JPH0218958B2 - - Google Patents

Info

Publication number
JPH0218958B2
JPH0218958B2 JP1039882A JP1039882A JPH0218958B2 JP H0218958 B2 JPH0218958 B2 JP H0218958B2 JP 1039882 A JP1039882 A JP 1039882A JP 1039882 A JP1039882 A JP 1039882A JP H0218958 B2 JPH0218958 B2 JP H0218958B2
Authority
JP
Japan
Prior art keywords
welding
metal core
core
spatter
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1039882A
Other languages
Japanese (ja)
Other versions
JPS58128290A (en
Inventor
Nobuo Masuoka
Sadahiko Sanki
Tsuneyoshi Fujita
Shigefumi Yasutomi
Tsuneo Sasanuma
Hiroki Yamaguchi
Shigeaki Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Hitachi Cable Ltd
Original Assignee
Kajima Corp
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Hitachi Cable Ltd filed Critical Kajima Corp
Priority to JP1039882A priority Critical patent/JPS58128290A/en
Publication of JPS58128290A publication Critical patent/JPS58128290A/en
Publication of JPH0218958B2 publication Critical patent/JPH0218958B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0283Rods, electrodes, wires multi-cored; multiple

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、被覆アーク溶接棒の構造に関するも
のである。 都市の過密化、建造物の大型化、高層化に伴い
防災に対する社会的要請は近年とみに高まつてお
り、中でも火災は人的、物的損失が甚大な為、よ
り確実な防災技術が要求されている。特に、建設
関係では建造物の構築、増築、改修時に各種の接
続、接着、固定のための溶接法が広く採用されて
いるが、作業の際飛散するスパツタが可燃物に落
下し、火災の原因となることが少なくなく、防災
の観点からスパツタ発生量の低減対策あるいは発
生したスパツタの飛散防止対策が望まれている。
このうち前者の対策は最も根源的であり、種々の
試みがなされている。スパツタの発生には種々の
原因が考えられるが、大別して溶接方法に関する
もの、溶接棒に関するもの、溶接機に関するもの
が挙げられる。 ところで、溶接方法としてその作業性、汎用
性、又簡便性の故に被覆溶接棒を使用した所謂被
覆アーク溶接法が産業界で多用されているが、こ
の場合スパツタの発生を減少させるのに従来は出
来る限り低い溶接電流を使用するか、あるいは電
源を改良し直流成分の多い電流を使用する場合が
よく知られている。然るに、溶接電流の低下は、
溶接速度の低下を招き溶接の作業性を著しく低下
させる。 一方、電源の改良は既設の溶接機では、改良の
為に相当の費用を要し、コスト面から難点が多
い。又、溶接棒の被覆物質はスパツタ発生挙動に
大きく影響するところからその材質を変化させる
試みもあるが、スパツタ発生以外の各種溶接性を
低下させる場合があり、実用面からはまだ検討の
余地が多い。 本発明の目的は、前記した従来技術に代り、溶
接性は何ら低下させることなく溶接時のスパツタ
発生量を大幅に減少可能な被覆アーク溶接棒を提
供することにある。 すなわち、既存の被覆アーク溶接棒は、1本の
金属心線の表面に被覆物質が被覆された所謂単心
構造であるが、本発明では、被覆物質および心線
の材質、成分は既存溶接棒のそれと同一である
が、前記金属心線を中心となる1本の細径の金属
心線とそれを取り巻く複数本の細径の金属心線に
よつて構成すると共に、これら複数本の細径の金
属心線の全体の断面積を前記金属心線のそれと実
質的に同じになるようにし、さらに複数本の細径
の金属心線の各周囲に上記被覆物質を存在せしめ
て全体を一体化して構成したものである。本発明
においてはこのように既存の単心溶接棒を多心化
することによつて、溶接時性能を低下せしめるこ
となく個々の金属心線の断面積を小さくしたもの
であり、これによつて溶融金属の液滴(以下溶滴
と略記)も小さくすることができ、同時にその際
形成する個々のアークによるアーク力も小さく、
溶滴の飛散も小さくなる傾向にある。また、単心
線では太いアークあるいは太い溶滴柱の周囲に被
覆物質が気化ないしミスト化して化学的に又電気
的に安定な雰囲気を生成するが、多心化すること
により気化ないしミスト化した被覆物質がいわば
包括的に太いアーク流ないし太い溶滴柱の内部に
分散して存在できるため、溶接アーク及び溶滴の
移行が著しく安定化し、それによりスパツタ発生
量は大幅に低下する。 以上のように多心化することにより発生するス
パツタの総量を低減させるとともに個々のスパツ
タの大きさを小さくすることが可能となり、可燃
物にスパツタが飛散した場合においても火災発生
のチヤンスを著しく低減させることができる。 次に添付図面を参照して本発明の実施例を説明
する。 実施例 1 第2図に示すように、夫々心金1直径が1.2φの
被覆溶接棒を中心となる1本とそれを取り巻く6
本をもつて集合結束させた構成の多心溶接棒3を
製作し、これと第1図に示す従来の単心形溶接棒
3′とのスパツタ発生量の比較実験を行つた。
1′は心金、2,2′は夫々被覆物質である。ここ
で対象とした溶接棒は、軟鋼溶接用の棒種で、
JIS D4303に相当し、心金の成分はC0.08%、
Mn0.35%、Si0.09%、P0.014%、S0.012%で残部
Feである。又、被覆物質はライム、チタニヤ系
であり、酸化チタンを約30%以上を含有するもの
である。 ここで、第2図の多心溶接棒の各心金1,1,
1の断面積の合計が第1図の単心の心金1′の面
積と同一になるように製作した。溶接機は交流タ
イプで溶接電流は130A、溶接姿勢は下向き。
夫々350l長さの溶接棒を5本、連続して普通鋼板
上にビード溶接し、その際周囲に飛散するスパツ
タを全量回収し、計量した。実際に消耗した溶接
棒長は試番により幾分異るため、全スパツタ量を
消耗棒長の延べ長さで除した単位消耗棒長さあた
りのスパツタ量で棒種相互の比較を行つた。 その結果、表1に示すように第2図に示す実施
例の溶接棒3は従来の単心形溶接棒3′に比較し、
約26%スパツタ発生量が減少し、しかも篩分析が
示すようにスパツタの粒度が小さくなる傾向にあ
る。尚、多心溶接棒の場合も、単心棒の場合とほ
ぼ同様の速度で溶接可能であり、又溶着金属の品
質も単心棒のそれと遜色ないものであつた。
The present invention relates to the structure of a coated arc welding rod. Social demands for disaster prevention have been increasing in recent years as cities have become overcrowded and buildings have become larger and taller.In particular, fires cause enormous human and material loss, so more reliable disaster prevention technology is required. ing. In particular, in the construction field, welding methods are widely used for various connections, adhesives, and fixations when constructing, expanding, or renovating buildings. This often happens, and from the perspective of disaster prevention, measures are desired to reduce the amount of spatter generated or to prevent the generated spatter from scattering.
Among these, the former measure is the most fundamental, and various attempts have been made. There are various possible causes for the occurrence of spatter, but they can be broadly classified into those related to the welding method, those related to the welding rod, and those related to the welding machine. By the way, as a welding method, the so-called covered arc welding method using a covered welding rod is often used in industry because of its workability, versatility, and simplicity. It is well known to use a welding current as low as possible, or to improve the power supply and use a current with a high DC component. However, the decrease in welding current is
This causes a decrease in welding speed and significantly reduces welding workability. On the other hand, improving the power supply of existing welding machines requires considerable expense, and there are many difficulties from a cost perspective. In addition, there are attempts to change the coating material of the welding rod since it has a large effect on spatter generation behavior, but this may reduce various weldability other than spatter generation, so there is still room for consideration from a practical standpoint. many. An object of the present invention is to provide a coated arc welding rod that can significantly reduce the amount of spatter generated during welding without any deterioration in weldability, in place of the prior art described above. That is, existing coated arc welding rods have a so-called single-core structure in which the surface of one metal core wire is coated with a coating material, but in the present invention, the materials and components of the coating material and the core wire are the same as those of existing welding rods. However, the metal core wire is composed of one central thin metal core wire and a plurality of thin metal core wires surrounding it, and The entire cross-sectional area of the metal core wire is made to be substantially the same as that of the metal core wire, and the coating material is provided around each of the plurality of thin metal core wires to integrate the whole. It is composed of In the present invention, by making the existing single-core welding rod multi-core, the cross-sectional area of each metal core wire is reduced without deteriorating the welding performance. The droplets of molten metal (hereinafter referred to as droplets) can also be made smaller, and at the same time, the arc force due to the individual arcs that are formed is also small.
The scattering of droplets also tends to become smaller. In addition, with single-core wires, the coating material vaporizes or becomes a mist around a thick arc or thick droplet column, creating a chemically and electrically stable atmosphere, but with multi-core wires, the coating material vaporizes or becomes a mist. Since the coating material can be dispersed in a so-called comprehensive thick arc flow or thick droplet column, the welding arc and droplet transfer are significantly stabilized, and the amount of spatter generated is thereby significantly reduced. As described above, by increasing the number of cores, it is possible to reduce the total amount of spatter generated and to reduce the size of individual spatter, which significantly reduces the chance of fire starting even when spatter scatters on combustible materials. can be done. Next, embodiments of the present invention will be described with reference to the accompanying drawings. Example 1 As shown in Fig. 2, each core is made of one coated welding rod with a diameter of 1.2φ and six surrounding it.
A multi-core welding rod 3 having a configuration of bundled together with books was manufactured, and an experiment was conducted to compare the amount of spatter generated between this and a conventional single-core welding rod 3' shown in FIG.
1' is a metal core, and 2 and 2' are coating materials, respectively. The welding rod used here is a rod type for mild steel welding.
Equivalent to JIS D4303, the core metal content is C0.08%,
The balance is Mn0.35%, Si0.09%, P0.014%, S0.012%
It is Fe. The coating material is lime or titania based and contains about 30% or more of titanium oxide. Here, each core metal 1, 1,
The total cross-sectional area of 1 was made to be the same as the area of the single-core metal core 1' shown in FIG. The welding machine is an AC type, the welding current is 130A, and the welding position is downward.
Five welding rods, each 350 liters in length, were bead-welded in succession on an ordinary steel plate, and all the spatter scattered around was collected and weighed. Since the actual length of the welding rod that was consumed varies somewhat depending on the trial number, the rod types were compared based on the amount of spatter per unit length of the consumable rod, which is the total amount of spatter divided by the total length of the consumable rod. As a result, as shown in Table 1, the welding rod 3 of the embodiment shown in FIG.
The amount of spatter generated is reduced by approximately 26%, and as shown by the sieve analysis, the particle size of spatter tends to become smaller. In addition, in the case of the multi-core welding rod, welding was possible at almost the same speed as in the case of the single-core rod, and the quality of the deposited metal was comparable to that of the single-core rod.

【表】 実施例 2 実施例1と同じ成分又は材質の心金4及び被覆
物質5を使用し、第3図の如く、被覆物質5中に
互に接触することなく夫々直径1.2φの心金4の複
数本を中心となる1本とそれを取り巻く6本をも
つて埋込ませた構成の多心溶接棒6を製作し、実
施例1と同じ溶接条件、評価方法でスパツタ発生
量を調査した。 尚、この場合も心金総断面積の合計が、比較に
用いた第1図に示す単心棒3′の心金面積と同一
になるようにした。その結果、第3図の溶接棒6
は、スパツタ発生量が単位消耗棒長当り0.054
g/cmであり、実施例1の単心形のそれより約35
%発生量が少なかつた。尚、スパツタの大きさは
第2図の溶接棒の場合とほゞ同様であつた。 実施例 3 実施例1と同じ成分又は材質の心金及び被覆物
質を使用し、被覆物質中に互に接触することなく
夫々直径0.73mmφの心金の複数本を第3図の如き
に全体で19本埋込ませた構造の多心溶接棒を製作
し、実施例1と同じ溶接条件、評価方法でスパツ
タ発生量を調査した。その結果、この実施例の溶
接棒はスパツタ発生量が単位消耗棒長当り0.043
g/cmであり、実施例1の単心形のそれより約48
%少なく、又実施例2のそれよりも少ないことが
分つた。これより心線数が増加するにつれてスパ
ツタ発生量が減少する傾向にある。 上記実施例から明らかなように、本発明多心被
覆アーク溶接棒によれば、心金を多心化すること
により、 (1) アークの発生が安定化し、スパツタ発生量が
減少するのみならず、スパツタの大きさも小さ
くなり飛散した場合においても火災発生の危険
が少なくなる。 (2) 従来の溶接棒と同様の溶接作業性並に溶接部
品質を維持することができるという効果があ
る。
[Table] Example 2 A mandrel 4 and a covering substance 5 having the same components or materials as in Example 1 were used, and as shown in FIG. A multi-core welding rod 6 with a configuration in which a plurality of rods 4 are embedded with one central rod and six surrounding rods was manufactured, and the amount of spatter generated was investigated using the same welding conditions and evaluation method as in Example 1. did. In this case as well, the total cross-sectional area of the mandrel was made to be the same as the mandrel area of the single mandrel 3' shown in FIG. 1 used for comparison. As a result, welding rod 6 in Fig.
The amount of spatter generated is 0.054 per unit consumable rod length.
g/cm, which is approximately 35 g/cm higher than that of the single-core type in Example 1.
% generation amount was low. The size of the spatter was almost the same as that of the welding rod shown in FIG. Example 3 Using a mandrel and a covering material having the same components or materials as in Example 1, a plurality of mandrels each having a diameter of 0.73 mmφ were placed in the covering material as a whole as shown in Fig. 3 without contacting each other. A multicore welding rod with a structure in which 19 rods were embedded was manufactured, and the amount of spatter generated was investigated using the same welding conditions and evaluation method as in Example 1. As a result, the welding rod of this example had a spatter generation rate of 0.043 per unit of consumable rod length.
g/cm, which is approximately 48 g/cm higher than that of the single-core type in Example 1.
% less than that of Example 2. As the number of core wires increases, the amount of spatter generated tends to decrease. As is clear from the above examples, according to the multi-core coated arc welding rod of the present invention, by increasing the number of core metals, (1) arc generation is stabilized, and the amount of spatter generated is not only reduced; The size of spatter is also reduced, and even if it scatters, the risk of fire outbreak is reduced. (2) It has the effect of maintaining welding workability and welding quality similar to that of conventional welding rods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例説明図、第2図は本発明多心被
覆アーク溶接棒の一実施例説明図、第3図は本発
明の他の実施例説明図である。 1,4:心金、2,5:被覆物質、3,6:溶
接棒。
FIG. 1 is an explanatory diagram of a conventional example, FIG. 2 is an explanatory diagram of one embodiment of the multi-core coated arc welding rod of the present invention, and FIG. 3 is an explanatory diagram of another embodiment of the present invention. 1, 4: core metal, 2, 5: coating material, 3, 6: welding rod.

Claims (1)

【特許請求の範囲】[Claims] 1 溶接用金属心線の表面に電気アーク溶接を容
易ならしめる被覆物質を有する被覆アーク溶接棒
において、前記金属心線を中心となる1本の細径
の金属心線とそれを取り巻く複数本の細径の金属
心線によつて構成すると共に、これら複数本の細
径の金属心線の全体の断面積を前記金属心線のそ
れと実質的に同じになるようにし、さらに複数本
の細径の金属心線の各周囲に上記被覆物質を存在
せしめて全体を一体化して構成したことを特徴と
する多心被覆アーク溶接棒。
1. A coated arc welding rod that has a coating material that facilitates electric arc welding on the surface of a metal core wire for welding, which has one thin metal core wire centered on the metal core wire and a plurality of core wires surrounding it. The structure is made of thin metal core wires, and the overall cross-sectional area of the plurality of thin metal core wires is made to be substantially the same as that of the metal core wire, and the plurality of thin diameter metal core wires are A multi-core coated arc welding rod characterized in that the above-mentioned coating substance is present around each of the metal core wires, and the whole is integrated.
JP1039882A 1982-01-26 1982-01-26 Multicored coated electrode Granted JPS58128290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1039882A JPS58128290A (en) 1982-01-26 1982-01-26 Multicored coated electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1039882A JPS58128290A (en) 1982-01-26 1982-01-26 Multicored coated electrode

Publications (2)

Publication Number Publication Date
JPS58128290A JPS58128290A (en) 1983-07-30
JPH0218958B2 true JPH0218958B2 (en) 1990-04-27

Family

ID=11749022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1039882A Granted JPS58128290A (en) 1982-01-26 1982-01-26 Multicored coated electrode

Country Status (1)

Country Link
JP (1) JPS58128290A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673796A (en) * 1985-12-09 1987-06-16 Weld Mold Company Arc welding electrode
KR101205332B1 (en) * 2009-09-11 2012-11-28 한국항공대학교산학협력단 A welding wire

Also Published As

Publication number Publication date
JPS58128290A (en) 1983-07-30

Similar Documents

Publication Publication Date Title
US4379811A (en) Tubular filler wire for fusion welding
JPH0218958B2 (en)
CH624037A5 (en) Process for the electrical arc welding of the blades to the disk or to the counterdisk of rotors for rotary machines
KR100652998B1 (en) Titania-based flux cored wire
KR850003857A (en) Consumable welding rod for arc melting of zirconium or titanium alloy
JPS5677072A (en) Tig welding method and its apparatus
JP2860074B2 (en) Aluminum alloy wire for MIG welding
JPH06143038A (en) Wire electrode for electric discharge machining
US3375089A (en) Steel studs
DE1540868B2 (en) HIGH PERFORMANCE JACKET WELDING ELECTRODE
JP3197407B2 (en) Flux-cored wire for gas shielded arc welding
JPH0811311B2 (en) Flux cored wire for stainless steel welding
SU1065893A1 (en) Multiwire twisted cable conductor
JP4503451B2 (en) Lime titania coated arc welding rod
JPH02187273A (en) Horizontal submerged arc welding process with high efficiency
JPH02121800A (en) Stainless steel wire including flux
JPS58151994A (en) Flux cored wire for arc welding
JPH0436795B2 (en)
JPS62166099A (en) Composite wire for arc welding
JPS597528A (en) Wire electrode for electrical discharge machining
JPS56148492A (en) Penetration welding rod
JPH04274894A (en) Wire for automatic welding
JPS5946411U (en) fusible electric wire
Oshima et al. Stranded Electrode for Use in Welding
JP2001259889A (en) Non-low-hydrogen type covered electrode