JPH02191893A - Rotary compressor - Google Patents
Rotary compressorInfo
- Publication number
- JPH02191893A JPH02191893A JP1233789A JP1233789A JPH02191893A JP H02191893 A JPH02191893 A JP H02191893A JP 1233789 A JP1233789 A JP 1233789A JP 1233789 A JP1233789 A JP 1233789A JP H02191893 A JPH02191893 A JP H02191893A
- Authority
- JP
- Japan
- Prior art keywords
- back pressure
- slider
- pressure chamber
- cylinder
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010687 lubricating oil Substances 0.000 claims description 17
- 230000006835 compression Effects 0.000 claims description 8
- 238000007906 compression Methods 0.000 claims description 8
- 239000003921 oil Substances 0.000 description 9
- 239000003507 refrigerant Substances 0.000 description 9
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 244000145845 chattering Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、冷凍サイクル等に使用する回転式圧縮機に関
し、特に摺動損失の少ない構成に係わる。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a rotary compressor used in a refrigeration cycle or the like, and particularly relates to a configuration with little sliding loss.
従来の技術
従来の構成を第7図、第8図、第9図、第1Q図、第1
1図を用いて説明する。Conventional technology The conventional configuration is shown in Figs. 7, 8, 9, 1Q, and 1.
This will be explained using Figure 1.
1は密閉ケーシング、2は電動機部であシ、シャフト3
を介してシリンダ4.ローラ6、ベーン6、主軸受ア、
副軸受8によシ構成される機械部本体9と連結している
。シャフト3は主軸3a。1 is the sealed casing, 2 is the electric motor part, and shaft 3
via cylinder 4. Roller 6, vane 6, main bearing a,
It is connected to a mechanical part main body 9 constituted by a sub-bearing 8. The shaft 3 is a main shaft 3a.
副軸3b、クランク3cよシなる。1oはベーン背面に
設けられたスプリングである。11a、11bはシリン
ダ4内で、ローラ6.ベーン6、主軸受7、副軸受8に
よりm成される吸入室と圧縮室である。12はシャフト
3と連結する給油機構である。13はベーン6のローラ
6との接触面に対し反対側の背面と、シリンダ4と主軸
受7と副軸受8によ多構成された背圧室である。又、主
軸受7には第1の油通路7a及び第3の油通路7bが設
けられると共に、ベーン6にも第2の油通路6aが設け
られている。これらの油通路7a、7b。The subshaft 3b and the crank 3c are the same. 1o is a spring provided on the back side of the vane. 11a, 11b within the cylinder 4, rollers 6. The vane 6, the main bearing 7, and the sub-bearing 8 form a suction chamber and a compression chamber. 12 is an oil supply mechanism connected to the shaft 3. Reference numeral 13 denotes a back pressure chamber which is composed of the rear surface of the vane 6 on the opposite side to the contact surface with the roller 6, the cylinder 4, the main bearing 7, and the sub-bearing 8. Further, the main bearing 7 is provided with a first oil passage 7a and a third oil passage 7b, and the vane 6 is also provided with a second oil passage 6a. These oil passages 7a, 7b.
6bは第9図に示す様にベー76がクランク回転角度θ
=0.2πの上死点Aの近傍にあるときには、全てが連
通し、第8図と第10図に示す様にぺ一76がクランク
回転角度θ=πの下死点Bの近傍にあるときは、全てが
連通しない様に開孔されている。6b, the base 76 is rotated at the crank rotation angle θ as shown in FIG.
When it is near the top dead center A of = 0.2π, everything is in communication, and as shown in Figs. 8 and 10, the pedal 76 is near the bottom dead center B of the crank rotation angle θ = π. In some cases, the holes are made so that they are not all connected.
14は吸入管であシ、副軸受8.シリンダ4の吸入通路
16を介して吸入室11aと連通している。16は吐出
部であシ吐出弁(図示せず)を介して密閉ケーシング1
内と連通している。17は吐出管であり密閉ケーシング
1内に開放している。14 is a suction pipe, secondary bearing 8. It communicates with the suction chamber 11a via the suction passage 16 of the cylinder 4. Reference numeral 16 denotes a discharge part, which is connected to the sealed casing 1 through a discharge valve (not shown).
It communicates with the inside. Reference numeral 17 denotes a discharge pipe that opens into the sealed casing 1.
18は冷媒が一部溶は込んだ潤滑油である。18 is a lubricating oil into which refrigerant is partially dissolved.
次に回転式圧縮機の圧縮機溝について説明する。Next, the compressor groove of the rotary compressor will be explained.
冷却システム(図示せず)から冷媒ガスは、吸入管14
.吸入通路16より導かれシリンダ4内の吸入室11a
に至る。吸入室11aに至った冷媒ガスは、シャフト3
のクランク30に回転自在に収納されたローラ6とベー
ンeにより仕切られた圧縮室11bで、電動機部2の回
転に伴うシャフト3の回転運動により漸次圧縮される。Refrigerant gas from the cooling system (not shown) is supplied to the suction pipe 14.
.. A suction chamber 11a inside the cylinder 4 led from the suction passage 16
leading to. The refrigerant gas that has reached the suction chamber 11a is transferred to the shaft 3
In a compression chamber 11b partitioned by a roller 6 rotatably housed in a crank 30 and a vane e, the compressor is gradually compressed by the rotational movement of the shaft 3 as the electric motor section 2 rotates.
圧縮された冷媒ガヌは、吐出部16.吐出弁を介して密
閉ケーシング1内に一旦吐出された後、吐出管17を介
し冷却システムに吐出される。The compressed refrigerant gas is discharged from the discharge section 16. After being once discharged into the closed casing 1 through the discharge valve, it is discharged through the discharge pipe 17 to the cooling system.
次に冷媒が一部溶は込んだ潤滑油18の流れについて説
明する。潤滑油18は給油機構を介して、シャフト3と
主軸受7.副軸受8.ローラ6間の摺動部に送られた後
、一部は直接密閉ケーシング1下部に戻シ一部は圧縮室
11bに入シ、冷媒ガヌと共に吐出され密閉ケーシング
1の下部に戻る。Next, the flow of the lubricating oil 18 into which a portion of the refrigerant is dissolved will be explained. The lubricating oil 18 is supplied to the shaft 3 and the main bearing 7 through an oil supply mechanism. Secondary bearing 8. After being sent to the sliding part between the rollers 6, a part of the refrigerant is directly returned to the lower part of the hermetic casing 1, and a part of it enters the compression chamber 11b, is discharged together with the refrigerant gas, and returns to the lower part of the hermetic casing 1.
ベーン6とシリンダ4間については、ベー76が上死点
にきたとき、密閉ケーシング1下部の潤滑油18部と背
圧室13が油通路アa、7b、7aを介して連通し背圧
室13内に高圧の潤滑油18が流入する。そしてベーン
6が往復摺動する間に、吸入室11a、圧縮室11bへ
と漏れベー76とシリンダ4間を潤滑すると共にシール
している。Regarding the space between the vane 6 and the cylinder 4, when the vane 76 reaches the top dead center, the lubricating oil 18 at the bottom of the sealed casing 1 and the back pressure chamber 13 communicate with each other through the oil passages a, 7b, and 7a, and the back pressure chamber High pressure lubricating oil 18 flows into 13. While the vane 6 slides back and forth, it leaks into the suction chamber 11a and the compression chamber 11b, lubricating and sealing the space between the vane 76 and the cylinder 4.
ところで、上死点A近傍で高圧の潤滑油を吸入した後、
ベーン6が上死点A→下死点Bに動く間は、背圧室B、
!:密閉ケーシング1下部の潤滑油18とは連通せず又
背圧室13の容積が増加するため背圧室13の圧力が低
下し、高圧圧力Pdと低圧圧力PBの中間圧力PMとな
シ、次に下死点B→上死点Aに動く間は同じく潤滑油1
8とは連通せず又背圧室13の容積が減少するため背圧
室13の圧力が再度上昇し高圧圧力となる。By the way, after inhaling high pressure lubricating oil near top dead center A,
While the vane 6 moves from top dead center A to bottom dead center B, back pressure chamber B,
! : Since it does not communicate with the lubricating oil 18 at the bottom of the sealed casing 1 and the volume of the back pressure chamber 13 increases, the pressure in the back pressure chamber 13 decreases, and becomes an intermediate pressure PM between the high pressure Pd and the low pressure PB. Next, while moving from bottom dead center B to top dead center A, lubricant oil is 1
8 and the volume of the back pressure chamber 13 decreases, so the pressure in the back pressure chamber 13 rises again and becomes high pressure.
従って、背圧室13の圧力は、高圧圧カPd〜中間圧力
PMの間で変動するがベーン6とローラ6が離れる限界
圧力Pcよシ大きい為にベーン6の背圧を常に高圧圧力
Pdとする場合に比べると、ベーン6とローラ5の接触
荷重が軽減し摺動損失が低下し、又信頼性が向上すると
の効果があった。Therefore, the pressure in the back pressure chamber 13 fluctuates between the high pressure Pd and the intermediate pressure PM, but since it is greater than the limit pressure Pc at which the vane 6 and the roller 6 separate, the back pressure of the vane 6 is always kept at the high pressure Pd. Compared to the case where the contact load between the vane 6 and the roller 5 is reduced, sliding loss is reduced, and reliability is improved.
例えば、特開昭e1−106992号公報にて示される
。For example, it is shown in Japanese Patent Application Laid-open No. Sho e1-106992.
発明が解決しようとする課題
この様な従来の構成では、上死点と下死点位置での背圧
室の容積変化が小さく、中間圧力Pu’Pc近傍まで十
分落ちず、摺動損失の低減量がごく僅かであるとの課題
があった。又、背圧室内の圧力は、運転されている高圧
圧力Pdのみにて決り、例えば同じ高圧圧力Pdでも低
圧圧力Psが異なると限界圧力PCが異なるにも拘わら
ず、はぼ同じ背圧室内圧力となシ背圧室内圧力を最適な
圧力に制御することができない課題があった。Problems to be Solved by the Invention In such a conventional configuration, the change in volume of the back pressure chamber at the top dead center and bottom dead center positions is small, and the pressure does not drop sufficiently to near the intermediate pressure Pu'Pc, reducing sliding loss. The problem was that the amount was very small. In addition, the pressure inside the back pressure chamber is determined only by the operating high pressure Pd. For example, even if the low pressure Ps is the same even if the high pressure Pd is the same, the back pressure chamber pressure will be almost the same even though the limit pressure PC will be different. There was a problem in that it was not possible to control the pressure inside the back pressure chamber to the optimum pressure.
本発明は上記従来例の欠点を解消するものであシ、背圧
室内の圧力を、運転されている高圧と低圧圧力条件によ
り決定される最適な圧力に制御し、信頼性と性能の向上
を図ることを目的としている。The present invention solves the above-mentioned drawbacks of the conventional example, and improves reliability and performance by controlling the pressure in the back pressure chamber to the optimum pressure determined by the operating high pressure and low pressure conditions. The purpose is to
課題を解決するだめの手段
本発明は、バネで付勢されたスライダーの両端の第1の
空間と第2の空間をそれぞれ低圧圧力並びに高圧圧力の
潤滑油と連通し、且つ、スライダーの第3の連通路が背
圧室と連通ずる第4の連通路と可変の流路抵抗で連通ず
る様にしたものである。Means for Solving the Problems The present invention communicates a first space and a second space at both ends of a slider biased by a spring with lubricating oil at a low pressure and a high pressure, respectively, and a third space at both ends of a slider which is biased by a spring. The communication passage communicates with the fourth communication passage that communicates with the back pressure chamber through variable flow resistance.
作 用
本発明は、上記した構成によシ、運転時の低圧圧力と高
圧圧力とバネ力のバネ力によシスライダの停止位置が決
定され、このとき、第3と第4の連通路により形成され
る流路の抵抗も決定される。According to the above-described structure, the stop position of the sys slider is determined by the spring force of the low pressure, high pressure and spring force during operation, and at this time, the stop position of the sys slider is determined by the spring force of the low pressure and high pressure during operation. The resistance of the flow path is also determined.
従って、第2の空間に導入された高圧の潤滑油は、第3
と第4の連通路を介して背圧室に導入されるが、このと
き抵抗により背圧室への流入量が制御され、背圧圧力が
最適値に制御される。Therefore, the high pressure lubricating oil introduced into the second space is
and is introduced into the back pressure chamber via the fourth communication path, but at this time, the amount of flow into the back pressure chamber is controlled by the resistance, and the back pressure pressure is controlled to an optimal value.
従って、性能を向上し、又信頼性を向上することができ
る。Therefore, performance and reliability can be improved.
実施例 以下本考案の一実施例を第1図にて説明する。Example An embodiment of the present invention will be described below with reference to FIG.
尚、従来例と同一部分は同一符号を付し詳細な説明を省
略する。Note that the same parts as in the conventional example are given the same reference numerals and detailed explanations are omitted.
19は主軸受でsb、従来と同様にシャフト3を保持す
る。20は主軸受19に設けられたスライド溝である。Reference numeral 19 denotes a main bearing sb, which holds the shaft 3 as in the conventional case. 20 is a slide groove provided in the main bearing 19.
21はスプリング22によシ付勢されるスライダーであ
シスライド溝内に摺動可動に保持されておシ、またヌフ
ィド溝内を第1と第2の空間\20a 、20bに仕切
っている。第1の空間20aは、第1の連通路23を介
して吸入通路16と連通している。第2の空間20bは
、第2の連通路24を介して高圧圧力の潤滑油18と連
通している。スライダー21には、第3の連通路26が
設けられ、この第3の連通路25は、背圧室13と連通
ずる第4の連通路26と連通ずる。このとき、第3と第
4の連通路25.26は、スライダー21の停止位置に
よ多流路抵抗が可変となる様に互いの重なシ合う面積が
可変となる様に形成されている。Reference numeral 21 denotes a slider biased by a spring 22, which is slidably held within the slide groove, and partitions the inside of the Nufide groove into first and second spaces \20a and 20b. The first space 20a communicates with the suction passage 16 via the first communication passage 23. The second space 20b communicates with the high-pressure lubricating oil 18 via the second communication path 24. The slider 21 is provided with a third communication passage 26 , and the third communication passage 25 communicates with a fourth communication passage 26 that communicates with the back pressure chamber 13 . At this time, the third and fourth communication passages 25 and 26 are formed so that their overlapping areas are variable so that the multi-channel resistance is variable depending on the stop position of the slider 21. .
従来と同様に、冷媒ガスは、吸入管14.吸入通路16
を介して吸入室11aに吸入され圧縮室11bにて圧縮
された後吐出部16.密閉ケーシング1.吐出管17を
介して吐出される。As before, the refrigerant gas is supplied to the suction pipe 14. Suction passage 16
After being sucked into the suction chamber 11a through the suction chamber 11a and compressed in the compression chamber 11b, the discharge portion 16. Sealed casing 1. It is discharged through the discharge pipe 17.
このとき、第1と第2の空間20aと20bには、それ
ぞれ第1と第2の連通路23と24によシ低圧圧力の冷
媒ガスと高圧圧力の潤滑油が導入されている。従って、
スライダー21は、この圧力差及びスプリング22の力
のバランスする点にて停止する。このスライダー21の
停止位置で、第2の空間20bと背圧室13は、第3と
第4の連通路25.26を介して連通ずるが、第3と第
4の連通路は、スライダー21の停止位置によシその流
路抵抗が決定される様に形成されており、従って背圧室
13には、適量の潤滑油18が流入することになる。背
圧室13内に流入した潤滑油18は、ベー76とシリン
ダ4間のクリアランスを介して吸入室11a、圧縮室1
1bに流出する。At this time, low-pressure refrigerant gas and high-pressure lubricating oil are introduced into the first and second spaces 20a and 20b through the first and second communication passages 23 and 24, respectively. Therefore,
The slider 21 stops at a point where this pressure difference and the force of the spring 22 are balanced. At the stop position of the slider 21, the second space 20b and the back pressure chamber 13 communicate with each other via the third and fourth communication passages 25 and 26; The flow path resistance is determined depending on the stop position of the lubricating oil 18, so that an appropriate amount of lubricating oil 18 flows into the back pressure chamber 13. The lubricating oil 18 that has flowed into the back pressure chamber 13 passes through the clearance between the bay 76 and the cylinder 4 to the suction chamber 11a and the compression chamber 1.
1b.
背圧室13内の圧力は、この流入量と流出量によシ決定
されるが、通常は、流入側の流路抵抗による減圧量によ
シはぼ決定される。従って、高低の圧力差によシ決まる
スライダー21の位置と、流路抵抗の大きさを最適化す
ることにより、背圧室13内の圧力は常にその時の運転
条件に最適な値とすることができ全ての運転条件で摺動
損失の低減と信頼性の向上が図ることができる。The pressure inside the back pressure chamber 13 is determined by the inflow and outflow amounts, but is usually determined by the amount of pressure reduction due to the flow path resistance on the inflow side. Therefore, by optimizing the position of the slider 21, which is determined by the pressure difference between high and low levels, and the magnitude of the flow path resistance, the pressure inside the back pressure chamber 13 can always be kept at the optimal value for the operating conditions at that time. It is possible to reduce sliding loss and improve reliability under all operating conditions.
本実施例の場合は、例えば同じ高圧圧力で低圧圧力の違
う場合、低圧圧力が高い程スライダー21は、第2の空
間20bを小さくする方向に移動し、従ってこの結果筒
3と第4の連通路の電なシ面積は広くな多流路抵抗が小
さくなる。従って、第2の空間20bから背面室13へ
の潤滑油の流入量が増加する。In the case of this embodiment, for example, when the high pressure is the same and the low pressure is different, the higher the low pressure is, the more the slider 21 moves in the direction of making the second space 20b smaller. The electrical current area of the passage is wide, and the multi-channel resistance is reduced. Therefore, the amount of lubricating oil flowing into the back chamber 13 from the second space 20b increases.
即ち同じ高圧圧力の場合、低圧圧力が上昇する程背圧室
内の圧力が上昇することになるが、これは、ベー76と
ローラ5間でチャタリングを発生する圧力PCが低圧圧
力が上昇する程上昇することよシ最適な制御に近付くこ
とになυ、効率及び信頼性が向上することができる。That is, in the case of the same high pressure, the pressure inside the back pressure chamber increases as the low pressure increases, but this is because the pressure PC that causes chattering between the bay 76 and the roller 5 increases as the low pressure increases. By approaching optimal control, efficiency and reliability can be improved.
発明の効果
以上の説明から明らかな様に本発明は、密閉ケーシング
と、密閉ケーシング内に収納されたシリンダと、シリン
ダの両端に固定された主軸受および副軸受と、主軸受と
副軸受内に回転自在に収納されクランクを有するシャフ
トと、シャフトのクランクに嵌められシリンダ内を傷心
回転するローラと、シリンダの溝内を往復運動しローラ
と当接することKよりシリンダ内を吸入室と圧縮室に分
割するベーンと、吸入室と連通ずる吸入通路と吸入管と
、ベーンの背面とシリンダ、主軸受、副軸受に囲まれた
背圧室と、スライド溝と、スライド溝内を摺動し且つス
プリングにより付勢されるスライダーと、スライド溝内
でスライダーで仕切られる第1と第2の空間と、第1の
空間と吸入室。Effects of the Invention As is clear from the above description, the present invention includes a sealed casing, a cylinder housed in the sealed casing, a main bearing and a sub bearing fixed to both ends of the cylinder, and a main bearing and a sub bearing fixed to both ends of the cylinder. A shaft that is rotatably housed and has a crank, a roller that is fitted into the crank of the shaft and rotates inside the cylinder, and a roller that moves reciprocally within the groove of the cylinder and comes into contact with the roller. A vane to be divided, a suction passage and a suction pipe communicating with the suction chamber, a back pressure chamber surrounded by the back of the vane, the cylinder, the main bearing, and the sub bearing, a slide groove, and a spring that slides in the slide groove. a slider biased by the slider, first and second spaces partitioned by the slider within the slide groove, and the first space and the suction chamber.
又は吸入通路、吸入管と連通ずる第1の連通路と、第2
の空間と密閉ケーシング内の潤滑油を連通ずる第2の連
通路と、スライダーに設けられ第2の空間と連通ずる第
3の連通路と、一端が背圧室と連通し他端が第3の連通
路と可変の流路抵抗で連通ずる第4の連通路を備えたも
のであるから、摺動損失が低下し、効率と信頼性の高い
圧縮機と供給することができる。or a suction passage, a first communication passage communicating with the suction pipe, and a second communication passage;
a second communication path that communicates the space with the lubricating oil in the sealed casing; a third communication path provided in the slider that communicates with the second space; one end communicating with the back pressure chamber and the other end communicating with the third communication path; Since the compressor is provided with a fourth communication passage that communicates with the communication passage through variable flow resistance, sliding loss is reduced and a compressor with high efficiency and reliability can be provided.
第1図は本発明の一実施例を示す回転式圧縮機の背圧室
部の断面図、第2図は従来の回転式圧縮機の縦断面図、
第3図は第2図のm −m’線における矢視図、第4図
は従来の背圧室部の上死点での断面図、第5図は従来の
背圧室部の下死点での断面図、第6図は従来の油通路の
開閉状況図と背圧室圧力の変化曲線図である。
1・・・・・・密閉ケーシング、3・・・・・・シャフ
ト、、3c・・・・・・クランク、4・・・・リシリン
ダ〜、6・旧・・ローラ、6・・・・・・ベーン、8・
・・・・・副軸受、11a・・・・・・吸入室、11b
・・・・・・圧縮室、14・・・・・・吸入管、16・
・・・・・吸入通路、19・・・・・・主軸受、2o・
・・・・・スライド溝、20a 、20b・・・・・・
第1と第2の空間、21・・・・・・スライダー、22
・・・・・・スプリング、23.24.+26.26・
・・・・・第1.第2.第3.第4の連通路。
代理人の氏名 弁理士 粟 野 重 孝 ほか1名l
・−一
−一
c −
5−・・
tq −−−
J2、。
2Da、mb −−−
斂閘プーシンワ
シャフト
クランク
リリンヴ
ローラ
ベーン
副軸受
主軸ダ
ス ラ イ ド 】1
■ 1 と 夷 2 0 空 間n、24.2
5.a ・・−
馬1.篤2範3.蓼4の連通路
1M
第3y!J
第
図
第
図
第
図
1c/2
冗
3/2π
7c
クランクの口先角度
θ
(Pad)FIG. 1 is a sectional view of a back pressure chamber of a rotary compressor showing an embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a conventional rotary compressor.
Fig. 3 is a view taken along the line m-m' in Fig. 2, Fig. 4 is a sectional view of the conventional back pressure chamber at top dead center, and Fig. 5 is a sectional view of the conventional back pressure chamber at bottom dead center. FIG. 6 is a cross-sectional view at a point, and is a diagram of a conventional oil passage opening/closing situation and a change curve of back pressure chamber pressure. 1...Sealed casing, 3...Shaft, 3c...Crank, 4...Re-cylinder~, 6-Old...Roller, 6...・Bane, 8・
...Secondary bearing, 11a...Suction chamber, 11b
...Compression chamber, 14...Suction pipe, 16.
...Suction passage, 19...Main bearing, 2o...
...Slide groove, 20a, 20b...
First and second spaces, 21...Slider, 22
...Spring, 23.24. +26.26・
...First. Second. Third. Fourth communication path. Name of agent: Patent attorney Shigetaka Awano and 1 other person
・-1 -1c - 5-... tq --- J2,. 2Da, mb --- 斂閘pusinwashaftcrankrilinvrollervanesubbearingmainshaftdasride]1 ■ 1 and 夷 2 0 Space n, 24.2
5. a...-Horse 1. Atsushi 2 Han 3. 3rd y, 1M connecting path of Pagoda 4! J Figure Figure Figure 1c/2 3/2π 7c Crank tip angle θ (Pad)
Claims (1)
ンダと、前記シリンダの両端に固定された主軸受および
副軸受と、前記主軸受と副軸受内に回転自在に収納され
クランクを有するシャフトと、前記シャフトのクランク
に嵌められ前記シリンダ内を偏心回転するローラと、前
記シリンダの溝内を往復運動し前記ローラと当接するこ
とにより前記シリンダ内を吸入室と圧縮室に分割するベ
ーンと、前記吸入室と連通する吸入通路及び吸入管と、
前記ベーンの背面と前記シリンダ、前記主軸受、前記副
軸受に囲まれた背圧室と、スライド溝と、前記スライド
溝内を摺動し且つスプリングにより付勢されるスライダ
ーと、前記スライド溝内でスライダーで仕切られる第1
と第2の空間と、第1の空間と吸入室又は吸入通路、吸
入管と連通する第1の連通路と、第2の空間と前記密閉
ケーシング内の潤滑油を連通する第2の連通路と、前記
スライダーに設けられ第2の空間と連通する第3の連通
路と、一端が前記背圧室と連通し他端が前記第3の連通
路と連通する第4の連通路を備え且つ第3と第4連通路
の接続部の流路抵抗が可変であることを特徴とする回転
式圧縮機。A sealed casing, a cylinder housed in the sealed casing, a main bearing and a sub-bearing fixed to both ends of the cylinder, a shaft rotatably housed in the main bearing and sub-bearing and having a crank, and the shaft. a roller that is fitted in a crank and rotates eccentrically within the cylinder; a vane that reciprocates within a groove of the cylinder and comes into contact with the roller to divide the inside of the cylinder into a suction chamber and a compression chamber; A suction passage and a suction pipe that communicate with each other;
a back pressure chamber surrounded by the back surface of the vane, the cylinder, the main bearing, and the auxiliary bearing; a slide groove; a slider that slides within the slide groove and is biased by a spring; The first partitioned with a slider
and a second space, a first communication path that communicates with the first space and the suction chamber or suction passage, and a suction pipe, and a second communication path that communicates the second space with the lubricating oil in the sealed casing. and a third communication passage provided in the slider and communicating with the second space, and a fourth communication passage having one end communicating with the back pressure chamber and the other end communicating with the third communication passage, and A rotary compressor characterized in that flow path resistance at a connecting portion between the third and fourth communication paths is variable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1233789A JPH02191893A (en) | 1989-01-20 | 1989-01-20 | Rotary compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1233789A JPH02191893A (en) | 1989-01-20 | 1989-01-20 | Rotary compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02191893A true JPH02191893A (en) | 1990-07-27 |
Family
ID=11802483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1233789A Pending JPH02191893A (en) | 1989-01-20 | 1989-01-20 | Rotary compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02191893A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10877482B2 (en) * | 2017-04-06 | 2020-12-29 | Toyota Jidosha Kabushiki Kaisha | Trajectory setting device and trajectory setting method |
-
1989
- 1989-01-20 JP JP1233789A patent/JPH02191893A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10877482B2 (en) * | 2017-04-06 | 2020-12-29 | Toyota Jidosha Kabushiki Kaisha | Trajectory setting device and trajectory setting method |
US11204607B2 (en) * | 2017-04-06 | 2021-12-21 | Toyota Jidosha Kabushiki Kaisha | Trajectory setting device and trajectory setting method |
US11662733B2 (en) | 2017-04-06 | 2023-05-30 | Toyota Jidosha Kabushiki Kaisha | Trajectory setting device and trajectory setting method |
US11932284B2 (en) | 2017-04-06 | 2024-03-19 | Toyota Jidosha Kabushiki Kaisha | Trajectory setting device and trajectory setting method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4750453B2 (en) | Staircase type variable capacity device of scroll compressor | |
JPH0249994A (en) | Rotary compressor | |
US10982674B2 (en) | Scroll compressor with back pressure chamber and back pressure passages | |
WO2017126106A1 (en) | Scroll compressor and refrigeration cycle device | |
JP2009257287A (en) | Scroll compressor | |
JP3707242B2 (en) | Variable capacity compressor | |
JP4329530B2 (en) | Scroll compressor | |
JPH02191893A (en) | Rotary compressor | |
JPWO2005010372A1 (en) | Scroll compressor | |
JP2008133810A (en) | Compressor | |
KR102547593B1 (en) | Variable displacement swash plate type compressor | |
JP4184673B2 (en) | Scroll compressor | |
JP2008031962A (en) | Variable displacement compressor | |
JP6755123B2 (en) | Compressor | |
JPH08303371A (en) | Scroll gas compressor | |
JP2604818B2 (en) | Rotary compressor | |
JPWO2020136786A1 (en) | Scroll compressor | |
JP4196070B2 (en) | Vane rotary air pump | |
US11493041B2 (en) | Scroll compressor | |
JPH02191894A (en) | Rotary compressor | |
JPH08159071A (en) | Rotary compressor | |
JPH10148189A (en) | Variable displacement scroll type compressor | |
JP2604835B2 (en) | Rotary compressor | |
JPH02163488A (en) | Rotary compressor | |
JPH06346880A (en) | Rotary compressor |