JPH021875B2 - - Google Patents

Info

Publication number
JPH021875B2
JPH021875B2 JP4807980A JP4807980A JPH021875B2 JP H021875 B2 JPH021875 B2 JP H021875B2 JP 4807980 A JP4807980 A JP 4807980A JP 4807980 A JP4807980 A JP 4807980A JP H021875 B2 JPH021875 B2 JP H021875B2
Authority
JP
Japan
Prior art keywords
solvent
src
solution
refined coal
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4807980A
Other languages
Japanese (ja)
Other versions
JPS56145974A (en
Inventor
Hisashi Murakami
Hiroshi Uchama
Toshikatsu Ootsubo
Mitsutoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI KOZAN KASEI KK
TOYO ENJINIARINGU KK
Original Assignee
MITSUI KOZAN KASEI KK
TOYO ENJINIARINGU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI KOZAN KASEI KK, TOYO ENJINIARINGU KK filed Critical MITSUI KOZAN KASEI KK
Priority to JP4807980A priority Critical patent/JPS56145974A/en
Publication of JPS56145974A publication Critical patent/JPS56145974A/en
Publication of JPH021875B2 publication Critical patent/JPH021875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は溶剤精製石炭の製造方法に関する。
更に詳細に云えば、溶剤精製石炭、以下において
SRC(=Solvent Refined Coal)と略称、を希薄
濃度で含有する溶液から、その溶剤を一段階のみ
の蒸発工程によつて蒸発させることによつて、高
軟化点のSRCを得ることが可能であるSRCの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for producing solvent refined coal.
More specifically, by evaporating the solvent from a solution containing a dilute concentration of solvent refined coal, hereafter abbreviated as SRC (Solvent Refined Coal), in a single evaporation step, The present invention relates to a method for manufacturing SRC that allows obtaining SRC with a high softening point.

[従来技術の問題点] よく知られているように、石炭粉末を溶剤に分
散させ、少量の水素とともに高温高圧において水
添分解させて溶剤中に溶解させることによつて得
られる反応混合物から不溶解物が除去された後
に、溶剤が多段階の蒸発工程により蒸発させられ
蒸発後の残留物として、SRCが得られている。
[Problems with the prior art] As is well known, coal powder is dispersed in a solvent, hydrogenated with a small amount of hydrogen at high temperature and pressure, and dissolved in the solvent. After the dissolved matter is removed, the solvent is evaporated in a multi-stage evaporation process to obtain SRC as a residue after evaporation.

SRCを工業的に生産する場合、大量の溶剤を
入手することは困難であるため、新たな溶剤を追
加供給することなく、回収溶剤の循環使用のみに
よつて製造工程の物質収支を均衡させることが望
ましいのであり、このためには溶剤回収率を向上
させることが必要となる。
When producing SRC industrially, it is difficult to obtain a large amount of solvent, so it is necessary to balance the material balance of the manufacturing process only by recycling the recovered solvent without additionally supplying new solvent. is desirable, and for this purpose it is necessary to improve the solvent recovery rate.

SRC自体の軟化点は200〜300℃であり高いの
であるが、SRC中の残留溶剤量が増大するに伴
つて軟化点が低くなる。
The softening point of SRC itself is 200 to 300°C, which is high, but as the amount of residual solvent in SRC increases, the softening point becomes lower.

従つて、溶剤回収後のSRCの軟化点が溶剤の
回収率の指標となる。
Therefore, the softening point of SRC after solvent recovery is an indicator of the solvent recovery rate.

溶剤回収のために、従来、専ら使用された方法
は多段蒸発法であるが、SRC希薄溶液から溶剤
の回収度を高くして、軟化点が高いSRCを取得
するための方法としては、多段蒸発法はその装置
とその操作の面において有利な方法であるとは言
い難い。この発明の目的は、SRCの希薄溶液か
ら軟化点が高いSRCを、一段階を以て取得する
ための方法の提供である。
Conventionally, the method exclusively used for solvent recovery is multistage evaporation, but multistage evaporation is a method to increase the recovery rate of solvent from a dilute SRC solution and obtain SRC with a high softening point. It cannot be said that the method is advantageous in terms of its equipment and its operation. An object of the present invention is to provide a method for obtaining SRC with a high softening point from a dilute solution of SRC in one step.

[発明の構成] この発明のSRCの製造方法は溶剤中において
水素圧力下に、石炭を加熱分解させ、生成した反
応混合物から不溶解物が除去されて得られる濃度
30重量%以下のSRC溶液から溶剤を除去して
SRCを得るに当り、SRC溶液を430℃を超えない
温度に加熱して、減圧されたフラツシユ域に送入
してフラツシユさせ、溶剤を分離させてSRC溶
融物を生成させ、この溶融物の一部を新たに溶剤
分離工程に供給されるSRC溶液中に還流させる
ことによつて、加熱工程を経て減圧フラツシユ域
に供給されるSRC溶液中のSRC濃度を30重量%
を超える濃度に維持することを特徴とするのであ
る。
[Structure of the Invention] The method for producing SRC of the present invention is to thermally decompose coal under hydrogen pressure in a solvent, and to remove insoluble matter from the resulting reaction mixture.
To obtain SRC by removing the solvent from an SRC solution of 30% by weight or less, the SRC solution is heated to a temperature not exceeding 430°C and sent to a flashing area under reduced pressure to flash and separate the solvent. By refluxing a portion of this melt into the SRC solution that is newly fed to the solvent separation step, the amount of SRC in the SRC solution that is fed to the vacuum flash zone through the heating step is SRC concentration 30% by weight
It is characterized by maintaining the concentration above .

発明者らはSRCの希薄溶液から一段階を以て
溶剤を蒸発させて軟化点が高い、即ち、溶剤回収
度が高いSRCを得るべく種々検討を重ねて以下
に述べる事実を見出し、この発明に到達した。
The inventors conducted various studies in order to obtain SRC with a high softening point, that is, a high solvent recovery rate by evaporating the solvent from a dilute solution of SRC in one step, and discovered the following facts, and arrived at this invention. .

即ち、所望のSRCの軟化点とフラツシユ域の
圧力を一定とすれば、SRC溶液の濃度が希薄に
なればなる程、フラツシユ域に供給される溶液の
温度を高くすることが必要となるのであつて、例
えば、フラツシユ域圧力を水銀柱80mmとして軟化
点160℃のSRCを得るには、SRC溶液の濃度が50
重量%である場合、供給SRC溶液の温度は約385
℃であればよいが、濃度が20重量%である場合、
約460℃にまで加熱されたSRC溶液が、フラツシ
ユ域に供給されることが必要となる。
That is, assuming that the desired softening point of SRC and the pressure in the flash region are constant, the more dilute the concentration of the SRC solution, the higher the temperature of the solution supplied to the flash region needs to be. For example, to obtain SRC with a softening point of 160°C when the flash region pressure is 80 mm of mercury, the concentration of the SRC solution must be 50 mm.
% by weight, the temperature of the feed SRC solution is approximately 385
℃, but if the concentration is 20% by weight,
It is necessary that an SRC solution heated to about 460° C. be supplied to the flash zone.

一方、SRC溶液が430℃を超えて加熱される場
合には、SRC自体にも、また溶剤にも熱分解反
応が発生して、その性状が劣化する。
On the other hand, when the SRC solution is heated above 430° C., thermal decomposition reactions occur in the SRC itself and in the solvent, resulting in deterioration of its properties.

更に加えて、製品のSRCの品質の低下のみで
なく、加熱炉内に配設された加熱管中における重
合物、乃至、炭化物の生成による加熱管の閉塞と
いう操業上の重大な支障障碍の発生を促進するこ
ととなる。
In addition, not only will the SRC quality of the product deteriorate, but the formation of polymers or carbides in the heating tubes installed in the heating furnace will cause clogging of the heating tubes, which will cause serious operational problems. This will promote

フラツシユ域に供給されるSRC溶液の温度を
430℃を超えるものとすることは、絶対に避ける
必要がある。
The temperature of the SRC solution supplied to the flash area
It is absolutely necessary to avoid temperatures exceeding 430℃.

従って、SRC溶液の加熱炉の容量を如何に大
くても希薄なSRC溶液から高い軟化点を有
するSRCを得ることはできない。
Therefore, no matter how large the capacity of the SRC solution heating furnace is, it is impossible to obtain SRC having a high softening point from a dilute SRC solution.

しかしながら、この困難な課題は、意外にもフ
ラツシユ域から溶融物として取出されたSRCの
一部分をフラツシユ域へ供給されるべきSRC溶
液に還流させて混合するという極めて簡易な手段
によつて解決された。
However, this difficult problem was surprisingly solved by an extremely simple method of refluxing and mixing a portion of the SRC taken out as a melt from the flash zone with the SRC solution to be supplied to the flash zone. .

このようにすることによつて、SRC溶液中の
SRCの濃度が上昇して、フラツシユ域に供給さ
れるSRC溶液の加熱温度を430℃を超えない温度
とすることができる。
By doing this, the concentration of SRC in the SRC solution increases, and the heating temperature of the SRC solution supplied to the flash area can be kept at a temperature that does not exceed 430°C.

第1図により説明すれば、従来はライン1より
SRC溶液がリザーバー2に貯留されてライン3
を経てポンプ4によつて所要の圧力に昇圧され、
加熱炉5中の加熱管とライン6を経て、蒸発塔7
に導入され、ここにおいてフラツシユさせられ、
溶剤はライン8により、また、SRCはライン9
により全量が系外に取り出されていたが、この発
明の方法においてはSRCの一部がライン10に
よりリザーバー2に還流させられ、加熱炉5へ送
入されるSRC溶液のSRC濃度を大きくするので
ある。
To explain with reference to FIG. 1, conventionally, the SRC solution from line 1 is stored in reservoir 2 and line 3
The pressure is increased to the required pressure by the pump 4,
After passing through the heating tube in the heating furnace 5 and the line 6, it is transferred to the evaporation tower 7.
was introduced into the country and flashed here,
Solvent via line 8 and SRC via line 9
However, in the method of the present invention, a part of the SRC is refluxed to the reservoir 2 through the line 10, increasing the SRC concentration of the SRC solution sent to the heating furnace 5. be.

この発明の方法において処理対象となるライン
1より供給されるSRC溶液の濃度は30重量%以
下である。
In the method of this invention, the concentration of the SRC solution supplied from line 1 to be treated is 30% by weight or less.

フラツシユ域の圧力は、好ましくは水銀柱30〜
100mm、特に好ましくは50〜80mmである。
The pressure in the flash zone is preferably 30 to 30 mercury.
100 mm, particularly preferably 50 to 80 mm.

フラツシユ域に供給されるSRCの温度は430℃
を超えてはならないが、その下限の温度は所望の
SRCの軟化点、SRC溶液の濃度、およびフラツ
シユ域圧力により決定される。
The temperature of SRC supplied to the flash area is 430℃
The lower temperature limit should not be exceeded, but the lower temperature limit is determined by the desired softening point of the SRC, the concentration of the SRC solution, and the flash zone pressure.

SRC溶融物をSRC溶液に還流混合するにはフ
ラツシユするべき溶剤の混入を防止するためにポ
ンプを使用することなく位置頭差のみによつて還
流させることが好ましく、フラツシユ域の据付高
さを、還流のために充分な位置頭差が得られるよ
うに調整することが好ましい。
In order to reflux mix the SRC melt into the SRC solution, it is preferable to reflux only by position difference without using a pump in order to prevent mixing of the solvent to be flashed. It is preferable to adjust so that a sufficient positional difference is obtained for reflux.

[発明の効果] この発明によれば、SRC濃度30重量%以下の
希薄溶液から溶剤が蒸発させられ、回収されて所
定の軟化点を有するSRCが、一段階の蒸発によ
つて、しかもSRCと溶剤の性状を何ら害するこ
となく極めて簡易な方法を以て得られる。
[Effects of the Invention] According to the present invention, the solvent is evaporated from a dilute solution having an SRC concentration of 30% by weight or less, and SRC that is recovered and has a predetermined softening point is converted into SRC and SRC by one-step evaporation. It can be obtained by an extremely simple method without impairing the properties of the solvent.

以下に、比較例と実施例を示すが、この発明は
この実施例によつて限定されるものではない。
Comparative examples and examples are shown below, but the invention is not limited to these examples.

[比較例] 三池瀝青炭から常法によつて得られた濃度24重
量%のSRC溶液が加熱炉中を通されて、その出
口温度が430℃となるように加熱された。
[Comparative Example] An SRC solution with a concentration of 24% by weight obtained from Miike bituminous coal by a conventional method was passed through a heating furnace and heated so that its outlet temperature was 430°C.

次いで加熱されたSRC溶液が、毎時100重量部
の流量を以て減圧溶剤回収塔中に送入され圧力80
mm水銀柱に保持された減圧溶剤回収塔中にてフラ
ツシユさせられた。
The heated SRC solution is then fed into a vacuum solvent recovery column at a flow rate of 100 parts by weight per hour to a pressure of 80%.
It was flashed in a vacuum solvent recovery column held in a column of mm mercury.

このフラツシユによつて溶剤は蒸発して、塔頂
から抽出されて回収され、一方、塔底から軟化点
66℃のSRCの溶融物が毎時34重量部の流量を以
て得られたが、この軟化点66℃のSRC溶融物は、
軟化点160℃のSRC24重量部と溶剤10重量部から
なるものであり、減圧溶剤回収塔負荷は大きくな
いのにも拘らず、溶剤の分離は不完全であり、毎
時10重量部の溶剤が製品とされるべきSRCに混
入して、系外に排出されてしまうこととなつた。
Through this flashing, the solvent is evaporated and extracted from the top of the column and recovered, while from the bottom of the column it is
A melt of SRC at 66°C was obtained with a flow rate of 34 parts by weight per hour; this SRC melt with a softening point of 66°C was
It consists of 24 parts by weight of SRC with a softening point of 160°C and 10 parts by weight of solvent, and although the load on the vacuum solvent recovery tower is not large, the separation of the solvent is incomplete, and 10 parts by weight of solvent is lost to the product every hour. This resulted in it getting mixed into the SRC, which should have been treated as waste, and being discharged outside the system.

[実施例] 発明の方法により毎時105重量部をSRC溶液の
リザーバーへ位置頭差により還流させ、SRC溶
液のリザーバーからは減圧溶剤回収塔中に毎時
205重量部の流量を以て、SRC溶液が送入されフ
ラツシユさせられた。
[Example] According to the method of the invention, 105 parts by weight per hour are refluxed to a reservoir of SRC solution by position difference, and from the reservoir of SRC solution is refluxed per hour into a vacuum solvent recovery column.
SRC solution was introduced and flushed at a flow rate of 205 parts by weight.

減圧溶剤回収塔に供給されるSRC溶液の量は
倍増したのにも拘らず溶剤分離工程が定常状態に
達した後に塔底から得られるSRCの溶融物の軟
化点は160℃になつた。
Even though the amount of SRC solution fed to the vacuum solvent recovery tower was doubled, the softening point of the SRC melt obtained from the bottom of the tower was 160°C after the solvent separation process reached a steady state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の方法を説明するためのフ
ローシートである。 1…ライン(SRC溶液)、2…リザーバー、3
…ライン、4…ポンプ、5…加熱炉、6…ライ
ン、7…蒸発塔(フラツシユ域・減圧溶剤回収
塔)、8…ライン(溶剤)、9…ライン(SRC)、
10…ライン(SRC)、11…検出端、12…調
節弁。
FIG. 1 is a flow sheet for explaining the method of the present invention. 1... Line (SRC solution), 2... Reservoir, 3
...Line, 4...Pump, 5...Heating furnace, 6...Line, 7...Evaporation tower (flash area/vacuum solvent recovery tower), 8...Line (solvent), 9...Line (SRC),
10...Line (SRC), 11...Detection end, 12...Control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 溶剤中において水素圧力下に、石炭を加熱分
解させて、生成する反応混合物から不溶解物が除
去して得られる濃度30重量%以下の溶剤精製石炭
溶液から溶剤を除去して溶剤精製石炭を得るに当
つて、溶剤精製石炭溶液を430℃を超えない温度
に加熱して、減圧フラツシユ域に送入してフラツ
シユさせて、溶剤を分離させて溶剤精製石炭の溶
融物を生成させ、この溶融物の一部をこの溶剤分
離工程に新たに供給される溶剤精製石炭溶液中に
還流させることにより、加熱工程を経た後、減圧
フラツシユ域に送入される溶剤精製石炭溶液中の
溶剤精製石炭の濃度を30重量%を超える濃度に維
持することを特徴とする溶剤精製石炭の製造法。
1. Solvent refined coal is obtained by removing the solvent from a solvent refined coal solution with a concentration of 30% by weight or less obtained by thermally decomposing coal under hydrogen pressure in a solvent and removing insoluble matter from the resulting reaction mixture. To obtain the solution, the solvent-refined coal solution is heated to a temperature not exceeding 430°C and sent to a vacuum flashing zone to flash, separating the solvent and producing a melt of solvent-refined coal; By refluxing some of the substances into the solvent refined coal solution newly supplied to this solvent separation process, the solvent refined coal in the solvent refined coal solution that is sent to the vacuum flashing area after the heating process is removed. A method for producing solvent refined coal, characterized by maintaining the concentration at a concentration exceeding 30% by weight.
JP4807980A 1980-04-14 1980-04-14 Preparation of solvent-refined coal Granted JPS56145974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4807980A JPS56145974A (en) 1980-04-14 1980-04-14 Preparation of solvent-refined coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4807980A JPS56145974A (en) 1980-04-14 1980-04-14 Preparation of solvent-refined coal

Publications (2)

Publication Number Publication Date
JPS56145974A JPS56145974A (en) 1981-11-13
JPH021875B2 true JPH021875B2 (en) 1990-01-16

Family

ID=12793323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4807980A Granted JPS56145974A (en) 1980-04-14 1980-04-14 Preparation of solvent-refined coal

Country Status (1)

Country Link
JP (1) JPS56145974A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722208B2 (en) * 2011-12-28 2015-05-20 株式会社神戸製鋼所 Production method of ashless coal
US9334457B2 (en) 2011-12-28 2016-05-10 Kobe Steel, Ltd. Ash-free coal production method
JP6017356B2 (en) * 2013-03-25 2016-10-26 株式会社神戸製鋼所 Production method of ashless coal

Also Published As

Publication number Publication date
JPS56145974A (en) 1981-11-13

Similar Documents

Publication Publication Date Title
US3819663A (en) Catalyst recycle
US4469661A (en) Destruction of polychlorinated biphenyls and other hazardous halogenated hydrocarbons
JPS589681B2 (en) Continuous separation method for high-boiling heat-sensitive substances
SU547173A3 (en) Method for continuous production of polyhydric alcohols
JPH02276889A (en) Method for treating temperature sensitive hydrocarbon flow containing undistillable component
JPH021875B2 (en)
EP0270953B1 (en) Preparation of anhydrous alkanesulfonic acid
SU489312A3 (en) The method of producing tetrachlorophthalonitrile
US2628991A (en) Removal of boron fluoride from reactive hydrocarbons
DE3875314T2 (en) METHOD FOR HYDRATING TEMPERATURE-SENSITIVE WASTE CARBON MATERIALS.
KR0179635B1 (en) Process for the production of anhydrous oxime from an aqueous solution
US2574759A (en) Continuous process for making alkyllead compounds
US3993671A (en) Method for the continuous dehydration of maleic acid
EP0126058B1 (en) Inorganic salt recovery method
JPH06184009A (en) Production of purified naphthalene
US4658012A (en) Process for purifying chlorinated aliphatic polymers
US2759981A (en) Sulphur dioxide chlorination of phenol
US3288790A (en) Production of hexamethylene
US4245090A (en) Process for the recovery of cyanuric chloride
US3981967A (en) Process for the recovery of bound mercury from mercury-containing catalysts
WO1991007372A1 (en) Process for the recovery of catalyst values
JPH0430381B2 (en)
US2991314A (en) Process for cleavage of lignin to produce phenols
US3117155A (en) Production of adiponitrile from a residue of delta-cyano-valeramide
US4245091A (en) Process for the recovery of cyanuric chloride