JPH02190303A - Manufacture of ceramic sintered object - Google Patents
Manufacture of ceramic sintered objectInfo
- Publication number
- JPH02190303A JPH02190303A JP1008530A JP853089A JPH02190303A JP H02190303 A JPH02190303 A JP H02190303A JP 1008530 A JP1008530 A JP 1008530A JP 853089 A JP853089 A JP 853089A JP H02190303 A JPH02190303 A JP H02190303A
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- ultrafine
- deposited
- sintering
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000000843 powder Substances 0.000 claims abstract description 29
- 238000005245 sintering Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000012298 atmosphere Substances 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 6
- 239000000758 substrate Substances 0.000 claims description 14
- 150000004767 nitrides Chemical group 0.000 claims description 4
- 238000007664 blowing Methods 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 16
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 abstract description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 5
- 229910052786 argon Inorganic materials 0.000 abstract description 4
- 239000000654 additive Substances 0.000 abstract description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001307 helium Substances 0.000 abstract description 3
- 229910052734 helium Inorganic materials 0.000 abstract description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 238000005507 spraying Methods 0.000 abstract description 3
- 239000011882 ultra-fine particle Substances 0.000 abstract description 3
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 230000000996 additive effect Effects 0.000 abstract 1
- 238000002485 combustion reaction Methods 0.000 abstract 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000009718 spray deposition Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- -1 calcium nitride Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Producing Shaped Articles From Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電子材料等として好適に利用される高熱伝導性
のセラミックス焼結体の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a highly thermally conductive ceramic sintered body that is suitably used as an electronic material.
従来、高熱伝導性基板として用いられるセラミックス焼
結体を製造する方法としては、例えば高純度の窒化アル
ミニウム粉末を用い、有機バインダー、焼結助剤を添加
し、ドクターブレード法又はCIP(Cold l5
ostatic Press)法などによって成形後
焼結し製造していた。しかし、これらの方法では原料又
は成形の段階で空気に触れ、水の吸着、水酸化アルミニ
ウムの生成などにより焼結体の純度が低下する(酸素の
含有量が増加する)という問題があった。さらに、原料
に含まれる微量の酸素を粒界にトラップするために焼結
助剤(Yz Os 、YFsなど)を添加する必要があ
り、焼結体の純度を低下させていた。Conventionally, as a method for manufacturing a ceramic sintered body used as a highly thermally conductive substrate, for example, high purity aluminum nitride powder is used, an organic binder and a sintering aid are added, and a doctor blade method or CIP (Cold l5) is used.
It was manufactured by molding and sintering using a static press method or the like. However, these methods have a problem in that the purity of the sintered body decreases (oxygen content increases) due to exposure to air during the raw material or molding stage, adsorption of water, generation of aluminum hydroxide, etc. Furthermore, it is necessary to add a sintering aid (YzOs, YFs, etc.) to trap trace amounts of oxygen contained in the raw materials at grain boundaries, which reduces the purity of the sintered body.
また、アークプラズマ法により超微粉の窒化アルミニウ
ムを得ることも知られているが、これを原料にして従来
の方法によりセラミックス焼結体を得ても、超微粒子で
あるがために粒子の2次凝集や酸化などがより生じやす
くなり、純度の高い焼結体すなわち高い熱伝導性を有す
る焼結体は得られなかった。It is also known that ultrafine aluminum nitride powder can be obtained using the arc plasma method, but even if a ceramic sintered body is obtained using conventional methods using this as a raw material, secondary particles of the particles cannot be produced due to the ultrafine particles. Agglomeration and oxidation were more likely to occur, making it impossible to obtain a sintered body with high purity, that is, a sintered body with high thermal conductivity.
本発明は、前記事情に基づいてなされたもので、超微粉
セラミックスを用いることによって、焼結助剤等の添加
剤を特に添加しなくても低温で焼結することが可能とな
ったセラミックス焼結体の製造方法を提供することを目
的とする。The present invention was made based on the above-mentioned circumstances, and by using ultrafine ceramic powder, it is possible to sinter ceramics at low temperatures without adding any additives such as sintering aids. The object of the present invention is to provide a method for producing a compact.
本発明はまた、高密度で、高熱伝導性のセラミックス焼
結体を提供することを目的とする。Another object of the present invention is to provide a ceramic sintered body with high density and high thermal conductivity.
本発明者らは、前記課題を解決するために鋭意研究を重
ねた結果、プラズマ法を用いて生成させた超微粉セラミ
ックスを特定の条件下で成形、焼結させることにより前
記目的が達成されることを見出し、この知見に基づいて
本発明を完成するに至った。As a result of extensive research in order to solve the above-mentioned problems, the present inventors have found that the above-mentioned objects can be achieved by molding and sintering ultrafine powder ceramics produced using a plasma method under specific conditions. Based on this finding, we have completed the present invention.
すなわち、本発明はプラズマ法を用いて生成させた超微
粉セラミックスを非大気下で基板に気流を用いて吹きつ
け堆積させ、これを非大気下で焼結することを特徴とす
るセラミックス焼結体の製造方法を提供するものである
。That is, the present invention provides a ceramic sintered body, which is characterized in that ultrafine ceramic powder produced using a plasma method is sprayed and deposited on a substrate using an air flow in a non-atmospheric environment, and then sintered in a non-atmospheric environment. The present invention provides a method for manufacturing.
超微粉セラミックスの種類としては、例えば窒化物、炭
化物、硼化物、酸化物等が挙げられるが、プラズマ法に
より超微粉が得られるセラミックスであれば特に限定さ
れない。Types of ultrafine ceramics include, for example, nitrides, carbides, borides, oxides, etc., but are not particularly limited as long as they are ceramics that can be obtained into ultrafine powder by a plasma method.
これらのうち、金属の窒化物、炭化物、硼化物、酸化物
等は、金属と窒素ガス、アンモニア、炭素、硼素、水素
ガス、不活性ガス等を適宜組み合わせて、プラズマによ
り反応させて得られる。プラズマとしては、アークプラ
ズマ、プラズマジェット、RFプラズマ等が用いられる
。Among these, metal nitrides, carbides, borides, oxides, etc. are obtained by appropriately combining metals with nitrogen gas, ammonia, carbon, boron, hydrogen gas, inert gas, etc., and reacting them with plasma. As the plasma, arc plasma, plasma jet, RF plasma, etc. are used.
これら超微粉セラミックスのなかでは、窒化アルミニウ
ムが得られる焼結体の熱伝導性が良好であることから好
ましく用いられる。Among these ultrafine ceramic powders, aluminum nitride is preferably used because the sintered body from which it is obtained has good thermal conductivity.
超微粉窒化アルミニウムの生成は、窒素ガス、窒素ガス
とアンモニアガスの混合ガス、窒素ガスと不活性ガス(
ヘリウム、アルゴン等)との混合ガス、窒素ガスと水素
ガスとの混合ガス、又は窒素ガスと不活性ガスと水素ガ
スとの混合ガス中で発生させたアーク又はプラズマジェ
ットによりアルミニウムを溶融させ、窒化アルミニウム
の超微粉を得ることによって行われる。この窒化アルミ
ニウムには酸化チタニウム、酸化ジルコニウム、酸化ル
テニウム、酸化ハフニウム、酸化インジウム、酸化スカ
ンジウム、酸化イツトリウム、窒化カルシウム、フッ化
アルミニウム、ホウ化カルシウム等も20重量%以下含
有させることができる。Ultrafine powdered aluminum nitride can be produced using nitrogen gas, a mixed gas of nitrogen gas and ammonia gas, or nitrogen gas and an inert gas (
Aluminum is melted using an arc or plasma jet generated in a mixed gas of helium, argon, etc., a mixed gas of nitrogen gas and hydrogen gas, or a mixed gas of nitrogen gas, inert gas, and hydrogen gas, and the aluminum is nitrided. This is done by obtaining ultra-fine powder of aluminum. The aluminum nitride may also contain up to 20% by weight of titanium oxide, zirconium oxide, ruthenium oxide, hafnium oxide, indium oxide, scandium oxide, yttrium oxide, calcium nitride, aluminum fluoride, calcium boride, and the like.
プラズマ法により生成させる超微粉セラミックスは平均
粒子径を1μm以下、好ましくは0.5μm以下とする
0粒子径が1μmより大きいと吹きつけ堆積や低温焼結
が困難となることがある。The ultrafine ceramic powder produced by the plasma method has an average particle size of 1 μm or less, preferably 0.5 μm or less. If the zero particle size is larger than 1 μm, spray deposition or low-temperature sintering may become difficult.
本発明においては、次に上記のようにして生成させた超
微粉セラミックスを窒素、ヘリウム、アルゴン、水素の
ような気流を用いて基板に吹きつけ堆積させる。この吹
きつけによる超微粒子の基板への衝突により熱が発生し
強固な堆積体となる。In the present invention, the ultrafine ceramic powder produced as described above is then deposited on the substrate by blowing it using an air flow of nitrogen, helium, argon, or hydrogen. The collision of the ultrafine particles with the substrate by this spraying generates heat and forms a strong deposit.
これらの操作は減圧下又は前記ガス雰囲気で外気と接触
しないようにして行うことができる。基板としては10
00〜2000″Cの温度に耐えるものであれば特に制
限されないが、例えばカーボン、タングステン、ケイ素
あるいはこれらの窒化物、炭化物の基板が好適に用いら
れる。なお、基板上に例えばタングステン、モリブデン
などの焼結温度に耐える導電性の薄膜を剥離可能に形成
しておき、この上にセラミックスの超微粉を気流を用い
て吹きつけ堆積し、焼結することもできる。これにより
、表面に導電性膜を有する電子材料として有用な材料を
容易に得ることができる。堆積物は通常厚みが0.2〜
2mm、好ましくは0.4〜1.2 mのシート状に堆
積させる。この超微粉セラミックスの基板への堆積は無
酸素雰囲気下で行うことが好ましい。These operations can be performed under reduced pressure or in the gas atmosphere without contacting with outside air. 10 as a board
Although there is no particular restriction as long as it can withstand temperatures of 00 to 2000"C, for example, a substrate made of carbon, tungsten, silicon, or a nitride or carbide of these is preferably used. Note that a substrate made of, for example, tungsten, molybdenum, etc. is preferably used on the substrate. It is also possible to form a removable conductive thin film that can withstand sintering temperatures, deposit ultrafine ceramic powder by blowing it using an air current, and sinter it.This allows a conductive film to be formed on the surface. It is possible to easily obtain a material useful as an electronic material having a thickness of 0.2 to
It is deposited in sheets of 2 mm, preferably 0.4 to 1.2 m. It is preferable that the ultrafine ceramic powder be deposited on the substrate in an oxygen-free atmosphere.
次いで、超微粉セラミックスを堆積させた基板を非大気
下で焼結することにより、目的とするセラミックス焼結
体が得られる。ここで非大気下とは大気中でないことを
意味する。焼成は、好ましくは無酸素雰囲気下、特に好
ましくは、1〜2000気圧の加圧窒素及び/又はアル
ゴン雰囲気下で行われる。焼結温度は好ましくは100
0〜2000″Cであり、セラミックスの種類により適
宜選定する。Next, the substrate on which the ultrafine ceramic powder has been deposited is sintered in a non-atmosphere environment to obtain the desired ceramic sintered body. Here, non-atmospheric means not in the atmosphere. The calcination is preferably carried out under an oxygen-free atmosphere, particularly preferably under a pressurized nitrogen and/or argon atmosphere of 1 to 2000 atmospheres. The sintering temperature is preferably 100
0 to 2000''C, and is appropriately selected depending on the type of ceramic.
このようにして焼結を行うと無酸素雰囲気下で低温での
焼結が可能となり、また亮純度の焼結体が得られる。Sintering in this manner enables sintering at low temperatures in an oxygen-free atmosphere, and provides a highly pure sintered body.
以下、本発明を実施例に基づいて詳細に説明するが、本
発明はこれに限定されるものではない。Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.
実施例
第1図は本発明のセラミックス焼結体の製造方法に用い
られる装置の模式的説明図である。超微粉発生装置1で
直流アークプラズマ(アンモニア10Vo1%含有窒素
ガス)を用いて超微粉窒化アルミニウムを合成した。こ
の粉末の平均粒子径はBETによる比表面積より605
人であった。Embodiment FIG. 1 is a schematic explanatory diagram of an apparatus used in the method for producing a ceramic sintered body of the present invention. Ultrafine powder aluminum nitride was synthesized using a DC arc plasma (nitrogen gas containing 10 Vo 1% ammonia) in an ultrafine powder generator 1. The average particle diameter of this powder is 605 from the specific surface area determined by BET.
It was a person.
この超微粉3を前記混合ガス気流を用いて、1.2鵬φ
のノズルから吹きつけ焼結炉2の内部に設置したカーボ
ン基板4にシート状に堆積させ窒化アルミニウムの厚膜
5を得た。そしてこの炉を1500°C1窒素100気
圧に2時間保持し、焼結を行った。その後、得られた成
形体をカーボン基板から分離し、0.8 mの窒化アル
ミニウム焼結体を得た。熱伝導率を測定したところ、2
48W/mkであった。なお、膜の堆積の方法は、超微
粉発生装置と、基板が置いである焼結炉を直接つなぎ、
粉末を搬送、堆積させた。これにより無酸素雰囲気中で
処理することが可能となった。This ultrafine powder 3 was heated to 1.2 φ by using the mixed gas flow.
A thick film 5 of aluminum nitride was obtained by spraying from a nozzle and depositing it in a sheet on a carbon substrate 4 installed inside a sintering furnace 2. Then, this furnace was maintained at 1500°C and 100 atmospheres of nitrogen for 2 hours to carry out sintering. Thereafter, the obtained molded body was separated from the carbon substrate to obtain a 0.8 m sintered aluminum nitride body. When the thermal conductivity was measured, it was 2
It was 48W/mk. The method for depositing the film is to directly connect the ultrafine powder generator to the sintering furnace where the substrate is placed.
The powder was transported and deposited. This made it possible to process in an oxygen-free atmosphere.
(発明の効果〕
本発明、すなわち超微粉、吹きつけ堆積、非大気化処理
の組み合わせにより、焼結助剤等の添加剤を特に添加し
なくても低温で焼結を行うことが可能となり、また、高
密度で、高熱伝導性のセラミックス焼結体を得ることが
できた。(Effects of the invention) The present invention, that is, the combination of ultrafine powder, spray deposition, and non-atmospheric treatment, makes it possible to perform sintering at low temperatures without adding any additives such as sintering aids. Furthermore, a ceramic sintered body with high density and high thermal conductivity could be obtained.
第1717th
第1図は本発明のセラミックス焼結体の製造に用いられ
る製造装置の模式的説明図である。
符号の説明
超微粉製造装置
焼結炉
超微粉
基板
窒化アルミニウム厚膜FIG. 1 is a schematic explanatory diagram of a manufacturing apparatus used for manufacturing the ceramic sintered body of the present invention. Symbol explanation Ultrafine powder production equipment Sintering furnace Ultrafine powder substrate Aluminum nitride thick film
Claims (4)
を非大気下で基板に気流を用いて吹きつけ堆積させ、こ
れを非大気下で焼結することを特徴とするセラミックス
焼結体の製造方法。1. A method for producing a ceramic sintered body, which comprises depositing ultrafine ceramic powder produced using a plasma method on a substrate by blowing it using an air stream in a non-atmospheric environment, and sintering it in a non-atmospheric environment.
させる請求項1記載のセラミックス焼結体の製造方法。2. 2. The method for producing a ceramic sintered body according to claim 1, wherein the ultrafine ceramic powder is deposited and sintered in an oxygen-free atmosphere.
ある請求項1又は2記載のセラミックス焼結体の製造方
法。3. The method for producing a ceramic sintered body according to claim 1 or 2, wherein the ultrafine ceramic powder is a nitride, a carbide, or a boride.
る請求項1、2、又は3記載のセラミックス焼結体の製
造方法。4. The method for producing a ceramic sintered body according to claim 1, 2, or 3, wherein the ultrafine ceramic powder has an average particle diameter of 1 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1008530A JPH02190303A (en) | 1989-01-19 | 1989-01-19 | Manufacture of ceramic sintered object |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1008530A JPH02190303A (en) | 1989-01-19 | 1989-01-19 | Manufacture of ceramic sintered object |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02190303A true JPH02190303A (en) | 1990-07-26 |
Family
ID=11695703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1008530A Pending JPH02190303A (en) | 1989-01-19 | 1989-01-19 | Manufacture of ceramic sintered object |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02190303A (en) |
-
1989
- 1989-01-19 JP JP1008530A patent/JPH02190303A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4642207A (en) | Process for producing ultrafine particles of ceramics | |
JP2000219901A (en) | Oxide-coated metallic fine particle and production thereof | |
AU2424995A (en) | Method and apparatus for producing nanostructured ceramic powders and whiskers | |
TW200406270A (en) | Metallic nickel powder and process for production thereof | |
JP2007131943A (en) | Composite structure | |
US20040171474A1 (en) | Aluminum nitride materials and members for use in the production of semiconductors | |
US4578233A (en) | Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride | |
JP2916198B2 (en) | Method for producing particles whose surface is coated with ultrafine particles | |
Kher et al. | Chemical vapor deposition of metal borides: 7. The relatively low temperature formation of crystalline lanthanum hexaboride thin films from boron hydride cluster compounds by chemical vapor deposition | |
US5837633A (en) | Method for production of aluminum nitride sintered body and aluminum nitride powder | |
US20030203804A1 (en) | Aluminum nitride materials and members used for the production of semiconductors | |
JP4241287B2 (en) | Method for manufacturing aluminum nitride (AlN) substrate | |
US4889665A (en) | Process for producing ultrafine particles of ceramics | |
JPH02190303A (en) | Manufacture of ceramic sintered object | |
JP2001220237A (en) | Silicon carbide body and method for producing the same | |
Smith et al. | Thermal spraying II: recent advances in thermal spray forming | |
JP3233160B2 (en) | Silicon carbide sputtering target and method of manufacturing the same | |
JP2794173B2 (en) | Method of forming composite carbon coating | |
JPH06321511A (en) | Ultrafine aluminum nitride particle, its production and ultrafine particulate sintered compact | |
JP3023435B2 (en) | High purity silicon carbide sintered body and method for producing the same | |
KR100513110B1 (en) | Process for manufacturing W powder by vaper reaction under vacuum pressure | |
JPH0465361A (en) | Silicon carbide heater and manufacture thereof | |
CN109180221B (en) | Preparation method for depositing silicon carbide film on graphite template in large area | |
JP2826023B2 (en) | Ultrafine particle manufacturing method | |
JP4032178B2 (en) | Method for manufacturing silicon nitride sprayed film |