JPH02189307A - Flattening material - Google Patents

Flattening material

Info

Publication number
JPH02189307A
JPH02189307A JP1061889A JP1061889A JPH02189307A JP H02189307 A JPH02189307 A JP H02189307A JP 1061889 A JP1061889 A JP 1061889A JP 1061889 A JP1061889 A JP 1061889A JP H02189307 A JPH02189307 A JP H02189307A
Authority
JP
Japan
Prior art keywords
polystyrene
flat surface
flattening
film
flattening material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1061889A
Other languages
Japanese (ja)
Inventor
Hidehiko Matsuka
松家 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP1061889A priority Critical patent/JPH02189307A/en
Publication of JPH02189307A publication Critical patent/JPH02189307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a flattening material excellent in ability to flatten, capable of giving an ideal flat surface irrespective of a difference in level and desirable as an underlayer material in the multilayered resist process, etc., by using a polystyrene (derivative) having a star structure. CONSTITUTION:A flattening material is prepared from a polystyrene (derivative) having a star structure, suitably a polymer having an MW of 500-10000, such as those of formulas I and II. The obtained material is used by dissolving it in a solvent (e.g. toluene), applying the formed solution to, e.g. an insulation film substrate having a difference in level on its surface and causing the obtained organic polymer film to melt and flow by heating it with an infrared lamp or the like to form a flat surface. In order to improve the heat resistance of this film, it is crosslinked by irradiation with ultraviolet rays, etc., and dry- etched to transfer the flat surface onto the insulation film to give a flat insulation film.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は凹凸を有する基板の平坦化材料に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a material for planarizing a substrate having irregularities.

[従来の技術] 半導体集積回路素子あるいはバルブメモリ素子等の超小
型素子においては絶縁体と導体層とを順次積層形成する
ことが必要とされている。
[Prior Art] In ultra-small devices such as semiconductor integrated circuit devices or valve memory devices, it is necessary to sequentially laminate insulators and conductor layers.

しかしながら、導体層数が2層、3層と多層化するに従
い導体層の段差がより急峻となり、導体層が交叉すると
ころで断線やショート等を生じ、実質的な積層構成を困
難にしている。
However, as the number of conductor layers increases to two or three, the height difference between the conductor layers becomes steeper, and disconnections or short circuits occur where the conductor layers intersect, making it difficult to form a substantial laminated structure.

上述した導体層の断線を防止するためには、導体層を形
成する前の絶縁層表面を平坦化することが有効である。
In order to prevent the above-described disconnection of the conductor layer, it is effective to flatten the surface of the insulating layer before forming the conductor layer.

これに対して、分子量100000のポリスチレンまた
はその誘導体のごとき熱変形温度の低い材料を回転塗布
後、熱変形温度以上(たとえば200℃)に加熱して流
動し平坦化した有機樹脂面を得た後、紫外線硬化しドラ
イエツチングにより絶縁層の平坦面を得る方法(特開昭
59−225526号公報)や分子量が10000以下
のポリスチレンを用い絶縁層の平坦面を得る方法(特開
昭63−150923号公報)がある。
On the other hand, after spin-coating a material with a low heat distortion temperature such as polystyrene with a molecular weight of 100,000 or its derivatives, and then heating it above the heat distortion temperature (e.g. 200°C) to obtain a fluidized and flattened organic resin surface. , a method for obtaining a flat surface of an insulating layer by ultraviolet curing and dry etching (Japanese Unexamined Patent Publication No. 59-225526), and a method for obtaining a flat surface of an insulating layer using polystyrene with a molecular weight of 10,000 or less (Japanese Patent Application Laid-Open No. 150923-1982). There is a public notice).

[発明が解決しようとする課題] しかしながら、これらの方法は、段差幅が増えるにした
がって平坦化が不良になり、500μm程度の幅の段差
ではほとんど平坦化できないという問題があった。
[Problems to be Solved by the Invention] However, these methods have a problem in that as the step width increases, flattening becomes poorer, and a step with a width of about 500 μm can hardly be flattened.

[課題を解決するための手段] 本発明者らは、段差幅が500μm以上に亘って段差幅
依存性がなくほぼ理想的に平坦化できる平坦化材料につ
いて鋭意検討した結果、本発明に達した。
[Means for Solving the Problem] The present inventors have arrived at the present invention as a result of intensive study on a flattening material that can be almost ideally flattened without dependence on the step width over a step width of 500 μm or more. .

すなわち本発明は、星状構造を有するポリスチレンまた
はポリスチレン誘導体からなることを特徴とする平坦化
材料である。
That is, the present invention is a flattening material characterized by being made of polystyrene or a polystyrene derivative having a star-like structure.

星状構造を有するポリスチレンまたはポリスチレン誘導
体としては、−船人: %式% [式(3)中、R7、R8およびR8は、水素原子、メ
チル基またはハロゲン原子、Xは、ハロゲン原子、mお
よびnは、Oまたは1以上の整数を表し、同時にOにな
ることはない。コ)で示される有機高分子が挙げられる
、 一般式(1)において、R1の3価の基としては、1式
(1)および(2)中、R1は、3価の基、R2は、4
価の基、R5、R4、R6およびR6ば、−船人:など
の3価の芳香族基またはリン原子が挙げられる。また、
−船人(2)においてR2の4価の基としては’   
 /G’%     こC−C)(−、ンC)(C)l
乏などの 子または C)lBsic)12CHzSiCH3CH
BSiO3iCHa−船人(3)において、R7、R8
およびR9のハロゲン原子としては塩素原子、臭素原子
、フッ素原子のうち好ましいものは、塩素原子またはフ
ッ土原子である。
As polystyrene or polystyrene derivatives having a star structure, - Shipman: %Formula% [In formula (3), R7, R8 and R8 are a hydrogen atom, a methyl group or a halogen atom, X is a halogen atom, m and n represents O or an integer greater than or equal to 1, and cannot be O at the same time. Examples of the trivalent group of R1 in the general formula (1) include organic polymers represented by 4
Examples include trivalent aromatic groups such as R5, R4, R6 and R6, and phosphorus atoms. Also,
- In Saijin (2), the tetravalent group of R2 is '
/G'% KoC-C) (-, NC) (C)l
C) lBsic) 12CHzSiCH3CH
BSiO3iCHa-Funenin (3), R7, R8
The halogen atom for R9 is preferably a chlorine atom, a bromine atom, or a fluorine atom, and a chlorine atom or a fluorine atom is preferable.

m、 nについては、好ましくは、ntは、0〜30、
nは、0〜20である。m+nは、通常2〜30である
Regarding m and n, preferably nt is 0 to 30,
n is 0-20. m+n is usually 2-30.

本発明で使用されるポリスチレンまたはポリスチレン誘
導体の分子量(重量平均分子量)は、通常500〜10
000であり、好ましくは、500〜1500である。
The molecular weight (weight average molecular weight) of polystyrene or polystyrene derivative used in the present invention is usually 500 to 10
000, preferably 500 to 1500.

分子量が500未満であれば、有機高分子は室温でも流
動体となる傾向があり、塗布時のスピン回転時間が長く
なるほど膜厚が薄くなり膜厚の制御性の面で問題がある
。また、分子量が10000を越えると理想的な平坦化
面を得られなくなる。
If the molecular weight is less than 500, the organic polymer tends to become a fluid even at room temperature, and the longer the spin rotation time during coating, the thinner the film becomes, causing problems in terms of controllability of the film thickness. Moreover, if the molecular weight exceeds 10,000, it becomes impossible to obtain an ideal flattened surface.

星状構造を有するポリスチレンまたはポリスチレン誘導
体は、スチレンまたはスチレン誘導体をブチルリチウム
、ナトリウムナフタレン錯体などによるアニオン重合後
、ハロゲンまたはハロゲンを含有する官能基を3または
4個有する化合物(トリクロロベンゼン、三塩化リン、
テトラクロロメチルベンゼン、テトラクロロシラン)を
加えることにより、またさらにハロゲン化ジメチルエー
テル、ジハロゲン化ジメチルエーテルまたは(ハロゲン
化水素+ホルマリン)などのハロゲン化アルキル化剤お
よび塩化亜鉛、塩化鉄またはフッ化ホウ素などのルイス
酸によるハロゲン化アルキル化により合成できる。
Polystyrene or polystyrene derivatives having a star structure are produced by anionic polymerization of styrene or styrene derivatives with butyl lithium, sodium naphthalene complexes, etc. ,
(tetrachloromethylbenzene, tetrachlorosilane) and further halogenated alkylating agents such as halogenated dimethyl ether, dihalogenated dimethyl ether or (hydrogen halide + formalin) and Lewis such as zinc chloride, iron chloride or boron fluoride. It can be synthesized by halogenated alkylation with acid.

本発明の平坦化材料は、−船人(1)または(2)で示
される有機高分子を芳香族炭化水素(トルエン、キシレ
ンなど)、エステル化合物(酢酸エチルセロソルブなど
)などに溶解して使用する状態となる。この場合の固形
物濃度は重量基準で通常10〜60%である。
The flattening material of the present invention is used by dissolving the organic polymer represented by (1) or (2) in an aromatic hydrocarbon (toluene, xylene, etc.), an ester compound (ethyl cellosolve acetate, etc.), etc. It becomes a state where The solids concentration in this case is usually 10 to 60% by weight.

本発明の平坦化材料の使用方法は、以下の通りである。The method of using the planarizing material of the present invention is as follows.

まず、段差を有する絶縁膜基板(例えば、酸化ケイ素、
窒化ケイ素、ポリシリコンなど)上に・−船人(1)ま
たは(2)で示される有機高分子をスピン塗布法、スプ
レー塗布法などにより膜厚0゜1〜10μmとなるよう
に塗布する。続いて、得られた有機高分子膜を赤外線ラ
ンプ、ホットプレート、クリーンオ・−ブンなどにより
通常100〜240℃で加熱し、溶融流動させ平坦化面
を得た後該有機高分子膜の耐熱性を向上するために紫外
線または電子線を照射し架橋せしめ、そして、反応性ド
ライエツチング装置により該有機高分子膜をドライエッ
ヂングし、前記絶縁膜に平坦面を転写することによって
、理想的に平坦化された絶縁膜が得られる。
First, an insulating film substrate with steps (for example, silicon oxide,
(silicon nitride, polysilicon, etc.) - An organic polymer represented by Funato (1) or (2) is applied to a film thickness of 0.1 to 10 μm by spin coating, spray coating, or the like. Subsequently, the obtained organic polymer film is heated usually at 100 to 240°C using an infrared lamp, a hot plate, a clean oven, etc. to melt and flow it to obtain a flattened surface. The organic polymer film is cross-linked by irradiation with ultraviolet rays or electron beams in order to improve the surface resistance, and then the organic polymer film is dry-etched using a reactive dry etching device to transfer the flat surface to the insulating film, thereby achieving ideal planarization. An insulating film obtained by this method is obtained.

[作用] 本発明者らは、種々の有機膜材料をスピン塗布法により
段差を有する基板に塗布し、一定温度で加熱した後の平
坦化性をタリステップで測定したところ、本発明におけ
る星状構造を有するポリスチレンまたはポリスチレン誘
導体を用いると平坦化性が著しく向上し、段差幅が広く
なった場合でも理想的な平坦面を得ることができる。
[Function] The present inventors coated various organic film materials on substrates with steps by spin coating, heated them at a constant temperature, and then measured the flattening properties using Talystep. When polystyrene or a polystyrene derivative having a structure is used, flattening properties are significantly improved, and an ideal flat surface can be obtained even when the step width becomes wide.

第1図は、本発明の星状構造を有するポリスチレン(重
量平均分子量、1400)からなる平坦化材料を600
0人の初期段差を有する基板上に塗布し、200℃で6
0分間加熱した後の塗布膜に残留する高低差を示したも
のである。
Figure 1 shows that the flattening material made of polystyrene (weight average molecular weight, 1400) having a star structure according to the present invention was
Coated on a substrate with an initial level difference of 0 and heated at 200℃ for 6 hours.
This figure shows the difference in height remaining in the coating film after heating for 0 minutes.

また、比較のために、通常の線状構造のポリスチレン(
重量平均分子量、1400および16000 )につい
ても併せて示した。
In addition, for comparison, we also use ordinary linear polystyrene (
The weight average molecular weights (1400 and 16000) are also shown.

本発明の平坦化材料は、段差幅が広くなった場合でも理
想的な平坦面を得られている。これは、本発明における
星状構造を有する有機高分子が、加熱時の溶融状態にお
いて線状構造の有機高分子と比べて有機高分子間のから
まりが少ないため、加熱時の流動性が優れていると考え
られる。
With the flattening material of the present invention, an ideal flat surface can be obtained even when the step width becomes wide. This is because the organic polymer with a star-like structure in the present invention has less entanglement between organic polymers in the molten state when heated, compared to organic polymers with a linear structure, so it has excellent fluidity during heating. It is thought that

[実施例] 以下、実施例により本発明を更に具体的に説明するが、
本発明の範囲はこれらの実施例によって限定されるもの
ではない。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The scope of the invention is not limited by these examples.

実施例]。Example].

厚さ6000人の半導体パターン上にSiO□を800
0人被着した基板上に、下式(4)で示される本発明の
平坦化材料をキシレンを溶媒として厚さ7000人塗布
した。塗布後、窒素雰囲気中、200℃で60分間加熱
し、続い゛C窒素雰囲気中遠紫外光で1分間照射し硬化
させた。 次に反応性イオンエツチング装置にて、高周
波電力100W、チャンバー内圧力4.5Pa、 CF
4流量30SC:CM、 Oz流Ji2.5SCCMの
条件でエツチングした。 エツチング後、はぼ有機高分
子膜の塗布膜形状がそのまま5tOz膜に転写され、導
体幅500μm以上にわたって高低差が1000Å以下
となりほぼ理想的な平坦面が得られた。
800mm thick SiO□ on top of 6000mm thick semiconductor pattern
A planarizing material of the present invention represented by the following formula (4) was applied to a thickness of 7000 on the substrate with xylene as a solvent. After coating, it was heated at 200° C. for 60 minutes in a nitrogen atmosphere, and then irradiated with deep ultraviolet light for 1 minute in a nitrogen atmosphere to cure it. Next, in a reactive ion etching device, high frequency power 100W, chamber pressure 4.5Pa, CF
Etching was performed under the following conditions: 4 flow rate 30SC:CM, Oz flow Ji 2.5SCCM. After etching, the shape of the coated organic polymer film was directly transferred to the 5tOz film, and the height difference was less than 1000 Å over the conductor width of 500 μm or more, resulting in an almost ideal flat surface.

(重量平均分子量2000、クロロメチル化スチレンユ
ニット40%) 実施例2 実施例1と全く同じ方法で式(4)で示される平坦化材
料のみを式(5)で示される平坦化材料にかえて実験を
行なった。その結果、実施例1とまったく同様の結果が
得られ基板の平坦化を行なうことができた。
(Weight average molecular weight: 2000, chloromethylated styrene unit: 40%) Example 2 In exactly the same manner as in Example 1, only the flattening material represented by formula (4) was replaced with the flattening material represented by formula (5). We conducted an experiment. As a result, exactly the same results as in Example 1 were obtained, and the substrate could be planarized.

たく同様の結果が得られ基板の平坦化を行なうことがで
きた。
Very similar results were obtained and the substrate could be planarized.

(重量平均分子量1400、クロロメチル化スチレンユ
ニット40%) 実施例3 実施例1と全く同じ方法で式(4)で示される平坦化材
料のみを式(6)で示される平坦化材料にかえて実験を
行なった。その結果、実施例1どまっ(重量平均分子量
1300、クロロメチル化スチレンユニット40%) [発明の効果] 本発明の平坦化材料を用いてエッチバックによる平坦化
を行なえば、段差幅に依存しない理想的な平坦面が得ら
れる。また、本発明の平坦化材料は、半導体集積回路素
子製造におけるリソグラフイー工程において、多層レジ
スト法の下層材料(平坦化層用材料)としても使用する
ことができる。
(Weight average molecular weight 1400, chloromethylated styrene unit 40%) Example 3 In exactly the same manner as in Example 1, only the flattening material represented by formula (4) was replaced with the flattening material represented by formula (6). We conducted an experiment. As a result, Example 1 remained unchanged (weight average molecular weight 1300, chloromethylated styrene unit 40%) [Effect of the invention] If planarization is performed by etchback using the planarization material of the present invention, it does not depend on the step width. An ideal flat surface can be obtained. Furthermore, the planarization material of the present invention can be used as a lower layer material (planarization layer material) in a multilayer resist method in a lithography process in the manufacture of semiconductor integrated circuit devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の平坦化材料およびポリスチレンを2
00℃で加熱した後の段差平坦化の段差幅依存性を示す
図。 図面 (μm)
Figure 1 shows the flattening material of the present invention and polystyrene.
FIG. 3 is a diagram showing the dependence of level difference flattening on the step width after heating at 00°C. Drawing (μm)

Claims (1)

【特許請求の範囲】 1、星状構造を有するポリスチレンまたはポリスチレン
誘導体からなることを特徴とする平坦化材料。 2、ポリスチレンまたはポリスチレン誘導体の分子量が
500〜10000である請求項1記載の平坦化材料。 3、ポリスチレンまたはポリスチレン誘導体が一般式: ▲数式、化学式、表等があります▼(1) または▲数式、化学式、表等があります▼(2) {式(1)および(2)中、R_1は、3価の基、R_
2は、4価の基、R_3、R_4、R_5およびR_6
は、一般式: ▲数式、化学式、表等があります▼(3) [式(3)中、R_7、R_8およびR_9は、水素原
子、メチル基またはハロゲン原子、Xは、ハロゲン原子
、mおよびnは、0または1以上の整数を表し、同時に
0になることはない。]}で示される星状構造の有機高
分子である請求項1または2記載の平坦化材料。
[Claims] 1. A flattening material comprising polystyrene or a polystyrene derivative having a star-like structure. 2. The flattening material according to claim 1, wherein the polystyrene or polystyrene derivative has a molecular weight of 500 to 10,000. 3. Polystyrene or polystyrene derivatives have a general formula: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (1) or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (2) {In formulas (1) and (2), R_1 is , trivalent group, R_
2 is a tetravalent group, R_3, R_4, R_5 and R_6
is a general formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (3) [In formula (3), R_7, R_8 and R_9 are hydrogen atoms, methyl groups or halogen atoms, X is halogen atoms, m and n represents an integer greater than or equal to 0, and cannot be 0 at the same time. ]} The flattening material according to claim 1 or 2, which is an organic polymer having a star-like structure.
JP1061889A 1989-01-19 1989-01-19 Flattening material Pending JPH02189307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061889A JPH02189307A (en) 1989-01-19 1989-01-19 Flattening material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061889A JPH02189307A (en) 1989-01-19 1989-01-19 Flattening material

Publications (1)

Publication Number Publication Date
JPH02189307A true JPH02189307A (en) 1990-07-25

Family

ID=11755216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061889A Pending JPH02189307A (en) 1989-01-19 1989-01-19 Flattening material

Country Status (1)

Country Link
JP (1) JPH02189307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510562A (en) * 2008-12-02 2012-05-10 アルベマール・コーポレーシヨン Branched and star-branched styrene polymers, short chain polymers, and adducts, their synthesis, their bromination, and their use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510562A (en) * 2008-12-02 2012-05-10 アルベマール・コーポレーシヨン Branched and star-branched styrene polymers, short chain polymers, and adducts, their synthesis, their bromination, and their use

Similar Documents

Publication Publication Date Title
JP2000294504A5 (en)
JP3244024B2 (en) Method for manufacturing semiconductor device
JP2005516406A5 (en)
JPS6046826B2 (en) semiconductor equipment
JPS6288327A (en) Cyclosilazane as dielectric film in ic manufacturing technology
JPH02189307A (en) Flattening material
EP0285245A1 (en) Device fabrication involving planarization
JPH0444741B2 (en)
WO2001004954A1 (en) Semiconductor devices and process for manufacture
JPH02227408A (en) Flattening material
JPH02227406A (en) Flattening material
JPH02227409A (en) Flattening material
JPH02227407A (en) Flattening material
CN110164754B (en) Method for forming crosslinked layer
Pang et al. Amorphous carbon films as planarization layers deposited by plasma-enhanced chemical vapor deposition
JPH01118507A (en) Flatting material
JP2604370B2 (en) Planarizing material and planarizing method
JPH09249851A (en) Reduction of relative permittivity of polymer thin film and formation of interlaminar insulating film
JP7428766B2 (en) Hardmask composition, hardmask layer and pattern forming method
JPH0439371A (en) Formation of insulating film and semiconductor device having insulating film
JP4324786B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, INSULATING FILM AND SEMICONDUCTOR DEVICE
JPS63234050A (en) Leveling material
KR100400896B1 (en) Preparation method for a silicon oxide layer on a topography
JPH04185639A (en) Formation of insulating film and semiconductor device
JPH04185641A (en) Production of heat-resistant resin composition and insulation film