phase, ion exchange chromatography, etc. A desired polyribonucleotide chain can be obtained.

C)ポリリボヌクレオチド の−   のポリリボヌク
レオチド鎖の塩基配列の確認は、ポリリボヌクレオチド
鎖の5′末端を標識し、このものを蛇毒ホスホジェステ
ラーゼで断片化し、例えば電気泳動法およびホモクロマ
トグラフィー等を行なうことにより可能である(続生化
学実験講座1、遺伝子研究法I 、 pp、28−29
.1986年、東京化学同人)。標識したポリリボヌク
レオチド鎖について電気泳動法を行なうことにより鎖長
を決定することもできる。
C) To confirm the base sequence of a polyribonucleotide chain, label the 5' end of the polyribonucleotide chain, fragment it with snake venom phosphogesterase, and perform, for example, electrophoresis or homochromatography. It is possible to do this by conducting such things as
.. 1986, Tokyo Kagaku Doujin). Chain length can also be determined by performing electrophoresis on labeled polyribonucleotide chains.

D) のポリリボヌクレオチド の 断ポリリボヌクレ
オチド鎖による他のポリリボヌクレオチド鎖の切断は以
下の操作によって確認できる(化学、43巻、5号、p
p、348−349、(I988))。基質として用い
るポリリボヌクレオチド鎖の5′−末端を標識し、この
ものに触媒活性を有するポリリボヌクレオチド鎖、塩化
マグネシウム、食塩を含有する緩衝液を加え保温する。
D) Cleavage of polyribonucleotide cleavage of other polyribonucleotide strands by the polyribonucleotide strand can be confirmed by the following procedure (Chemistry, Vol. 43, No. 5, p.
p, 348-349, (I988)). The 5'-end of the polyribonucleotide chain used as a substrate is labeled, and a buffer solution containing a polyribonucleotide chain having catalytic activity, magnesium chloride, and sodium chloride is added to this and kept warm.

一定時間後、反応溶液にEDTAを加えることにより反
応を停止させ、この溶液についてポリアクリルアミドゲ
ル電気泳動を行なう。泳動後ゲルを切り取り、切断部位
の放射活性を定量することにより切断率を算定すること
ができる。
After a certain period of time, the reaction is stopped by adding EDTA to the reaction solution, and this solution is subjected to polyacrylamide gel electrophoresis. After electrophoresis, the cleavage rate can be calculated by cutting out the gel and quantifying the radioactivity at the cleavage site.

以下、参考例として、ヌクレオシド 3′−〇−ホスホ
ロアミダイト体の合成法、実施例として、リボヌクレオ
チド鎖の切断について記載するが、本発明はこれに限定
されるものではない。
Hereinafter, as a reference example, a method for synthesizing a nucleoside 3'-0-phosphoramidite, and as an example, cleavage of a ribonucleotide chain will be described, but the present invention is not limited thereto.

参考例 ヌクレオシド 3″−〇−ホスホロアミダイト体の合成
は、下記式に表わされる反応で合成した。
Reference Example Nucleoside 3″-〇-phosphoramidite was synthesized by the reaction represented by the following formula.

(式中、ThPはテトラヒドロピラニル基、丁rはトリ
チル基、B′はベンゾイルアデニン、イソブチリルグア
ニン、ベンゾイルシトシン、アニソイルウラシルのいず
れか一つを表わす。)以下、化合物(I)のB′がベン
ゾイルアデニン、イソブチリルグアニン、ベンゾイルシ
トシンおよびアニソイルウラシルである場合の合成につ
いて述べる。
(In the formula, ThP represents a tetrahydropyranyl group, D represents a trityl group, and B' represents any one of benzoyladenine, isobutyrylguanine, benzoylcytosine, and anisoyluracil.) The synthesis in which B' is benzoyl adenine, isobutyrylguanine, benzoylcytosine and anisoyluracil will be described.

1)B’ =ベンゾイルアデニン ベンゾイルアデノシン 2′−テトラヒドロピラニル−
52−ジメトキシトリチル体((I)0.61 mg、
0,8 tomol)をピリジン共洟下に脱水し、ジク
ロルメタン(2ml)とイソプロピルエチルアミン(0
,56ml、 3.2 mmol)に溶解し窒素置換を
行ないクロロジインプロピルアミノメチルホスフィン(
0,19ml、 0.9611I+uol)を2分かけ
て滴下した。
1) B' = benzoyladenine benzoyladenosine 2'-tetrahydropyranyl-
52-dimethoxytrityl compound ((I) 0.61 mg,
0.8 tomol) was dehydrated with pyridine, dichloromethane (2 ml) and isopropylethylamine (0.8 tomol)
, 56 ml, 3.2 mmol) and purged with nitrogen to dissolve chlorodiinpropylaminomethylphosphine (
0.19 ml, 0.9611 I+uol) was added dropwise over 2 minutes.

室温で40分攪はんし原料が消失したことを確認した後
、酢酸エチル(30011)を加え、飽和重炭酸ナトリ
ウム溶液、飽和食塩水で洗浄した。1PS(ワンドマン
社製)濾過後溶媒を留去しシリカゲルグロマトグラフィ
−(Wakogel C−300,15g。
After stirring at room temperature for 40 minutes and confirming that the raw material had disappeared, ethyl acetate (30011) was added, and the mixture was washed with saturated sodium bicarbonate solution and saturated brine. After 1PS (manufactured by Wandman) filtration, the solvent was distilled off and silica gel chromatography (Wakogel C-300, 15 g) was carried out.

酢酸エチル)を行ないあわ状物質として目的物を得た。(ethyl acetate) to obtain the desired product as a foamy substance.

収flO,72: (0,781110O1) 98χ
Hz)、2.0−1.4(m、6)1.−CH2−of
 Thp)、1.2−0.9(o、128.・NCI(
(Cqt)t)。
Collection flO,72: (0,781110O1) 98χ
Hz), 2.0-1.4 (m, 6)1. -CH2-of
Thp), 1.2-0.9(o, 128.・NCI(
(Cqt)t).

コIP−NMR(CDCl  コ)   δppm: 
  148.15. 148.68化合物(2)におい
てB′がイソブチリルグアニン、ベンゾイルシトシンお
よびアニソイルウラシルである化合物も同様な方法で合
成した。収率および物性を以下に示す。
IP-NMR (CDCl) δppm:
148.15. 148.68 Compounds (2) in which B' is isobutyrylguanine, benzoylcytosine, and anisoyluracil were also synthesized in a similar manner. The yield and physical properties are shown below.

2)B’ =イソブチルグアニン、収R: 88%’H
−NMR(CDClコ) δppa+:11.5(m、
I)I、8M)、 8.7(n、IFI、NH)、7.
79(s、It(、)14)、7.7−7.2(m、9
に、Ar of trityl)。
2) B' = isobutylguanine, yield R: 88%'H
-NMR (CDCl) δppa+: 11.5 (m,
I) I, 8M), 8.7 (n, IFI, NH), 7.
79(s, It(,)14), 7.7-7.2(m, 9
Ar of trityl).

6.8(m+48,2+2’、6.6’Hof  tr
ityl)、5.9(m、2JLl’  Jl−,2−
ニア、3H2and  H−2’)。
6.8(m+48,2+2',6.6'Hof tr
ityl), 5.9(m, 2JLl' Jl-, 2-
near, 3H2and H-2').

4.8−4.0(a+、3に、)!−3’、4’ ai
d acetall(of Thp)、 3.77(s
、68.−0CH3of trityt)。
4.8-4.0 (a+, to 3)! -3', 4' ai
d acetall(of Thp), 3.77(s
, 68. -0CH3of trityt).

3.7−2.9(Il、IOH,H−5’、−0CH2
−of Thp、−HClj−、P−QC)It、−C
Of4(CH3)2)、   ’2.0−1,6(+w
、6に、−CHt−of Thp)山4(m、12)1
.−11cH(Cut)s)。
3.7-2.9 (Il, IOH, H-5', -0CH2
-of Thp, -HClj-, P-QC) It, -C
Of4(CH3)2), '2.0-1,6(+w
, 6, -CHt-of Thp) mountain 4 (m, 12) 1
.. -11cH(Cut)s).

3盲P −NMR(CDCh)”″ δGll+II:
  148.21. 148.483)B’ =ベンゾ
イルシトシン、収量:9e’H−NMR(CDC+3)
  δppm:H−NMR(CDCI]) δppm:
8.01(d、ILH−6Js、g=8.3Hz)、?
、9(m、3)1.+1−6.o−Ar)+7.3(m
、IIH,m−Arand trityl)6.9(m
、4H,2,2’、6.(i’Hof trityl)
、6.17(m、1MIH−1’)、5.31(d、1
HJI−5,Js、g:8.4IHz)、5.0(br
s、IH,acetall(of Thp)、4.6(
m、28.I(−2’、3’)、4.3(m、II、I
(−4’)3.86(s、311.−0CHz of 
anisoyl)、3.81(s、61(、−01Jl
z of trityl)。
3-blind P-NMR (CDCh)"" δGll+II:
148.21. 148.483) B' = benzoylcytosine, yield: 9e'H-NMR (CDC+3)
δppm: H-NMR (CDCI) δppm:
8.01 (d, ILH-6Js, g=8.3Hz), ?
,9(m,3)1. +1-6. o-Ar)+7.3(m
, IIH, m-Arand trityl) 6.9 (m
, 4H, 2, 2', 6. (i'Hof trityl)
, 6.17 (m, 1 MIH-1'), 5.31 (d, 1
HJI-5, Js, g: 8.4IHz), 5.0 (br
s, IH, acetall (of Thp), 4.6 (
m, 28. I (-2', 3'), 4.3 (m, II, I
(-4')3.86(s, 311.-0CHz of
anisoyl), 3.81(s, 61(, -01Jl
z of trityl).

3.5(I11,5FI、H−5’  −NCR−an
d  −0CI(2of  Thp)、  3.3(d
d、3H,P−OCH3,jp−ocylx:I2.9
実施例1゜ ポj1ボ フレ第 3’′G32. S’ B  [I) 4)B’ =アニソイルウラシル、収量:96、式(I
I)のA@(以下IIAと略す。)、および、式(II
I)のB鎖(以下111Bと略す。)を合成した。
3.5(I11,5FI, H-5'-NCR-an
d -0CI (2 of Thp), 3.3 (d
d, 3H, P-OCH3, jp-ocylx: I2.9
Example 1゜Poj1Bofre No. 3''G32. S' B [I) 4) B' = anisoyluracil, yield: 96, formula (I
A@ (hereinafter abbreviated as IIA) of I), and formula (II
The B chain (hereinafter abbreviated as 111B) of I) was synthesized.

即ち、2′−水酸基をテトラヒドロピラニル基、5′−
水酸基をジメトキシトリチル基で保護したヌクレオシド
樹脂を酸処理し、5′一方向に鎖を伸長する固相ホスホ
ロアミダイト法により合成した。IAの合成法について
述べるが、他のポリリボヌクレオチド鎖についても同様
に合成した。
That is, 2'-hydroxyl group is replaced by tetrahydropyranyl group, 5'-
A nucleoside resin in which the hydroxyl group is protected with a dimethoxytrityl group is treated with an acid, and the nucleoside resin is synthesized by a solid-phase phosphoramidite method in which the chain is extended in the 5' direction. The method for synthesizing IA will be described, but other polyribonucleotide chains were also synthesized in the same manner.

鎖の伸長は、下記式に従って行なった。Chain elongation was performed according to the following formula.

式(I)のA@(以下IAと略す。)、B@(以下IB
と略す。)、c鎖(以下ICと略す。)(式中の記号は
以下のものを表わす。
A@ (hereinafter abbreviated as IA) and B@ (hereinafter IB) in formula (I)
It is abbreviated as ), c chain (hereinafter abbreviated as IC) (symbols in the formula represent the following.

DMTr: “′A:ベンゾイルアデニン n:縮合したヌクレオチドの数 [F]:コントロールドポアグラス(control、
1edpore glass) ThPおよびB′は前述したものと同意義を示す。
DMTr: “'A: Benzoyladenine n: Number of condensed nucleotides [F]: Controlled pore glass (control,
(1edpore glass) ThP and B' have the same meanings as described above.

ポリリボヌクレオチド鎖合成機種としては、アプライド
バイオシステムズ社(ABI社)モデル380DNA合
成機を用いた。ヌクレオシド3′−〇−ホスホロアミダ
イト((4) 18 mg、約20μmol)が0.1
6 mlのアセトニトリルに溶解するように調製したも
のを合成機のボトル#]−4にセットした。ボトル#1
−4には、1xジクロロiff/ジクロロメタンをセッ
トした。他の試薬は、ABI社のものを用いた。
As a model for polyribonucleotide chain synthesis, an Applied Biosystems (ABI) model 380 DNA synthesizer was used. Nucleoside 3'-〇-phosphoramidite ((4) 18 mg, about 20 μmol) is 0.1
A solution prepared to be dissolved in 6 ml of acetonitrile was set in bottle #]-4 of the synthesizer. Bottle #1
-4 was set with 1x dichloro iff/dichloromethane. Other reagents used were from ABI.

まず、Kierzekらの方法(Biochemist
ry、 25゜7.840−7,846 (I986)
)に従って、合成したヌクレオシド栃脂((3)、Iμ
mol)に対して1zジクロロ酢酸/ジクロロメタンを
120秒作用させ、ジメトキシトリチル基を除去した。
First, the method of Kierzek et al. (Biochemist
ry, 25°7.840-7,846 (I986)
), synthesized nucleoside horse chestnut ((3), Iμ
mol) was treated with 1z dichloroacetic acid/dichloromethane for 120 seconds to remove the dimethoxytrityl group.

次に、ヌクレオシド 3’−0−ホスホロアミダイト(
(4)、20当量)とテトラゾール(50当量)を用い
てロアミグイト中のリンを酸化し、リン酸とした。
Next, nucleoside 3'-0-phosphoramidite (
(4), 20 equivalents) and tetrazole (50 equivalents) were used to oxidize phosphorus in Roamiguite to produce phosphoric acid.

上記の反応を1項次繰り返すことにより、目的の塩基配
列をもつポリリボヌクレオチド(5)を得た。
By repeating the above reaction once, a polyribonucleotide (5) having the desired base sequence was obtained.

実施例2゜ ポリリボヌクレオチド鎖中の保護基の除去および樹脂か
らの切り出しは下記式に従って行なった。
Example 2 Removal of the protecting group in the polyribonucleotide chain and cutting out from the resin were carried out according to the following formula.

(式中の略号は以下のものを表わす。(The abbreviations in the formula represent the following.

B:アデニン、グアニン、シトシン、ウラシルのいずれ
か一つ。
B: Any one of adenine, guanine, cytosine, or uracil.

DMTr、Thp[F]、nおよびB′は前述したもの
と同意義を示す。) 即ち、化合物(5)にチオフェノール−トリエチルアミ
ン/ジオキサン溶液を30分作用させ、リン酸基の保護
基のメチル基を除去した。その後、濃水酸化アンモニウ
ム液で室温1時間処理することにより樹脂からの切り出
しを行なった。その切り出されたポリリボヌクレオチド
を含むアンモニウム溶液を密封し、60℃、5時間加熱
した。その後溶媒を留去し、逆相力ラムクロマトグラフ
ィー(C18,φ0.7 x 14 cm)を行ない、
過塩素酸によるジメトキシトリチルカチオンの発色をも
つピークを調べ、その両分を集め溶媒を留去した。
DMTr, Thp[F], n and B' have the same meanings as described above. ) That is, a thiophenol-triethylamine/dioxane solution was allowed to act on Compound (5) for 30 minutes to remove the methyl group as a protecting group for the phosphoric acid group. Thereafter, the resin was cut out by treatment with a concentrated ammonium hydroxide solution at room temperature for 1 hour. The ammonium solution containing the excised polyribonucleotide was sealed and heated at 60°C for 5 hours. After that, the solvent was distilled off, and reversed-phase force chromatography (C18, φ0.7 x 14 cm) was performed.
The peak with the color development of dimethoxytrityl cation caused by perchloric acid was examined, and both components were collected and the solvent was distilled off.

これに0.01 N塩酸を加え、0.IN塩酸でpHを
2.0に合わせ、室温で20時間放置し、ジメトキシト
リチル基とテトラヒドロピラニル基を除去した。0.I
N水酸化アンモニウムで中和し酢酸エチルで洗浄後、5
ephadex G−25(φ1.8 x 38cm)
で脱塩して粗化合物(6)が得られた。
Add 0.01 N hydrochloric acid to this, and add 0.01 N hydrochloric acid. The pH was adjusted to 2.0 with IN hydrochloric acid, and the mixture was left to stand at room temperature for 20 hours to remove dimethoxytrityl groups and tetrahydropyranyl groups. 0. I
After neutralizing with N ammonium hydroxide and washing with ethyl acetate,
ephadex G-25 (φ1.8 x 38cm)
The crude compound (6) was obtained by desalting.

実施例3゜ 八 ボ「1ポヌクレオチド の 実施例2で得られた粗化合物(6)を、逆相系高速液体
クロマトグラフィーおよびイオン交換系高速液体クロマ
トグラフィーで精製した。
Example 3 The crude compound (6) obtained in Example 2 of ``1 polynucleotide'' was purified by reversed phase high performance liquid chromatography and ion exchange high performance liquid chromatography.

逆相系高速液体クロマトグラフィーに関しては、YMC
PACK  C18カラム(φ1.0 x 30cm、
山村科学(株)製)を用いておこなった。
Regarding reverse phase high performance liquid chromatography, YMC
PACK C18 column (φ1.0 x 30cm,
The test was carried out using Yamamura Kagaku Co., Ltd.).

0.1Mトリエチルアンモニウムアセテート緩衝液を用
いて、io −15%のアセトニトリル濃度勾配法によ
り精製を行なった(流速2 ml/win、)。
Purification was carried out using a 0.1 M triethylammonium acetate buffer by an io -15% acetonitrile concentration gradient method (flow rate 2 ml/win).

254 nmの吸収波長によりRN A画分を集めた。The RNA fraction was collected using an absorption wavelength of 254 nm.

逆相系高速液体クロマトグラフィーの分離パターンを図
1に示す。横軸は時間、縦軸は254 nmの吸収およ
びアセトニトリルの濃度を示す。
The separation pattern of reversed phase high performance liquid chromatography is shown in Figure 1. The horizontal axis shows time, and the vertical axis shows absorption at 254 nm and acetonitrile concentration.

イオン交換系クロマトグラフィーに関しては、TSKゲ
ル DEAE−2SWカラム(φ0.46x 25 c
m、東洋ソーダ(株)製)を用いて行なった。20%ア
セトニトリルを用い、0.5−0.9 Mの酢酸アンモ
ニウム濃度勾配法により、精製を行なった(流速1 m
l/win、)。254 nmの吸収波長より、ポリリ
ボヌクレオチド画分を集めた。イオン交換系高速液体ク
ロマトグラフィーの分離パターンを図2に示す。横軸は
時間、縦軸は254 nmの吸収および酢酸アンモニウ
ムの濃度を表わす。
For ion exchange chromatography, TSK gel DEAE-2SW column (φ0.46x 25c
m, manufactured by Toyo Soda Co., Ltd.). Purification was performed by a 0.5-0.9 M ammonium acetate concentration gradient method using 20% acetonitrile (flow rate 1 m
l/win,). A polyribonucleotide fraction was collected based on the absorption wavelength of 254 nm. The separation pattern of ion exchange high performance liquid chromatography is shown in Figure 2. The horizontal axis represents time, and the vertical axis represents absorption at 254 nm and ammonium acetate concentration.

以上の分離精製操作により、4.75 A=bo単位の
IAが得られた。
Through the above separation and purification operations, 4.75 A=bo units of IA were obtained.

実施例4゜ 八 ポリリヌクレオチド の    の 切I A (
0,015A26゜単位、100 pmol)に、[γ
−”P] ATP (0,5μl)、緩衝液(Iμm、
 250mM Tr i 5−HCI  (pH7,6
) + 5On+M塩化マグネシウム、50 mMメル
カプトエタノール)、T4ポリヌクレオチドキナーゼ(
0,5μm、1単位)、滅菌水(3μl)を加え、37
℃、1時間保温した。未反応の[γ−”P] ATPを
除くために、DEAEセルロセルTLCにスポットし、
Homo m i x m (Nucleic Ac1
d Re5earch、1.331−353(I974
))で展開した。ポリリボヌクレオチドを含み放射活性
のある部分をかき取り、DEAEセルロースより2Mト
リエチルアンモニウムバイカーボネートで溶出した。
Example 4゜8 Cutting IA of polyrinucleotide (
0,015A26° unit, 100 pmol), [γ
-”P] ATP (0.5μl), buffer (Iμm,
250mM Tri 5-HCI (pH 7,6
) + 5On+M magnesium chloride, 50mM mercaptoethanol), T4 polynucleotide kinase (
0.5 μm, 1 unit), add sterile water (3 μl),
It was kept warm at ℃ for 1 hour. In order to remove unreacted [γ-”P]ATP, it was spotted on DEAE Cellulocell TLC,
Homo m i x m (Nucleic Ac1
dRe5earch, 1.331-353 (I974
)). The radioactive portion containing polyribonucleotides was scraped off and eluted from the DEAE cellulose with 2M triethylammonium bicarbonate.

これに蛇毒ホスホジェステラーゼ(0,5μl。Add snake venom phosphogesterase (0.5 μl) to this.

1 mglo、、5 ml)を加え、37℃で保温し、
30分後に分取して限定氷解物を得た。これについて1
次元目にpH3,5の電気泳動を行ない、2次元目にホ
モクロマトグラフィーを行ない、配列を確認した。
1 mglo, 5 ml) and kept warm at 37°C.
After 30 minutes, the ice was fractionated to obtain a limited ice melt. About this 1
Electrophoresis at pH 3.5 was performed in the second dimension, and homochromatography was performed in the second dimension to confirm the sequence.

IA、IBおよびICについての結果をそれぞれ図3.
4および5に示す。図3.4および5において横軸は電
気泳動の泳動方向、縦軸はホモクロマトグラフィーの泳
動方向を示す。
The results for IA, IB and IC are shown in Figure 3.
4 and 5. In Figures 3.4 and 5, the horizontal axis shows the direction of electrophoresis, and the vertical axis shows the direction of migration of homochromatography.

ム ポ!夏ボヌクレオチドの  の 籾ポリリボヌクレ
オチドDAおよびmBの5″末端を標識し、8M尿素を
含む2囲ポリアクリルアミドゲル電気泳動を行ない鎖長
を確認した。その結果を図6に示す。(図中、 1an
e 1: I A 。
Mu po! The 5'' ends of the rice polyribonucleotides DA and mB of summer bonucleotides were labeled, and the chain lengths were confirmed by electrophoresis on a two-circle polyacrylamide gel containing 8M urea.The results are shown in Figure 6. , 1an
e1: IA.

)、ane 2: I B、 1ane 3: I C
,1ane 4:I[A、 1ane5:mB、図中X
Cはキシレンシアツールを示す。)実施例5゜ 基質として用いたICは5′末端を[γ−22P]AT
P、T4ポオリリポヌクレオチドキナーゼで標識後、N
ENSORB 20  (Dupont社製)で脱塩、
除蛋白処理したものを用いた。
), ane 2: I B, 1 ane 3: I C
, 1ane 4: I[A, 1ane 5: mB, X in the figure
C indicates a xylene cyan tool. ) Example 5゜The IC used as a substrate has [γ-22P]AT at the 5' end.
P, after labeling with T4 polyoliponucleotide kinase, N
Desalting with ENSORB 20 (manufactured by Dupont),
The protein-removed product was used.

切断反応は次のようにして実施した。ICを2.5pm
ol、および、触媒ポリリボヌクレオチドに相当するI
AとI B (lane 3)、 I[Aと IB(l
ane 4)もしくはIAとIIIB (lane 5
)をそれぞれ3.75 P!1101に25  mM塩
化マグネシウム、40 mM Tri 5−HCI (
pH7,5) 、 20118食塩の組成液(2,3μ
l)を加え15℃で15時間保温した。対照として、 
 1ane3の25 iaM塩化マグネシウムの代わり
に5 mM E DTAを含む緩衝液を加え、保温した
(lane 2) 、 50 nM EDTA(3μl
)を加え反応を停止し、8M尿素を含む20xポリアク
リルアミドゲル電気泳動で分析した。
The cleavage reaction was carried out as follows. IC at 2.5pm
ol, and I corresponding to the catalytic polyribonucleotide
A and I B (lane 3), I[A and IB (l
ane 4) or IA and IIIB (lane 5
) for 3.75 P each! 1101 with 25 mM magnesium chloride, 40 mM Tri 5-HCI (
pH 7,5), 20118 common salt composition solution (2,3μ
1) was added and kept at 15°C for 15 hours. As a control,
A buffer solution containing 5 mM EDTA was added instead of 25 iaM magnesium chloride in lane 3, and the mixture was kept warm (lane 2).
) was added to stop the reaction and analyzed by 20x polyacrylamide gel electrophoresis containing 8M urea.

マーカー(lane 1)は5′末端を標識したICを
RN a s e  U2で切断したものを泳動した。
As a marker (lane 1), an IC whose 5' end was labeled was cut with RNase U2 and electrophoresed.

切断率はゲルを切り取り液体シンチレーションカウンタ
ーで定量することにより求めた。結果を表1に示す。
The cleavage rate was determined by cutting out the gel and quantifying it using a liquid scintillation counter. The results are shown in Table 1.

表1− 1ane       切断率(%) 電気泳動の結果を図7に示す。図7においてRNase
  U2はポリリボヌクレオチド鎖のプリンの3′位と
後に続くヌクレオチドのリン酸との結合を切断するもの
であり、マーカーとして用いたA2、G3、A6、A7
、A8  はそれぞれのICの5′側より2番目のアデ
ニン、3番目のグアニン、6番目、7番目あるいは8番
目のアデニンの後で切断された断片の移動度を示す。従
って、他の1aneでは6番目のアデニンの後で切断さ
れたことを示している。
Table 1 - 1ane cleavage rate (%) The results of electrophoresis are shown in FIG. 7. In Figure 7, RNase
U2 cleaves the bond between the purine 3' position of the polyribonucleotide chain and the phosphate of the following nucleotide, and is used as a marker for A2, G3, A6, and A7.
, A8 indicates the mobility of fragments cleaved after the second adenine, third guanine, sixth, seventh, or eighth adenine from the 5' side of each IC. This indicates that the other 1ane was cleaved after the 6th adenine.

図1は、合成ポリリボヌクレオチド粗化合物(IA)の
逆相系高速液体クロマトグラフィーによる分離パターン
を示す。
FIG. 1 shows the separation pattern of synthetic polyribonucleotide crude compound (IA) by reversed phase high performance liquid chromatography.

図2は、これに続くイオン交換系高速液体クロマトグラ
フィーによる分離パターンを示す。
FIG. 2 shows the separation pattern obtained by subsequent ion-exchange high performance liquid chromatography.

図3はIA(7)、図4はIB(7)、図5はIC(7
)電気泳動法およびホモクロマトグラフィーによる塩基
配列の解析のパターンを示す。
Figure 3 shows IA (7), Figure 4 shows IB (7), and Figure 5 shows IC (7).
) Shows patterns of base sequence analysis by electrophoresis and homochromatography.

図6は、電気泳動法による、IA、IB、IC1IIA
およびmBの鎖長の比較パターンを示す。
Figure 6 shows IA, IB, IC1IIA by electrophoresis.
Comparison patterns of chain lengths of and mB are shown.

図7は、IAとIB、IIAとIBもしくはIAとmB
による、ICの切断断片の電気泳動パターンを示す。
Figure 7 shows IA and IB, IIA and IB, or IA and mB.
The electrophoretic pattern of the cut fragment of IC is shown in FIG.

Claims (1)

【特許請求の範囲】 1、式( I )で表わされるヌクレオチド配列を有する
ポリリボヌクレオチド: ^5^’ACCCUGAAAGCUG^3^’(a)(
式中、Uはウラシル、Aはアデニン、Cはシトシン、G
はグアニンヌクレオチドを表わす。)。 2、式(b)の[1]Aで表わされるヌクレオチド配列
を含み、Cで表わされるヌクレオチド配列を含まないポ
リリボヌクレオチド、及び、Bで表わされるヌクレオチ
ド配列を含み、Cで表わされるヌクレオチド配列を含ま
ないポリリボヌクレオチドを用いるか、または、[2]
Aで表わされるヌクレオチド配列、及び、Bで表わされ
るヌクレオチド配列を含み、Cで表わされるヌクレオチ
ド配列を含まないポリリボヌクレオチドを用いて、Cで
表わされるヌクレオチド配列を含むポリリボヌクレオチ
ドを矢印で示した部位において切断する方法▲数式、化
学式、表等があります▼(b) (式中、Uはウラシル、Aはアデニン、Cはシトシン、
Gはグアニンヌクレオチドを表わし、Rはウラシル、ア
デニン、シトシンヌクレオチドのいずれかを表わし、S
_3〜S_5と対応するX_3〜X_5、V_1〜V_
2と対応するY_1〜Y_2、及びW_3〜W_5と対
応するZ_3〜Z_5は、これら三つの群の組合せにお
いて整数番号が一致するものがそれぞれ相補的な水素結
合を形成し得るウラシル、アデニン、シトシン、グアニ
ンヌクレオチドのいずれかを表わし、S_1〜S_2と
対応するX_1〜X_2、V_3〜V_4と対応するY
_3〜Y_4、及びZ_1〜Z_2と対応するW_1〜
W_2は、三つの群の組合せのうち少なくとも二つの群
の組合せにおいて、整数番号が一致するものがそれぞれ
相補的な水素結合を形成し得るウラシル、アデニン、シ
トシン、グアニンヌクレオチドのいずれかを表わす。)
。 3、式(b)において、S_1〜S_2をと対応するX
_1〜X_2、V_3〜V_4と対応するY_3〜Y_
4、及びZ_1〜Z_2と対応するW_1〜W_2がこ
れら三つの群の組合せにおいて、整数番号が一致するも
のがそれぞれ相補的な水素結合を形成し得るウラシル、
アデニン、シトシン、グアニンヌクレオチドのいずれか
である、請求項2記載のポリリボヌクレオチド切断方法
。 4、式(b)において、R、S_1、W_1、W_3、
X_5、Y_3、Z_2及びZ_5がアデニンヌクレオ
チドで、S_2、S_3、S_4、V_2、W_4、Y
_1及びY_4がシトシンヌクレオチドで、V_1、V
_4、X_2、X_3、X_4、Y_2及びZ_4がグ
アニンヌクレオチドで、S_5、V_3、W_2、W_
5、X_1、Z_1及びZ_3がウラシルヌクレオチド
である請求項2または3記載のポリリボヌクレオチド切
断方法。
[Claims] 1. Polyribonucleotide having a nucleotide sequence represented by formula (I): ^5^'ACCCUGAAAGCUG^3^' (a) (
In the formula, U is uracil, A is adenine, C is cytosine, G
represents a guanine nucleotide. ). 2. Formula (b) [1] A polyribonucleotide containing the nucleotide sequence represented by A but not containing the nucleotide sequence represented by C, and a polyribonucleotide containing the nucleotide sequence represented by B and containing the nucleotide sequence represented by C. or using polyribonucleotides that do not contain
Using a polyribonucleotide containing the nucleotide sequence represented by A and the nucleotide sequence represented by B but not containing the nucleotide sequence represented by C, the polyribonucleotide containing the nucleotide sequence represented by C is indicated by an arrow. Method of cutting at the site ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (b) (In the formula, U is uracil, A is adenine, C is cytosine,
G represents a guanine nucleotide, R represents any of uracil, adenine, or cytosine nucleotide, and S
X_3-X_5, V_1-V_ corresponding to _3-S_5
Y_1 to Y_2 corresponding to 2 and Z_3 to Z_5 corresponding to W_3 to W_5 are uracil, adenine, cytosine, and those having matching integer numbers in the combination of these three groups can form complementary hydrogen bonds, respectively. Represents any guanine nucleotide, X_1 to X_2 corresponding to S_1 to S_2, Y corresponding to V_3 to V_4
W_1~ corresponding to _3~Y_4 and Z_1~Z_2
W_2 represents any one of uracil, adenine, cytosine, and guanine nucleotides that have matching integer numbers that can form complementary hydrogen bonds in at least two of the three group combinations. )
. 3. In formula (b), X corresponding to S_1 to S_2
Y_3-Y_ corresponding to _1-X_2, V_3-V_4
4, and W_1 to W_2 corresponding to Z_1 to Z_2 are uracils in which those with matching integer numbers can form complementary hydrogen bonds, respectively, in a combination of these three groups,
The method for cleaving polyribonucleotides according to claim 2, wherein the polyribonucleotide is any one of adenine, cytosine, and guanine nucleotides. 4. In formula (b), R, S_1, W_1, W_3,
X_5, Y_3, Z_2 and Z_5 are adenine nucleotides, S_2, S_3, S_4, V_2, W_4, Y
_1 and Y_4 are cytosine nucleotides, V_1, V
_4, X_2, X_3, X_4, Y_2 and Z_4 are guanine nucleotides, S_5, V_3, W_2, W_
5. The method for cleaving polyribonucleotides according to claim 2 or 3, wherein X_1, Z_1 and Z_3 are uracil nucleotides.
JP63191072A 1988-07-29 1988-07-29 Method for Cleavage of Specific Site of Polyribonucleotide by Ribozyme Expired - Fee Related JP2750127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63191072A JP2750127B2 (en) 1988-07-29 1988-07-29 Method for Cleavage of Specific Site of Polyribonucleotide by Ribozyme

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63191072A JP2750127B2 (en) 1988-07-29 1988-07-29 Method for Cleavage of Specific Site of Polyribonucleotide by Ribozyme

Publications (2)

Publication Number Publication Date
JPH02195883A true JPH02195883A (en) 1990-08-02
JP2750127B2 JP2750127B2 (en) 1998-05-13

Family

ID=16268402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63191072A Expired - Fee Related JP2750127B2 (en) 1988-07-29 1988-07-29 Method for Cleavage of Specific Site of Polyribonucleotide by Ribozyme

Country Status (1)

Country Link
JP (1) JP2750127B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507683A (en) * 1992-04-28 1995-08-31 エール ユニバーシティ Targeted cleavage of RNA using eukaryotic ribonuclease P and external guide sequences
US5631360A (en) * 1992-05-14 1997-05-20 Ribozyme Pharmaceuticals, Inc. N-phthaloyl-protected 2'-amino-nucleoside phosphoramdites
US5686599A (en) * 1992-05-14 1997-11-11 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes
US5804683A (en) * 1992-05-14 1998-09-08 Ribozyme Pharmaceuticals, Inc. Deprotection of RNA with alkylamine
US6437117B1 (en) 1992-05-14 2002-08-20 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification for RNA and ribozymes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004300A1 (en) * 1986-12-03 1988-06-16 University Patents, Inc. Rna ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988004300A1 (en) * 1986-12-03 1988-06-16 University Patents, Inc. Rna ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07507683A (en) * 1992-04-28 1995-08-31 エール ユニバーシティ Targeted cleavage of RNA using eukaryotic ribonuclease P and external guide sequences
US5631360A (en) * 1992-05-14 1997-05-20 Ribozyme Pharmaceuticals, Inc. N-phthaloyl-protected 2'-amino-nucleoside phosphoramdites
US5686599A (en) * 1992-05-14 1997-11-11 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes
US5804683A (en) * 1992-05-14 1998-09-08 Ribozyme Pharmaceuticals, Inc. Deprotection of RNA with alkylamine
US5831071A (en) * 1992-05-14 1998-11-03 Ribozyme Pharmaceuticals, Inc. Synthesis deprotection analysis and purification of RNA and ribozymes
US6353098B1 (en) 1992-05-14 2002-03-05 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes
US6437117B1 (en) 1992-05-14 2002-08-20 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification for RNA and ribozymes
US6469158B1 (en) 1992-05-14 2002-10-22 Ribozyme Pharmaceuticals, Incorporated Synthesis, deprotection, analysis and purification of RNA and ribozymes
US6649751B2 (en) 1992-05-14 2003-11-18 Sirna Therapeutics, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes
US7041817B2 (en) 1992-05-14 2006-05-09 Sirna Therapeutics, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes

Also Published As

Publication number Publication date
JP2750127B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
Garegg et al. Nucleoside H-phosphonates. IV. Automated solid phase synthesis of oligoribonucleotides by the hydrogenphosphonate approach
US5695979A (en) Inhibition of reverse transcriptase by phosphorodithioates
US6590093B1 (en) Orthoester protecting groups
JP5342881B2 (en) 6-modified bicyclic nucleic acid analogues
CA2121144C (en) Oligonucleotides having chiral phosphorus linkages
AU662298B2 (en) Modified internucleoside linkages
AU776362B2 (en) L-ribo-LNA analogues
US5264562A (en) Oligonucleotide analogs with novel linkages
JP2003012688A (en) Oligonucleotide n3'->p5' phosphoramidate: synthesis and compound: hybridization and nuclease resistance characteristic
WO1994022890A1 (en) Novel 5'-substituted nucleosides and oligomers produced therefrom
Beijer et al. Synthesis and applications of oligoribonucleotides with selected 2′-O-methylation using the 2′-O-[1-(2-fluorophenyl)-4-methoxypiperidin-4-yl] protecting group
CA2361079C (en) Method for deprotecting oligonucleotides
JP2836961B2 (en) Method for synthesizing ribonucleic acid (RNA) using novel deprotecting agent
EP0002322A2 (en) Improved Triester process for the synthesis of oligonucleotides
US5808039A (en) 2'-OMe CAC phosphoramidite and methods for preparation and use thereof
JPH02195883A (en) Cutting method of specific part of polyribonucleotide by ribozyme
US5756704A (en) Nucleosides and nucleoside derivatives containing enzymatically cleavable protecting groups
Sproat et al. Novel solid-phase synthesis of branched oligoribonucleotides, including a substrate for the RNA debranching enzyme
Hosaka et al. A convenient approach to the synthesis of medium size oligodeoxyribonucleotides by improved new phosphite method
AU2002325599B2 (en) Oligonucleotide analogues
EP0463712A2 (en) Polynucleotide phosphorodithioates as therapeutic agents for retroviral infections
CA2078256A1 (en) Synthesis of sulfide-linked di-or oligonucleotide analogs and incorporation into antisense dna or rna
EP1228243A1 (en) Compositions and methods of synthesis and use of novel nucleic acid structures
WO2004048376A1 (en) Bicyclic naphthylidine nucleosides
Meng Synthesis and binding of oligonucleotides containing 2'-modified sulfide-or sulfone-linked dimers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees