JPH02188143A - Internal cooler for enclosed outer fan type motor - Google Patents

Internal cooler for enclosed outer fan type motor

Info

Publication number
JPH02188143A
JPH02188143A JP561989A JP561989A JPH02188143A JP H02188143 A JPH02188143 A JP H02188143A JP 561989 A JP561989 A JP 561989A JP 561989 A JP561989 A JP 561989A JP H02188143 A JPH02188143 A JP H02188143A
Authority
JP
Japan
Prior art keywords
motor
fan
frame
internal
internal fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP561989A
Other languages
Japanese (ja)
Inventor
Mitsuaki Sato
光昭 佐藤
Masanori Kato
加藤 昌紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWAJIMA TEKKO KENSETSU KK
IHI Corp
Original Assignee
ISHIKAWAJIMA TEKKO KENSETSU KK
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWAJIMA TEKKO KENSETSU KK, IHI Corp filed Critical ISHIKAWAJIMA TEKKO KENSETSU KK
Priority to JP561989A priority Critical patent/JPH02188143A/en
Publication of JPH02188143A publication Critical patent/JPH02188143A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent overheat in a motor after stoppage of motor by cooling the frame through a fan arranged at the outside of the frame of an enclosed motor while simultaneously driving an internal fan through a motor arranged in the frame. CONSTITUTION:An external fan 5 is driven through a motor 4 arranged at the inside of a fan cover 3 fixed to the frame 2 constituting the shell of a motor body 1 to feed the air as shown by arrows 13 so as to cool the fins 6 of the frame 2. An internal fan 20 born rotatably by a rotary shaft 7 is also arranged at the inside of the frame 2. A rotor 21 comprising a permanent magnet is fixed to the frame 2 side of the fan 20 while a stator 22 facing the rotor 21 is fixed to the inside of the frame 2 thus constituting an internal fan motor 23. The stator 22 is executed, immediately after stoppage or during low speed rotation of the motor 1, to drive the internal fan 20 so as to circulate the air as shown by arrows 14. By such arrangement, the motor is protected from overheat immediately after stoppage of motor or during low speed rotation of motor.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、主として大容量の全閉外扇形電動機の内部冷
却装置に関するものである。 [従来の技術] 電動機の冷却についてはJISC4004(198G)
回転電気機械通則、冷媒の送り方の形成池(表7〜10
)に示されており、従来の全閉外扇形電動機の冷却装置
の一例を第9図により説明すると、本体電動機lの外殻
を形成するフレーム2の外部に、該フレーム2に固定し
たファンカバー3内に取り付けられ電動機4により駆動
される外部ファン5を設け、該ファン5によりフレーム
2の外面に送風しフレーム2及びその放熱フィン6を冷
却し得るようにし、また、電動機回転軸7のフレーム2
内筒所に、同心状に内部ファン8を固着し、回転軸7の
回転により内部ファン8からフレーム2と固定子9との
間に送風すると共に、回転子lOと回転軸7との間から
吸風し、循環中にフレーム2内壁に接触して内部空気を
冷却し、これにより固定子巻線11.回転子導体12、
及びこれらの鉄心全体を冷却し許容温度以下に保持する
ようにしている。 なお、図中13は外部ファン5による空気の流れ、14
は内部ファン8による空気の流れ、■5゜16は通風路
を確保するために固定子9の外周及び回転子lOの内周
に配置したくさび、!7は軸受、18はフレーム2を定
置するためのボルト孔である。
[Industrial Application Field] The present invention mainly relates to an internal cooling device for a large-capacity totally enclosed external fan type electric motor. [Prior art] JISC4004 (198G) for cooling electric motors
General rules for rotating electric machines, forming ponds for refrigerant feeding (Tables 7 to 10)
), and an example of a conventional cooling device for a completely enclosed external fan type motor will be described with reference to FIG. An external fan 5 is installed inside and driven by the electric motor 4, and the fan 5 blows air to the outer surface of the frame 2 to cool the frame 2 and its heat dissipation fins 6.
An internal fan 8 is fixed concentrically to the inner cylinder, and as the rotating shaft 7 rotates, air is blown from the internal fan 8 between the frame 2 and the stator 9, and from between the rotor lO and the rotating shaft 7. The air is sucked in and contacts the inner wall of the frame 2 during circulation to cool the internal air, thereby cooling the stator winding 11. rotor conductor 12,
The entire core is cooled and kept below the allowable temperature. In addition, in the figure, 13 indicates the air flow by the external fan 5, and 14
is the air flow caused by the internal fan 8, and ■5゜16 is a wedge placed on the outer periphery of the stator 9 and the inner periphery of the rotor 10 to ensure a ventilation path. 7 is a bearing, and 18 is a bolt hole for fixing the frame 2.

【発明が解決しようとする課題] 本体電動機lが一時停止した場合、外部ファン5用電動
機4の運転を継続し、外部ファン5によりフレーム2及
びフィン6表面に送風して本体電動機lの外面を冷却し
ているが、回転軸7が停止しているため、内部ファン8
による空気の流れ14が停止し、固定子9及び回転子1
0の冷却能率が低下し、従って固定子巻線11及び回転
子導体12の冷却能率も低下する。 第10図(イ)及び(ロ)は、始動電流によって電動機
内部に電力損失が発生し、これにより温度上昇の影響を
受ける場合の代表的な温度パターンをグラフで示したも
ので、図中りは始動期間、Nは一定負荷での運転期間、
Rは停止して電圧の印加されない期間、θ−aXは運転
中の最高温度を表わす。lO数KM程度以下の比較的小
容量の電動機の場合、フレーム2と固定子9や回転子l
Oとの間に介在する空気量が少ないため、フレーム2表
面での熱交換作用によって内部も冷却され、第1O図(
イ)に示すように電動機が停止した時点から内部温度は
下降するが、数10KW以上の中・大形電動機では内部
に多量の空気があるため、熱伝導により電動機内部の固
定子巻線11及び回転子導体12が保温状態となり、第
1O図(0)に示すようにほとんど内部温度が下降せず
に次の始動で最高温度(θ−aX )を超えることもあ
り、これを繰り返すうちに回転子導体12の溶損をもた
らす。 固定子巻線llは、近年絶縁材料の改良によって高温に
対応できるようになって来たが、回転子導体12は、一
般にアルミニウムダイキャストや銅合金ろう付構造を採
用しているため、機械的強度を保つ上で最高許容温度は
220℃〜240℃とされている。また大きな慣性負荷
を負っている電動機やハイトルク、ハイスリップ電動機
では著しく始動開度の制限を受けるため、次の始動で数
時間待たなければならないのが現状である。 また最近普及の一途をたどっている可変周波数電動機に
於ては10:1乃至200:1の可変速運転を行ってい
るが、定格速度の174以下になると内部ファンの効果
が低下するため、対策として定格出力を1〜2枠(1,
4〜2倍)程度太き目の電動機を選定している。 従って、内部ファン8が停止若しくは低速回転しても内
部冷却を保持する手段として、電動機本体lに熱交換器
を装備させ、内部ファン8が停止しても支障がないよう
に運転中に十分冷却しておく方式も現在用いられている
が、装置全体が高価になる欠点がある。 本発明は、前記実情に鑑み、本体電動機が停止しても外
部ファン及び内部ファンの運転を継続し、固定子及び回
転子、並びに、固定子巻線及び回転子導体を空冷し得る
ようにした全門外扇形電動機の内部冷却装置を提供する
ことを目的とするものである 【課題を解決するための手段】 本発明は、本体電動機の外殻を形成するフレームの外部
に、該フレームの外面に送風する外部ファンを設けた全
門外扇形電動機において、前記フレームの内部に、内部
ファン用電動機を設けると共に、該内部ファン用電動機
を動力源として前記本体電動機内部に送風する内部ファ
ンを設けたことを特徴とし、又本体電動機の外殻を形成
するフレームの外部に、該フレームの外面に送風する外
部ファンを設けた全開外扇形態動機において、前記フレ
ームに前記外部ファンの電動機軸に接続した動力伝達装
置を貫通配置し、該動力伝達装置を介して前記外部ファ
ン用電動機を動力源として前記本体電動機内部に送風す
る内部ファンを設けたことを特徴とするするものである
。 [作   用] 本体電動機が一時停止した場合若しくは低速運転を続け
る場合でも、外部ファンと共に内部ファンの運転を継続
するので本体電動機内部を空冷することが出来る。 〔実 施 例〕 以下本発明の実施例を添付図面第1図乃至第8図を参照
して説明する。なお第1図、第4図、第5図、第6図、
第7図、第8図は、第9図中で示したものと同一のもの
には同一符号を付しである。 第1図は本発明の一実施例であり、回転軸7のフレーム
2内筒所に、該回転軸7と同心状に軸受19を介して回
転自在に内部ファン20を取り付け、該内部ファン20
の裏面に、内部ファン20側と反対側の表面が回転軸7
方向と直交して平形をなし、回転軸7と同心状のドーナ
ツ形の平形回転子2Iを固定し、また、フレーム2の内
側に、前記回転子21と同心状に対峙しその表面が平形
をなす平形固定子22を固定し、該手形固定子22巻線
に交流電流を流すことにより平形回転子21及び内部フ
ァン20を回転し得るような内部ファン20Jlf1m
動機23を形成する。 前記平形回転子21は、ドーナツ形鉄心の表面近くに放
射状に導体を埋め込み、これらの導体を、外周及び内周
に配置した短絡環に接続した構造のものとするが、必ず
しもこの形式に限らず鉄心表面にアルミニウム円板を取
り付けたもの若しくはアルミニウム円板のみにしたもの
にしてもよい。 第2図及び第3図は、2極3相平形固定子22の回転磁
界発生の原理図であり、第2図(イ)の固定巻線配置で
、第2図(ロ)のようにR相に瞬時値最大電流が流れる
と第2図(イ)の矢印の向きに磁界が生じる。 第3図(ロ)のように位相で30°経過後、R,S相の
電流が瞬時値で87%、T相が零になると、磁界は第3
図(づに示すように反時計方向に30@移動する。この
ようにして、平形固定子22においても回転磁界が得ら
れるのでこれと対峙するように配置した平形回転子21
に回転トルクを発生させることが出来る。なお、汎用電
動機と同様に全節重ね巻などの溝入固定子巻線構造の採
用も可能である。 従って、本体電動機lが停止した場合に、平形固定子2
2巻線に電流を流すことにより内部ファン20が回転し
、外部ファン5と内部ファン20の両方共回転すること
になり、フレーム2の内壁と内部空気とが熱交換して第
3図(イ)のように次の始動までに内部温度が低下する
ので、高価な熱交換器を装備しなくても回転子導体12
の溶損を防止することが出来る。 第4図は本発明の他の実施例であり、第1図と同様に該
回転軸7と同心状に軸受19を介して回転自在に内部フ
ァン20を取付け、該内部ファン20の裏側に回転軸7
と同心状のドーナツ形の円筒形回転子21aを固定し、
また、フレーム2の内側に、前記回転子21aの表面と
同心状に対峙して筒形をなす円筒形固定子22aを固定
し、該円筒形固定子巻線に交流電流を流すことにより円
筒形回転子21a及び内部ファン20を回転し得るよう
な内部ファン20用電動機23を形成する。 前記円筒形回転子21aは円筒形固定子22aと対峙す
る側の表面近くに導体を埋め込み、これらの導体を両端
部に配置した短絡環に接続した構造のものとするが、必
ずしもこの形状に限らず鉄心表面にアルミニウム円筒を
取付けたもの若しくはアルミニウム円筒のみにしたもの
にしてもよい。 なお図示は省□略するが、円筒形固定子22aと円筒形
回転子21aは夫々内筒及び外筒の関係に於ても電動機
23を形成せしめることが可能である。即ち、円筒形固
定子22aの固定子巻線を該固定子の内面側に配置し、
且つ円筒形回転子21aの導体を該回転子の外面側に埋
込み、円筒形固定子22aの内面と円筒形回転子21a
の外面とを対峙して成る内部ファン20用電動機23を
形成することが出来る。 第5図は本発明の他の実施例であり、内部ファン20の
裏面にプーリ24を固定し、フレーム2内側に内部ファ
ン用電動機23を取り付け、該電動機23内の回転子と
共に回転可能な軸25にプーリ26を固定し、歯付きベ
ルト27を介して前記プーリ24と共に内部ファン20
を回転させるようにしたものである。 第6図は本発明の更に他の実施例を示し、内部空気14
を循環させる手段としてフレーム2内部に電動ファンを
1個若しくは複数個(図では2個)設けるようにしたも
ので、フレーム2内側に内部ファン用電動機23を取り
付け、該電動機23の軸25に直接内部ファン28を固
定し、また送風、吸風を分離、整流するために、電動機
回転軸7と同心状に、空気の流れ14に沿って傾斜させ
た案内板29を有する円筒体30を前記内部ファン用電
動機23に固定する。 第5図及び第6図の実施例でも第1図の実施例と同様に
、電動機本体lが停止した場合、内部ファン用電動機2
3により内部ファン20.28が回転し、従って外部フ
ァン5と内部ファン20゜28の両方共回転するので、
固定子9及び回転子IO1並びに、固定子巻線11及び
回転子導体12を空冷し、該導体12の溶損を防止する
ことが出来る。 又、第5図及び第6図の実施例で、内部ファン用電動機
23をフレーム2の外側に取り付け、軸25のみをフレ
ーム2内部に延長してその先端にプーリ26又は内部フ
ァン28を固定するようにしてもよい。 第7図及び第8図は本体電動機lのフレーム2に動力伝
達装置43を貫通配置し、該動力伝達装置43により外
部ファン用電動機4の動力を用いて内部ファン20を運
転することにより、本体電動機1の停止や低速度運転に
関係なく内部ファンを回転し得るようにした実施例であ
る。 第7図は外部ファン5の電動機4の軸37と、本体電動
機lのフレーム2の反負荷側に設けた外輪32と中間輪
33と内輪34からなる二重軸受31の中間輪33とを
カップリング36で接続し、更に本体電動機lの内部に
面した中間輪33の他端と内部ファン20の裏面とをカ
ップリング35で接続することによって外部ファン5の
電動機4の駆動力で内部ファン20を回転出来るように
している。 二重軸受31の外輪32はフレーム2に固定され、内輪
34は回転軸7に固定されているので、内部ファン20
の回転が本体電動機1の回転子lOの正常な回転をさま
たげることはない。 第8図は本体電動機lのフレーム2の反負荷側に設けた
軸受39に支持された中間軸38と、外部ファン5の電
動機4の電動機軸37とをプーリ40.41及び歯付ベ
ルト42を介して接続する。更に中間軸38と内部ファ
ン20とをプーリ24.26及び歯付ベルト27を介し
て接続する。 内部ファン2Gは回転軸7上に回転自由に取付けられて
いるから、回転軸7の停止や低速運転に関係なく、外部
ファン5の電動機4の駆動力によって任意に回転させる
ことが出来る。 本発明は、前述の実施例にのみ限定されるものではなく
、本発明の要旨を逸脱しない範囲内で種々の変更を加え
得ることは勿論である。 【発明の効果] 本発明によれば、全門外扇形電動機の停止中若しくは低
速運転中でも常に内部冷却が確保されるので、回転子導
体の溶損を防止し、短時間で次の始動に入り得ることに
より操業効率を高めることが出来、また可変速運転の電
動機に於ては出力の大きい電動機を選定することが不要
となる、等の優れた効果を発揮する。
[Problems to be Solved by the Invention] When the main body electric motor 1 temporarily stops, the operation of the electric motor 4 for the external fan 5 is continued, and the external fan 5 blows air to the surfaces of the frame 2 and fins 6 to clean the outer surface of the main body electric motor 1. Although it is cooling, the rotating shaft 7 is stopped, so the internal fan 8
The air flow 14 due to the stator 9 and the rotor 1 is stopped.
Therefore, the cooling efficiency of the stator winding 11 and the rotor conductor 12 also decreases. Figures 10 (a) and (b) are graphical representations of typical temperature patterns when power loss occurs inside the motor due to the starting current and is affected by temperature rise. is the starting period, N is the period of operation at constant load,
R represents the period during which the motor is stopped and no voltage is applied, and θ-aX represents the maximum temperature during operation. In the case of a relatively small-capacity electric motor with a capacity of less than a few kilometres, the frame 2, stator 9 and rotor l
Since the amount of air intervening between O and O is small, the inside is also cooled by the heat exchange action on the surface of frame 2, and as shown in Fig. 1 O (
As shown in b), the internal temperature drops from the moment the motor stops, but medium-sized and large-sized motors of several tens of kilowatts or more have a large amount of air inside, so heat conduction causes the stator windings 11 and The rotor conductor 12 enters a heat-retaining state, and as shown in Figure 1O (0), the internal temperature hardly decreases and may exceed the maximum temperature (θ-aX) at the next start, and as this process is repeated, the rotation This results in melting loss of the child conductor 12. In recent years, the stator winding 11 has become able to withstand high temperatures due to improvements in insulating materials. However, the rotor conductor 12 generally has an aluminum die-cast or copper alloy brazed structure, so mechanical In order to maintain strength, the maximum allowable temperature is 220°C to 240°C. In addition, electric motors that carry a large inertial load, high torque, and high slip electric motors are severely restricted in their starting opening, so it is currently necessary to wait several hours before the next start. In addition, variable frequency motors, which are becoming increasingly popular these days, operate at variable speeds from 10:1 to 200:1, but when the speed drops below the rated speed of 174, the effectiveness of the internal fan decreases, so countermeasures have been taken. The rated output is set to 1 to 2 frames (1,
A motor that is about 4 to 2 times thicker is selected. Therefore, as a means to maintain internal cooling even when the internal fan 8 stops or rotates at low speed, the motor body l is equipped with a heat exchanger to ensure sufficient cooling during operation so that there is no problem even if the internal fan 8 stops. A method in which the device is kept in place is also currently used, but it has the disadvantage that the entire device is expensive. In view of the above-mentioned circumstances, the present invention allows the external fan and internal fan to continue operating even when the main motor stops, thereby cooling the stator and rotor, as well as the stator windings and rotor conductors. An object of the present invention is to provide an internal cooling device for a full-gate external fan-shaped electric motor. In the all-gate external fan type electric motor provided with an external fan for blowing air, an electric motor for the internal fan is provided inside the frame, and an internal fan is provided for blowing air inside the main body motor using the electric motor for the internal fan as a power source. The fully open external fan type motor is characterized in that an external fan for blowing air to the external surface of the frame is provided on the outside of a frame forming the outer shell of the main motor, and a power transmission device connected to the motor shaft of the external fan to the frame. The device is characterized in that an internal fan is provided which is disposed through the device and blows air into the main body motor using the external fan motor as a power source via the power transmission device. [Function] Even if the main motor stops temporarily or continues to operate at low speed, the internal fan continues to operate together with the external fan, so the inside of the main motor can be air-cooled. [Embodiments] Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings 1 to 8. In addition, Fig. 1, Fig. 4, Fig. 5, Fig. 6,
In FIGS. 7 and 8, the same components as those shown in FIG. 9 are given the same reference numerals. FIG. 1 shows an embodiment of the present invention, in which an internal fan 20 is rotatably attached to a cylindrical portion of a frame 2 of a rotating shaft 7 concentrically with the rotating shaft 7 via a bearing 19.
On the back side, the surface opposite to the internal fan 20 side is the rotating shaft 7.
A donut-shaped flat rotor 2I that is flat perpendicular to the direction and concentric with the rotating shaft 7 is fixed, and a flat rotor 2I that faces the rotor 21 concentrically and whose surface is flat is fixed inside the frame 2. An internal fan 20Jlf1m that can rotate a flat rotor 21 and an internal fan 20 by fixing a flat stator 22 and passing an alternating current through the windings of the hand-shaped stator 22.
Form motive 23. The flat rotor 21 has a structure in which conductors are embedded radially near the surface of a donut-shaped core and these conductors are connected to short-circuit rings arranged on the outer and inner peripheries, but the structure is not limited to this type. An aluminum disk may be attached to the surface of the iron core, or only an aluminum disk may be used. Figures 2 and 3 are diagrams showing the principle of generating a rotating magnetic field in the two-pole, three-phase flat stator 22. When the instantaneous maximum current flows through a phase, a magnetic field is generated in the direction of the arrow in Figure 2 (a). As shown in Figure 3 (b), after 30° has elapsed in phase, when the currents in the R and S phases become 87% in instantaneous value and the current in the T phase becomes zero, the magnetic field changes to the third phase.
As shown in the figure, the rotating magnetic field is also obtained in the flat stator 22, so the flat rotor 21 is placed so as to face it.
can generate rotational torque. Note that it is also possible to adopt a grooved stator winding structure such as full-pitch overlapping winding as in a general-purpose motor. Therefore, when the main motor l stops, the flat stator 2
By passing current through the second winding, the internal fan 20 rotates, causing both the external fan 5 and the internal fan 20 to rotate, and the internal wall of the frame 2 and internal air exchange heat, resulting in ), the internal temperature decreases before the next start, so the rotor conductor 12 does not need to be equipped with an expensive heat exchanger.
It is possible to prevent melting loss. FIG. 4 shows another embodiment of the present invention, in which an internal fan 20 is rotatably mounted concentrically with the rotary shaft 7 via a bearing 19 as in FIG. 1, and rotates on the back side of the internal fan 20. axis 7
A donut-shaped cylindrical rotor 21a concentric with is fixed,
Further, a cylindrical stator 22a having a cylindrical shape is fixed inside the frame 2 so as to face the surface of the rotor 21a concentrically, and by passing an alternating current through the cylindrical stator winding, the cylindrical stator 22a is fixed. An electric motor 23 for the internal fan 20 that can rotate the rotor 21a and the internal fan 20 is formed. The cylindrical rotor 21a has a structure in which conductors are embedded near the surface on the side facing the cylindrical stator 22a, and these conductors are connected to short-circuit rings arranged at both ends, but the shape is not necessarily limited to this. Alternatively, an aluminum cylinder may be attached to the surface of the iron core, or only an aluminum cylinder may be used. Although not shown in the drawings, the cylindrical stator 22a and the cylindrical rotor 21a can also form the electric motor 23 in the relationship of an inner cylinder and an outer cylinder, respectively. That is, the stator winding of the cylindrical stator 22a is arranged on the inner surface of the stator,
Moreover, the conductor of the cylindrical rotor 21a is embedded in the outer surface side of the rotor, and the inner surface of the cylindrical stator 22a and the cylindrical rotor 21a are embedded.
The electric motor 23 for the internal fan 20 can be formed so as to face the outer surface of the internal fan 20. FIG. 5 shows another embodiment of the present invention, in which a pulley 24 is fixed to the back of the internal fan 20, an internal fan electric motor 23 is attached to the inside of the frame 2, and a shaft that can rotate together with the rotor in the electric motor 23 is shown. A pulley 26 is fixed to the internal fan 20 together with the pulley 24 via a toothed belt 27.
It is designed to rotate. FIG. 6 shows yet another embodiment of the invention, in which the internal air 14
One or more electric fans (two in the figure) are installed inside the frame 2 as means for circulating the internal fan.An internal fan electric motor 23 is installed inside the frame 2, and a In order to fix the internal fan 28 and to separate and rectify the air being blown and sucked, a cylindrical body 30 having a guide plate 29 inclined along the air flow 14 is installed concentrically with the motor rotating shaft 7. It is fixed to the fan electric motor 23. In the embodiments shown in FIGS. 5 and 6, similarly to the embodiment shown in FIG. 1, when the motor main body l stops, the internal fan motor 2
3 causes the internal fan 20.28 to rotate, and therefore both the external fan 5 and the internal fan 20.28 rotate, so
The stator 9 and the rotor IO1, as well as the stator winding 11 and the rotor conductor 12, are air-cooled to prevent melting and damage of the conductor 12. Further, in the embodiments shown in FIGS. 5 and 6, the internal fan electric motor 23 is attached to the outside of the frame 2, and only the shaft 25 is extended inside the frame 2, and the pulley 26 or the internal fan 28 is fixed to the tip thereof. You can do it like this. 7 and 8, a power transmission device 43 is disposed through the frame 2 of the main body electric motor 1, and the power transmission device 43 operates the internal fan 20 using the power of the external fan electric motor 4. This is an embodiment in which the internal fan can be rotated regardless of whether the electric motor 1 is stopped or operated at low speed. FIG. 7 shows a cup between the shaft 37 of the electric motor 4 of the external fan 5 and the intermediate ring 33 of a double bearing 31 consisting of an outer ring 32, an intermediate ring 33, and an inner ring 34 provided on the opposite load side of the frame 2 of the main motor l. By connecting the ring 36 and further connecting the other end of the intermediate wheel 33 facing the inside of the main body electric motor l and the back surface of the internal fan 20 with the coupling 35, the internal fan 20 is driven by the driving force of the electric motor 4 of the external fan 5. can be rotated. Since the outer ring 32 of the double bearing 31 is fixed to the frame 2 and the inner ring 34 is fixed to the rotating shaft 7, the internal fan 20
The rotation of the motor does not disturb the normal rotation of the rotor lO of the main motor 1. FIG. 8 shows an intermediate shaft 38 supported by a bearing 39 provided on the opposite load side of the frame 2 of the main motor 1, and a motor shaft 37 of the motor 4 of the external fan 5, connected to a pulley 40, 41 and a toothed belt 42. Connect via Furthermore, the intermediate shaft 38 and the internal fan 20 are connected via a pulley 24, 26 and a toothed belt 27. Since the internal fan 2G is rotatably mounted on the rotating shaft 7, it can be rotated arbitrarily by the driving force of the electric motor 4 of the external fan 5, regardless of whether the rotating shaft 7 is stopped or operating at low speed. It goes without saying that the present invention is not limited to the above-described embodiments, and that various changes can be made without departing from the gist of the present invention. [Effects of the Invention] According to the present invention, internal cooling is always ensured even when the all-gate fan type motor is stopped or operating at low speed, so rotor conductors are prevented from being melted and the next startup can be started in a short time. As a result, operating efficiency can be improved, and in the case of variable speed motors, it is not necessary to select a motor with a large output, and other excellent effects are exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図0)(ロ)
及び第3図■バロ)は2極3相平形の固定子回転磁界発
生の原理図、第4図、第5図、第6図、第7図、第8図
は何れも本発明の他の実施例の断面図、第9図は従来装
置の断面図、第10図〈イ)(ロ)は全閉外扇形電動機
の負荷、損失、内部温度をグラフで示した図である。 図中1は本体電動機、2はフレーム、4は電動機、5は
外部ファン、20.28は内部ファン、21.21aは
回転子、22.22aは固定子、23は内部ファン用電
動機、31は二重軸受、37は電動機軸、38は中間軸
、43は動力伝達装置を示す。
Figure 1 is a sectional view of one embodiment of the present invention, Figure 2 0) (b)
and Fig. 3 ■ Baro) is a principle diagram of the generation of a rotating magnetic field in a two-pole three-phase flat stator, and Figs. FIG. 9 is a sectional view of the embodiment, FIG. 9 is a sectional view of a conventional device, and FIGS. In the figure, 1 is the main motor, 2 is the frame, 4 is the motor, 5 is the external fan, 20.28 is the internal fan, 21.21a is the rotor, 22.22a is the stator, 23 is the internal fan motor, and 31 is the internal fan. 37 is a motor shaft, 38 is an intermediate shaft, and 43 is a power transmission device.

Claims (1)

【特許請求の範囲】 1)本体電動機の外殻を形成するフレームの外部に、該
フレームの外面に送風する外部ファンを設けた全閉外扇
形電動機において、前記フレームの内部に、内部ファン
用電動機を設けると共に、該内部ファン用電動機を動力
源として前記本体電動機内部に送風する内部ファンを設
けたことを特徴とする全閉外扇形電動機の内部冷却装置
。 2)内部ファンの裏面に、該ファンと同心状の回転子を
固定し、且つフレームの内側に、前記回転子と同心状の
固定子を固定することにより内部ファン用電動機を形成
したことを特徴とする請求項1記載の全閉外扇形電動機
の内部冷却装置。 3)本体電動機の外殻を形成するフレームの外部に、該
フレームの外面に送風する外部ファンを設けた全閉外扇
形電動機において、前記フレームに前記外部ファンの電
動機軸に接続した動力伝達装置を貫通配置し、該動力伝
達装置を介して前記外部ファン用電動機を動力源として
前記本体電動機内部に送風する内部ファンを設けたこと
を特徴とする全閉外扇形電動機の内部冷却装置。
[Scope of Claims] 1) In a fully enclosed external fan-type motor in which an external fan for blowing air to the outer surface of the frame is provided on the outside of a frame forming the outer shell of the main motor, an electric motor for the internal fan is provided inside the frame. What is claimed is: 1. An internal cooling device for a totally enclosed external fan type motor, characterized in that an internal fan is provided for blowing air into the main body motor using the internal fan motor as a power source. 2) A motor for the internal fan is formed by fixing a rotor concentric with the fan to the back surface of the internal fan, and fixing a stator concentric with the rotor to the inside of the frame. An internal cooling device for a totally enclosed external sector electric motor according to claim 1. 3) In a fully enclosed external fan type electric motor in which an external fan for blowing air to the outer surface of the frame is provided on the outside of a frame forming the outer shell of the main motor, a power transmission device connected to the motor shaft of the external fan passes through the frame. 1. An internal cooling device for a completely enclosed external fan type motor, characterized in that an internal fan is provided which blows air into the main body motor using the external fan motor as a power source via the power transmission device.
JP561989A 1989-01-12 1989-01-12 Internal cooler for enclosed outer fan type motor Pending JPH02188143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP561989A JPH02188143A (en) 1989-01-12 1989-01-12 Internal cooler for enclosed outer fan type motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP561989A JPH02188143A (en) 1989-01-12 1989-01-12 Internal cooler for enclosed outer fan type motor

Publications (1)

Publication Number Publication Date
JPH02188143A true JPH02188143A (en) 1990-07-24

Family

ID=11616194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP561989A Pending JPH02188143A (en) 1989-01-12 1989-01-12 Internal cooler for enclosed outer fan type motor

Country Status (1)

Country Link
JP (1) JPH02188143A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020601A1 (en) * 1996-11-07 1998-05-14 Fanuc Ltd Air cooled motor
CN101885075A (en) * 2010-07-01 2010-11-17 东南大学 Air cooling device for controlling thermal deformation of spindle box of vertical machine tool
DE102015015650A1 (en) 2014-12-09 2016-06-09 Fanuc Corporation Cooling system of an electric motor with fan
CN107294285A (en) * 2017-08-18 2017-10-24 迪百仕电机科技(苏州)有限公司 A kind of circulating air cooling motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020601A1 (en) * 1996-11-07 1998-05-14 Fanuc Ltd Air cooled motor
US6078115A (en) * 1996-11-07 2000-06-20 Fanuc Ltd Air-cooled motor
CN101885075A (en) * 2010-07-01 2010-11-17 东南大学 Air cooling device for controlling thermal deformation of spindle box of vertical machine tool
DE102015015650A1 (en) 2014-12-09 2016-06-09 Fanuc Corporation Cooling system of an electric motor with fan
US10468946B2 (en) 2014-12-09 2019-11-05 Fanuc Corporation Cooling system of electric motor with fan
CN107294285A (en) * 2017-08-18 2017-10-24 迪百仕电机科技(苏州)有限公司 A kind of circulating air cooling motor

Similar Documents

Publication Publication Date Title
US5744880A (en) Rotating motor and motor-driven vehicle
US8288901B2 (en) Method and device for cooling an electric machine
EP1240702B1 (en) Thermally protected electric machine
JP3985760B2 (en) Rotating electrical machine system
JP4187606B2 (en) Electric motor
KR100481600B1 (en) Turbo machine
CA2416485A1 (en) Rotor cooling apparatus
JP2007228677A (en) Generating set and rotary electric machine
CN115224834B (en) High-temperature interference prevention permanent magnet synchronous motor
JPH11262219A (en) Electrical machine
JP6225730B2 (en) Rotating electric machine
JPH0591696A (en) Rotating machine
JPH02188143A (en) Internal cooler for enclosed outer fan type motor
JPH08298736A (en) Rotor with permanent magnet of magnet synchronous rotating machine
CN112072818B (en) Rotor, asynchronous motor and compressor
JP3832187B2 (en) Electric motor for compressor
JP4008314B2 (en) High speed induction motor
JP5476047B2 (en) Electric motor and motor housing
JP2001037190A (en) Dynamo-electric machine with self-starting permanent magnet
KR200243456Y1 (en) Endring structure that rotor bar of induction motor
JPH05137284A (en) Cooler for starting winding of cylindrical synchronous motor
JPH09322444A (en) Permanent magnet motor with controller
US3250933A (en) Dynamoelectric machine cooling
JP2878347B2 (en) Fully closed multiple stator induction motor
JP2885450B2 (en) Cooling device for multiple stator induction motor