JPH02192705A - Iron core type transformer - Google Patents

Iron core type transformer

Info

Publication number
JPH02192705A
JPH02192705A JP1012206A JP1220689A JPH02192705A JP H02192705 A JPH02192705 A JP H02192705A JP 1012206 A JP1012206 A JP 1012206A JP 1220689 A JP1220689 A JP 1220689A JP H02192705 A JPH02192705 A JP H02192705A
Authority
JP
Japan
Prior art keywords
core
secondary winding
reactor
transformer
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1012206A
Other languages
Japanese (ja)
Other versions
JPH0644539B2 (en
Inventor
Akiyoshi Yoshizumi
吉住 堯由
Toshizo Yoshida
吉田 利三
Manabu Hoshino
学 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHI NIPPON TEIKOUKI SEISAKUSHO KK
Original Assignee
NISHI NIPPON TEIKOUKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHI NIPPON TEIKOUKI SEISAKUSHO KK filed Critical NISHI NIPPON TEIKOUKI SEISAKUSHO KK
Priority to JP1012206A priority Critical patent/JPH0644539B2/en
Publication of JPH02192705A publication Critical patent/JPH02192705A/en
Publication of JPH0644539B2 publication Critical patent/JPH0644539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Regulation Of General Use Transformers (AREA)

Abstract

PURPOSE:To easily manufacture a transformer of specified impedance by a method wherein a reactor core passing only leakage flux to a secondary winding is provided making gaps from a transformer iron core and then this reactor core is controlled. CONSTITUTION:A space to insert a reactor core 6 into a transformer iron core 1 is alloted to the title transformer as well as gaps 8 are made between the iron core 1 and a secondary winding 3. Then, cores 6a, 6b in required sectional spaces selected conforming to specified impedance are inserted covering the winding 3 while another gap 7 is adjusted for fixation. Accordingly, the leakage flux 4 in a primary winding 2 passes through the gap between outer space and the core 6 while the flux 4 is restrained from increasing so that the voltage induced in the winding 3 may be kept constant to control the leakage flux 5 passing through the core 6 at specified impedance by the gap 7. Through these procedures, a transformer at specified impedance can be easily manufactured by controlling the reactor 6 provided on the secondary winding 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は2次巻線の漏れインピーダンスを調整できるよ
うにし、さらにリアクトルとしても使用できるようにし
た内鉄形変圧器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a core type transformer that can adjust the leakage impedance of a secondary winding and can also be used as a reactor.

[従来の技術] 従来の変圧器においては、たとえば第6図に一般的な3
相3脚変圧器の1脚を示すように、3脚鉄心1の各脚に
それぞれ1次巻線2と2次巻線3カ(1次巻線を外側に
して巻装されており、このため、1次巻線2の漏れ磁束
4は、巻線相互の間と1次巻線の外側を通り、2次巻線
3の漏れ磁束5は巻線相互間と鉄心脚を通って形成され
る。したかって、1次巻線の漏れ磁束4は2次巻線の漏
れ磁束5に比較して空隙か長くなるため発生する漏れ磁
束が小さくなっているが、それぞれの漏れ磁束は製作前
に設計値として選定され、その設計値に応じて各部の寸
法が定められている。なお、変圧器を組み立てた後に巻
線相互間における磁気抵抗を小さくするために巻線間に
コアを挿入することによってインピーダンスが変わるこ
とが知られている。
[Prior art] In conventional transformers, for example, the general 3 type shown in Fig.
As shown in one leg of a three-leg phase transformer, a primary winding 2 and three secondary windings (wound with the primary winding outside) are wound around each leg of a three-leg core 1. Therefore, the leakage magnetic flux 4 of the primary winding 2 passes between the windings and the outside of the primary winding, and the leakage magnetic flux 5 of the secondary winding 3 passes between the windings and through the core legs. Therefore, the leakage flux 4 of the primary winding is smaller than the leakage flux 5 of the secondary winding because the air gap is longer, but each leakage flux is The design values are selected, and the dimensions of each part are determined according to the design values.In addition, after the transformer is assembled, a core is inserted between the windings to reduce the magnetic resistance between the windings. It is known that the impedance changes depending on the

[本発明が解決しようとする課題] このように、変圧器のインピーダンスは設計の時に選定
されており、設計後にこれを変更しようとする場合は、
各部の寸法を変えて作りなおす必要がある。なお巻線間
にコアを挿入することによりインピーダンスを大きくす
ることができるが、このようなインピーダンスの変化は
、1次巻線と2次巻線の両方の漏れ磁束にも影響を与え
、インピーダンスの調整としては定性的、定量的に不十
分である。また、第6図における1次巻線2を内側にし
2次巻線3を外側に配置換えすると1次巻線の漏れ磁束
が増大し、励磁電流が増加して使用できなくなる。
[Problems to be Solved by the Present Invention] As described above, the impedance of the transformer is selected at the time of design, and if it is desired to change it after design,
It is necessary to change the dimensions of each part and recreate it. Note that the impedance can be increased by inserting a core between the windings, but such a change in impedance also affects the leakage flux of both the primary and secondary windings, resulting in a decrease in impedance. The adjustment is qualitatively and quantitatively insufficient. Furthermore, if the primary winding 2 in FIG. 6 is placed inside and the secondary winding 3 is placed outside, the leakage flux of the primary winding increases, the exciting current increases, and the device becomes unusable.

本発明はこのような点にかんがみ、1次巻線の漏れ磁束
を増大させないようにして2次巻線の漏れ磁束を加減し
、変圧器インピーダンスを調整できるようにしたもので
ある。
In view of these points, the present invention makes it possible to adjust the leakage flux of the secondary winding without increasing the leakage flux of the primary winding, thereby adjusting the transformer impedance.

[課題を解決するための手段] このため、鉄心脚に巻装された2次巻線にのみ鎖交する
ように閉ループのリアクトルコアを設け、その材質や断
面積、ギャップ長を変えることによって2次巻線の漏れ
インピーダンスを変化させ、さらに必要によってはリア
クトルコアにタップ巻線を設けて2次巻線と直列に接続
させるようにしである。
[Means for solving the problem] Therefore, by providing a closed-loop reactor core so as to link only to the secondary winding wound around the core leg, and changing its material, cross-sectional area, and gap length, two The leakage impedance of the secondary winding is changed, and if necessary, a tap winding is provided in the reactor core and connected in series with the secondary winding.

[作用] したがって、同一の電圧比であっても、1次巻線の漏れ
磁束を増加させることなく2次巻線に設けたリアクトル
コアを調整することによって所望のインピーダンスをも
った変圧器を容易に得ることができる。
[Function] Therefore, even if the voltage ratio is the same, it is easy to create a transformer with the desired impedance by adjusting the reactor core provided in the secondary winding without increasing the leakage flux of the primary winding. can be obtained.

[実施例] 第1図および第2図は本発明の実施例を示すもので、l
は変圧器鉄心、2は1次巻線、3は2次巻線、6は2次
巻線を囲むリアクトルコアで、2次巻線の漏れ磁束5の
調整に必要な断面積をもった複数(図では4個)の2つ
割りにしたカットコア6a、6bで形成し、鉄心脚に巻
装した2次巻線3の上下両側から挿入し、カットコア6
a、6bの接合部にリアクトルギャップ7を設けて接着
あるいは他の適宜な固定方法で固定させる。8は前記リ
アクトルコア6を通る磁束が変圧器鉄心に流れ込まない
ように設けた間隙である。
[Example] Figures 1 and 2 show examples of the present invention.
is the transformer core, 2 is the primary winding, 3 is the secondary winding, and 6 is the reactor core that surrounds the secondary winding. The cut cores 6a and 6b are formed into two halves (four pieces in the figure), and are inserted from both upper and lower sides of the secondary winding 3 wound around the core legs.
A reactor gap 7 is provided at the joint between a and 6b, and they are fixed by adhesive or other suitable fixing method. 8 is a gap provided to prevent the magnetic flux passing through the reactor core 6 from flowing into the transformer core.

変圧器鉄心1.1次巻線2および2次巻線3の大きさや
巻数は、所望の電圧比と容量に応じて従来と同様に設計
されるが、組み立て後にリアクトルコア6を挿入するた
めのスペースおよび変圧器鉄心lと2次巻線3との間の
間隙を十分に設けである。
The size and number of turns of the transformer core 1, primary winding 2, and secondary winding 3 are designed in the same way as before, depending on the desired voltage ratio and capacity, but the Sufficient space and clearance between the transformer core 1 and the secondary winding 3 are provided.

このように組み立てられた変圧器に、要求されるインピ
ーダンスに応じて必要な断面積のカットコア6a、eb
を選定して2次巻線3の上下から挿入し、所望のインピ
ーダンスを得るようにリアクトルギャップ7を調整して
固定させる。このリアクトルギャップ7は非磁性材料を
挟むようにしてもよい。
Cut cores 6a, eb with the necessary cross-sectional area according to the required impedance are added to the transformer assembled in this way.
are selected and inserted into the secondary winding 3 from above and below, and the reactor gap 7 is adjusted and fixed to obtain the desired impedance. This reactor gap 7 may sandwich a nonmagnetic material.

したがって、1次巻線2の漏れ磁束4は外側の空間とリ
アクトルコア6との間を通って増加を押さえられ、2次
巻線3に誘起する電圧を一定に保ち、リアクトルコア6
を通る漏れ磁束5をリアクトルギャップ7により所要の
インピーダンスに調整することができる。
Therefore, the leakage magnetic flux 4 of the primary winding 2 passes between the outside space and the reactor core 6, and its increase is suppressed, the voltage induced in the secondary winding 3 is kept constant, and the reactor core 6
The leakage magnetic flux 5 passing through the reactor gap 7 can be adjusted to a required impedance.

なお、リアクトルコア6は第2図では弧状に成形したカ
ットコア6a、6bを4分割して2次巻線3の上下から
挿入しであるが、第3図の実施例に示すように2次巻線
3を多角形に形成し、必要な数のリアクトルコア6を2
次巻線の直線部に設けてリアクトルを調整するようにし
ておけば、カットコアを積層鉄心で構成することもでき
る。
In addition, the reactor core 6 is made by dividing cut cores 6a and 6b formed into arc shapes into four parts and inserting them from above and below into the secondary winding 3 in FIG. 2, but as shown in the embodiment shown in FIG. The winding 3 is formed into a polygonal shape, and the required number of reactor cores 6 are
The cut core can also be constructed from a laminated core by providing it in the straight section of the next winding to adjust the reactor.

第4図は、2脚鉄心により形成された単相変圧器のイン
ピーダンスを調整するようにした実施例を示すもので、
変圧器鉄心11の一方脚に1次巻線2を、他方脚に2次
巻線3を巻装し、前記2次巻線に所要のインピーダンス
に応じて選定したリアクトルコア6を挿入し、このリア
クトルコア6を流れる漏れ磁束5が変圧器鉄心11に流
れ込まないよう、変圧器鉄心tiとリアクトルコア6と
の間にリアクトルギャップ7より大きい間隙8を設けで
ある。なお、12は1次巻線端子、13は2次巻線端子
である。
FIG. 4 shows an embodiment in which the impedance of a single-phase transformer formed by two cores is adjusted.
A primary winding 2 is wound around one leg of the transformer core 11, and a secondary winding 3 is wound around the other leg, and a reactor core 6 selected according to the required impedance is inserted into the secondary winding. A gap 8 larger than the reactor gap 7 is provided between the transformer core ti and the reactor core 6 so that the leakage magnetic flux 5 flowing through the reactor core 6 does not flow into the transformer core 11. Note that 12 is a primary winding terminal, and 13 is a secondary winding terminal.

また、第5図はリアクトルコア6による調整値をさらに
加減する必要がある場合の実施例を示すもので、リアク
トルコア6にタップ巻線14を設け、2次巻線端子13
の一方を前記タップ巻線の中間に接続し、適宜のタップ
と他方端子を負荷に接続するようにしである。
Further, FIG. 5 shows an embodiment in which it is necessary to further adjust the adjustment value by the reactor core 6, in which a tap winding 14 is provided in the reactor core 6, and a secondary winding terminal 13 is provided in the reactor core 6.
One of the terminals is connected to the middle of the tap winding, and an appropriate tap and the other terminal are connected to a load.

なお、3次巻線を有する変圧器においても、2次巻線と
3次巻線にそれぞれリアクトルコアを設けることにより
、それぞれのインピーダンスを各別に調整できる。
Note that even in a transformer having a tertiary winding, by providing a reactor core in each of the secondary winding and the tertiary winding, the impedance of each can be adjusted separately.

[本発明の効果コ このように本発明は、内鉄形変圧器の2次巻線に、2次
巻線の漏れ磁束だけを通すリアクトルコアを設け、この
リアクトルコアと変圧器鉄心とをリアクトルコアを通る
磁束が変圧器鉄心に多mに流れ込まないよう間隙を設け
ており、リアクトルコアの材質、断面積、リアクトルギ
ャップを選定することによって変圧器のインピーダンス
を調整するようにしであるので、変圧器鉄心と2次巻線
との間隙を大きくして標準設計により製作しておき、組
み立て後に所要のインピーダンスに応じて必要なリアク
トルコアを挿入することにより変圧器のインピーダンス
を調整変更することができ、変圧器製作の標準化を行い
得る効果がある。
[Effects of the present invention] As described above, the present invention provides a reactor core for passing only the leakage flux of the secondary winding in the secondary winding of a core type transformer, and connects this reactor core and the transformer iron core to the reactor core. A gap is provided to prevent the magnetic flux passing through the core from flowing into the transformer core over a large distance, and the impedance of the transformer can be adjusted by selecting the reactor core material, cross-sectional area, and reactor gap. The impedance of the transformer can be adjusted by manufacturing the transformer according to a standard design with a large gap between the transformer core and the secondary winding, and inserting the necessary reactor core according to the required impedance after assembly. This has the effect of standardizing transformer manufacturing.

なお、変圧器鉄心とリアクトルコアとの間隙をリアクト
ルギャップより大きくしておけば、変圧器鉄心とリアク
トルコアの設計は相互に無視して設計することができ、
2次巻線のリアクトルコアか作るリアクトルは、1次側
ではN、/N、倍として考えられ、設計値と実測値を合
わせ易く、設計が簡単になる。
Furthermore, if the gap between the transformer core and reactor core is made larger than the reactor gap, the transformer core and reactor core can be designed while ignoring each other.
The reactor made by the reactor core of the secondary winding can be considered as N, /N, times on the primary side, which makes it easy to match the design value and the measured value, simplifying the design.

また、高インピーダンスの変圧器を得ることか可能にな
るため、2次巻線を短絡してリアクトルとして利用する
ことができ、たとえば、シャントリアクトルを送電線に
直結させる場合は、リアクトルとしての最も経済的な電
圧の選定ができなかったが、第4図のような構成にする
ことにより変圧器鉄心で変圧を行い、その2次巻線を共
用してリアクトルの1次巻線とし、リアクトルコアを選
定することにより経済的なりアクドル作用を行わせるこ
とができる。
Also, since it is possible to obtain a high impedance transformer, the secondary winding can be shorted and used as a reactor. For example, when connecting a shunt reactor directly to a power transmission line, it is the most economical method Although it was not possible to select a suitable voltage, by configuring the configuration as shown in Figure 4, the transformer core transforms the voltage, and the secondary winding is shared as the primary winding of the reactor, and the reactor core is Depending on the selection, an economical accelerator effect can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による3相変圧器の実施例を示す一部の
側断面図、第2図は第1図のA−A線に沿う平面図、第
3図は他の実施例における第2図相当図、第4図は単相
変圧器の実施例を示す側面図、第5図は単相変圧器の他
の実施例を示す側面図、第6図は従来の変圧器の漏れ磁
束を示す説明図である。 1は変圧器鉄心、2は1次巻線、3は2次巻線、4は1
次巻線の漏れ磁束、5は2次巻線の漏れ磁束、6はリア
クトルコア、6a、6bはカットコア、7はリアクトル
ギャップ、8は間隙、11は変圧器鉄心、12は1次巻
線端子、I3は2次巻線端子である。 第 図 第 図 第 第 2゜ 第 図 第 図
FIG. 1 is a partial side sectional view showing an embodiment of a three-phase transformer according to the present invention, FIG. 2 is a plan view taken along line A-A in FIG. 1, and FIG. Figure 2 is a diagram equivalent to Figure 4. Figure 4 is a side view showing an embodiment of a single-phase transformer. Figure 5 is a side view showing another embodiment of a single-phase transformer. Figure 6 is a leakage flux of a conventional transformer. FIG. 1 is the transformer core, 2 is the primary winding, 3 is the secondary winding, 4 is 1
Leakage flux of the next winding, 5 is the leakage flux of the secondary winding, 6 is the reactor core, 6a, 6b are the cut cores, 7 is the reactor gap, 8 is the gap, 11 is the transformer core, 12 is the primary winding Terminal I3 is a secondary winding terminal. Figure Figure Figure 2゜Figure Figure

Claims (1)

【特許請求の範囲】 1 1次巻線と2次巻線をそなえた内鉄形変圧器におい
て、前記2次巻線だけに鎖交し、2次巻線の漏れ磁束だ
けを通すリアクトルコアを、このリアクトルコアに流れ
る磁束が変圧器鉄心に流れ込まないように変圧器鉄心と
の間に適当な間隙を介して設け、前記リアクトルコアの
材質、断面積、リアクトルギャップを調整してインピー
ダンスを調整することを特徴とする内鉄形変圧器。 2 前記リアクトルコアがカットコアで形成され、変圧
器組み立て後に2次巻線に取り付けられる請求項1記載
の内鉄形変圧器。 3 2脚鉄心の一方脚に1次巻線を巻装し、他方脚に2
次巻線を設け、この2次巻線に変圧器鉄心との間に適当
な間隙を介して挿通したリアクトルコアをそなえた請求
項1記載の内鉄形変圧器。 4 2次巻線に挿通したリアクトルコアにタップ巻線を
巻装し、2次巻線の一方端子を前記タップ巻線を介して
導出したことを特徴とする請求項3記載の内鉄形変圧器
。 5 2次巻線を短絡してリアクトルとして作用させる請
求項1ないし4のいずれかに記載の内鉄形変圧器。
[Scope of Claims] 1. In a core type transformer equipped with a primary winding and a secondary winding, a reactor core that interlinks only with the secondary winding and passes only the leakage flux of the secondary winding is provided. An appropriate gap is provided between the reactor core and the transformer core so that the magnetic flux flowing through the reactor core does not flow into the transformer core, and impedance is adjusted by adjusting the material, cross-sectional area, and reactor gap of the reactor core. A core type transformer characterized by: 2. The core type transformer according to claim 1, wherein the reactor core is formed of a cut core and is attached to the secondary winding after the transformer is assembled. 3. Wrap the primary winding around one leg of the two-leg iron core, and wind the primary winding around the other leg.
2. The core type transformer according to claim 1, further comprising a secondary winding and a reactor core inserted between the secondary winding and the transformer core with a suitable gap therebetween. 4. The inner iron type transformer according to claim 3, wherein a tap winding is wound around the reactor core inserted through the secondary winding, and one terminal of the secondary winding is led out through the tap winding. vessel. 5. The core type transformer according to claim 1, wherein the secondary winding is short-circuited to function as a reactor.
JP1012206A 1989-01-21 1989-01-21 Inner iron transformer Expired - Lifetime JPH0644539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1012206A JPH0644539B2 (en) 1989-01-21 1989-01-21 Inner iron transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012206A JPH0644539B2 (en) 1989-01-21 1989-01-21 Inner iron transformer

Publications (2)

Publication Number Publication Date
JPH02192705A true JPH02192705A (en) 1990-07-30
JPH0644539B2 JPH0644539B2 (en) 1994-06-08

Family

ID=11798915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012206A Expired - Lifetime JPH0644539B2 (en) 1989-01-21 1989-01-21 Inner iron transformer

Country Status (1)

Country Link
JP (1) JPH0644539B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124130A (en) * 2006-11-09 2008-05-29 Sumida Corporation Inverter transformer
US9568563B2 (en) 2012-07-19 2017-02-14 The Boeing Company Magnetic core flux sensor
US9633776B2 (en) 2012-07-19 2017-04-25 The Boeing Company Variable core electromagnetic device
US9651633B2 (en) 2013-02-21 2017-05-16 The Boeing Company Magnetic core flux sensor
US9947450B1 (en) * 2012-07-19 2018-04-17 The Boeing Company Magnetic core signal modulation
US10033178B2 (en) 2012-07-19 2018-07-24 The Boeing Company Linear electromagnetic device
US10403429B2 (en) 2016-01-13 2019-09-03 The Boeing Company Multi-pulse electromagnetic device including a linear magnetic core configuration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124130A (en) * 2006-11-09 2008-05-29 Sumida Corporation Inverter transformer
US9568563B2 (en) 2012-07-19 2017-02-14 The Boeing Company Magnetic core flux sensor
US9633776B2 (en) 2012-07-19 2017-04-25 The Boeing Company Variable core electromagnetic device
US9947450B1 (en) * 2012-07-19 2018-04-17 The Boeing Company Magnetic core signal modulation
US10033178B2 (en) 2012-07-19 2018-07-24 The Boeing Company Linear electromagnetic device
US10593463B2 (en) 2012-07-19 2020-03-17 The Boeing Company Magnetic core signal modulation
US9651633B2 (en) 2013-02-21 2017-05-16 The Boeing Company Magnetic core flux sensor
US10403429B2 (en) 2016-01-13 2019-09-03 The Boeing Company Multi-pulse electromagnetic device including a linear magnetic core configuration

Also Published As

Publication number Publication date
JPH0644539B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4613841A (en) Integrated transformer and inductor
US4047138A (en) Power inductor and transformer with low acoustic noise air gap
US6317021B1 (en) Variable inductor
US4488136A (en) Combination transformer with common core portions
JP2004207729A (en) Coil structure of variable inductance
US20080284550A1 (en) Variable Inductor
US9472329B2 (en) High leakage transformers with tape wound cores
US2133919A (en) Alternating current arc-welding transformer
EP2537076B1 (en) Power supply improvements
JPH02192705A (en) Iron core type transformer
US2283711A (en) Electrical winding
CA1263159A (en) Oscillating flux transformer
US2753513A (en) Transformers
JPH03215911A (en) Variable inductor
JP2751283B2 (en) Trance
JPH02277203A (en) Choke coil for common mode use
KR101899146B1 (en) high frequency transformer for securing controlled leakage inductance
JPH03227506A (en) Normal mode choke coil
JPH03141623A (en) Electromagnetic device
JPH0635457Y2 (en) Common mode choke coil
US4626815A (en) Polyphase assembly
US5660756A (en) High-voltage transformer for a microwave oven power supply
JP2770507B2 (en) Current transformer
JPH10256060A (en) High-frequency transformer for discharge lamp
JPH063776B2 (en) Adjustable reactor