JPH02187496A - Production of water gas and device therefor - Google Patents

Production of water gas and device therefor

Info

Publication number
JPH02187496A
JPH02187496A JP1007929A JP792989A JPH02187496A JP H02187496 A JPH02187496 A JP H02187496A JP 1007929 A JP1007929 A JP 1007929A JP 792989 A JP792989 A JP 792989A JP H02187496 A JPH02187496 A JP H02187496A
Authority
JP
Japan
Prior art keywords
coke
water gas
heated
furnace
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1007929A
Other languages
Japanese (ja)
Inventor
Mizuho Tanaka
瑞穂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP1007929A priority Critical patent/JPH02187496A/en
Publication of JPH02187496A publication Critical patent/JPH02187496A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To continuously and economically produce water gas by directly heating powdery coke with heated fire-resistant solid and bringing into contact with steam. CONSTITUTION:Powdery coke b in hopper 9 is fed to coke-heating furnace 2 and directly brought into contact with fire-resistant solid a preferably composed of alumina-based new ceramic heated to about 1400 deg.C in solid heating furnace 1 and heated to about 1300 deg.C with mixing. Next, the coke b and the fire-resistant solid a are fed into gas-generating furnace at about 1300 deg.C and brought into contact with high-temperature steam c sent from lower part of the furnace, then reacted to generate water gas. The water gas is cooled in heat-recovering boiler 13 through cyclone 12, then a part of the water gas is used as fuel of hot air-generating furnace 17 and remainder is recovered as water gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はコークスを原料として、水性ガスを製造する水
性ガス製造方法及び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a water gas production method and apparatus for producing water gas using coke as a raw material.

〔従来の技術〕[Conventional technology]

一般に水性ガスは、高温のコークスに水蒸気を接触させ
て製造される。又、水性ガス発生装置の運転はサイクリ
ック運転が行なわれるのが特徴である(文献、「石炭化
学工業」産業図書、1960年)。
Generally, water gas is produced by bringing steam into contact with hot coke. Furthermore, the operation of the water gas generator is characterized by cyclic operation (Reference, "Coal Chemical Industry" Sangyo Tosho, 1960).

以下にその内容を説明する。The contents will be explained below.

ガス発生炉内にはコークスがその着火温度以上に保持さ
れた状態で積層されている。これに空気を送入すること
により、コークスは燃焼熱によりさらに高温状態に加熱
される(これを−般にブローと称している)、その後空
気の送入を停止し、水蒸気の送入が行なわれ、高温のコ
ークスと水蒸気が接触することにより水性ガスが発生す
る(これを一般にメータと称している)。高温のコーク
スと水蒸気の反応は吸熱反応であるため、メータ運転中
コークス温度は徐々に低下していく、従って、コークス
温度がその着火温度以下となる前に水蒸気の送入を停止
し、再び空気を送入し、コークスの再加熱を行なう。こ
の様に、水性ガス発生装置の運転はブローとメータが交
互に行なわれるサイクリック運転が行なわれている。
Coke is stacked in a gas generating furnace in a state where the coke is maintained at a temperature higher than its ignition temperature. By feeding air into the coke, the coke is heated to a higher temperature by the heat of combustion (this is generally called blowing), and then the air feeding is stopped and steam is introduced. When high temperature coke and water vapor come into contact, water gas is generated (this is generally called a meter). Since the reaction between high-temperature coke and steam is an endothermic reaction, the coke temperature gradually decreases during meter operation. Therefore, before the coke temperature drops below its ignition temperature, the steam supply is stopped and the air is turned on again. The coke is reheated. In this manner, the water gas generator is operated in a cyclic manner in which blowing and metering are performed alternately.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上に示す如く、従来の水性ガス発生装置はサイクリッ
ク運転によっているのが一般的である。一般的には連続
運転が種々の面で有利であることは明白であるが、連続
化が困難なのは次のような理由によるものである。
As shown above, conventional water gas generators generally operate in a cyclic manner. It is clear that continuous operation is generally advantageous in various aspects, but continuous operation is difficult for the following reasons.

コークスと水蒸気の反応は水性ガス反応と呼ばれ吸熱反
応であり、又、反応を迅速に行なわせるためには、高温
(約800℃以上)に維持する必要がある。従って、水
性ガス発生装置の運転を連続化するためには、高温状態
で迅速に熱を連続的に供給する必要がある。これを実施
するため例えば間接加熱方式によりコークスを加熱する
とした場合、加熱源はより以上の高温度である必要があ
り、さらに間接加熱を行なう隔壁の耐熱性及び設備コス
ト上にも問題が残る。
The reaction between coke and steam is called a water gas reaction and is an endothermic reaction, and in order to carry out the reaction quickly, it is necessary to maintain the temperature at a high temperature (approximately 800° C. or higher). Therefore, in order to operate the water gas generator continuously, it is necessary to rapidly and continuously supply heat in a high temperature state. In order to carry out this, for example, when coke is heated by an indirect heating method, the heating source needs to be at an even higher temperature, and furthermore, problems remain in terms of heat resistance of the partition wall and equipment cost for indirect heating.

次に直接加熱による場合、簡単に得られる高温の加熱源
ガスとして、燃焼ガスを採用し、コークスと直接接触に
より熱の供給を行なうとした場合、燃焼ガス中の820
又はCO2とコークスとの反応により発生ガスの歩留り
が悪くなるという欠点を持つ。
Next, in the case of direct heating, combustion gas is used as the easily obtained high-temperature heating source gas, and if heat is supplied by direct contact with coke, the 820
Alternatively, there is a drawback that the yield of generated gas is poor due to the reaction between CO2 and coke.

以上の如く、高温状態で迅速に且つ不活性状態で経済的
に熱を供給することが難しいことが水性ガス発生装置の
運転の連続化を困難にしている。
As described above, it is difficult to economically supply heat quickly and in an inert state at high temperatures, which makes it difficult to operate the water gas generator continuously.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記課題を有利に解決したものであり、その要
旨は次の通りである。
The present invention advantageously solves the above problems, and the gist thereof is as follows.

1 粉粒状のコークスを原料とする水性ガス製造方法に
おいて、加熱した耐火性固体とコークスを直接接触させ
てコークスを加熱した後、該コークスに水蒸気を接触さ
せて連続的に水性ガスを製造することを特徴とする水性
ガス製造方法。
1. In a water gas production method using powdered coke as a raw material, after heating the coke by bringing the heated refractory solid into direct contact with the coke, water vapor is brought into contact with the coke to continuously produce water gas. A water gas production method characterized by:

2 粉粒状のコークスを原料とする水性ガス製造装置に
おいて、熱風により耐火性固体を直接加熱する固体加熱
炉、固体加熱炉で加熱された耐火性固体でコークスを加
熱するコークス加熱炉、コークス加熱炉で加熱されたコ
ークスに水蒸気を接触させ水性ガスを発生させるガス発
生炉、燃焼用空気の予熱を行なう空気予熱炉を順次竪型
に配置したことを特徴とする水性ガス製造装置。
2. In water gas production equipment that uses powdered coke as raw material, solid heating furnaces that directly heat refractory solids with hot air, coke heating furnaces that heat coke with refractory solids heated in solid heating furnaces, and coke heating furnaces. A water gas production device characterized in that a gas generating furnace that brings steam into contact with heated coke to generate water gas, and an air preheating furnace that preheats combustion air are arranged vertically in sequence.

(実施例及び作用〕 本発明の実施例装置及びそのフローを第1図に、コーク
ス加熱炉内の詳細を第2図に示す。
(Example and operation) An example apparatus of the present invention and its flow are shown in FIG. 1, and details inside a coke heating furnace are shown in FIG. 2.

本発明はコークスの加熱及び水性ガス反応に必要な熱を
耐火性固体aを加熱媒体として使用することを特徴とし
ている。ここで使用される耐火性固体として適当なもの
として、アルミナ系のニューセラミックの物性を表−1
に示す。
The present invention is characterized by using refractory solid a as a heating medium to generate the heat necessary for coke heating and water gas reaction. Table 1 shows the physical properties of alumina-based new ceramics that are suitable as refractory solids used here.
Shown below.

表−1耐火性固体の物性(−例) 表1に示す如く、耐火性、熱伝導性、耐摩耗性に優れ、
高温状態での熱の受漫に優れた加熱媒体である。
Table-1 Physical properties of fire-resistant solids (examples) As shown in Table-1, it has excellent fire resistance, thermal conductivity, and abrasion resistance.
It is a heating medium that is excellent at absorbing heat at high temperatures.

第1図において、粒状又は粉状のコークスbは乾燥され
た状態でホッパー9に貯蔵されている。乾式コークス消
火設備より発生する粉粒状コークスであれば、そのまま
使用可能であるが、湿った状態のものであれば事前に乾
燥処理する必要がある。コークスbはロータリーバルブ
10、スクリューコンベアー11を経由し、コークス加
熱炉2に供給される。コークス加熱炉内では、第2図に
示す如く、コークスbは固体加熱炉1で約1400℃近
くまで加熱された耐火性固体aと直接接触し、混り合い
ながら約1300℃迄加熱される。この場合、コークス
bと高温の耐火性固体aは直接接触するため、ごく短時
間にコークスbは加熱される。コークス加熱炉2を出た
コークスb及び耐火性固体aは約1300℃でガス発生
炉3に入る。ガス発生炉3内では、その下部より送入さ
れた高温の水蒸気Cと、高温のコークスbが接触し、水
性ガス反応を起し、水性ガスを発生する。その時、同時
におこる吸熱反応による雰囲気の温度低下は、その周囲
に多量に存在する高温の耐火性固体aからの熱補給によ
って防止することができる。ガス発生炉3を出る耐火性
固体a及び灰分は、その下部より吹き込まれる水蒸気C
で若干冷却され約800℃で空気予熱炉4に入る。この
中で耐火性固体a及び灰分は、その下部より送入される
空気dにより冷却され(一方空気は予熱される)、約3
00℃で空気予熱炉4を出る。ここを出た耐火性固体a
と灰分は分離され、耐火性固体aはロータリーバルブ7
、パケットコンベアー5、ロータリーバルブ6を経由し
、再び固体加熱炉1に供給される。固体加熱炉1の中で
は、熱風発生炉17で発生した高温ガスe(約1500
℃)により耐火性固体aは再び約1400℃まで加熱さ
れる。この加熱も耐火性固体の熱伝導率が大きいため容
易に行なわれる。固体加熱炉1を出た排ガスはエアープ
レヒーター18、除塵機19、排気ブロワ−20を経て
大気に放散される。
In FIG. 1, granular or powdered coke b is stored in a hopper 9 in a dried state. Powdered coke generated from dry coke extinguishing equipment can be used as is, but if it is wet, it must be dried beforehand. Coke b is supplied to the coke heating furnace 2 via a rotary valve 10 and a screw conveyor 11. In the coke heating furnace, as shown in FIG. 2, the coke b comes into direct contact with the refractory solid a heated to approximately 1400°C in the solid state heating furnace 1, and is heated to approximately 1300°C while mixing. In this case, since the coke b and the high temperature refractory solid a come into direct contact, the coke b is heated in a very short time. Coke b and refractory solid a leaving the coke heating furnace 2 enter the gas generating furnace 3 at about 1300°C. In the gas generating furnace 3, the high temperature steam C introduced from the lower part of the furnace 3 comes into contact with the high temperature coke B, causing a water gas reaction and generating water gas. At this time, a decrease in the temperature of the atmosphere due to the endothermic reaction occurring at the same time can be prevented by replenishing heat from the high temperature refractory solid a that is present in large quantities in the surrounding area. The refractory solid a and ash leaving the gas generating furnace 3 are steam C blown in from the bottom of the refractory solid a and ash.
It is slightly cooled at about 800° C. and then enters the air preheating furnace 4. In this, the refractory solid a and ash are cooled by air d introduced from the bottom (on the other hand, the air is preheated), and the
Leaves the air preheating furnace 4 at 00°C. Refractory solid a from here
and ash are separated, and the refractory solid a is separated by rotary valve 7.
, the packet conveyor 5, and the rotary valve 6, and are again supplied to the solid state heating furnace 1. In the solid-state heating furnace 1, high-temperature gas e (approximately 1,500
The refractory solid a is again heated to approximately 1400°C. This heating is also easily carried out because the refractory solid has a high thermal conductivity. Exhaust gas leaving the solid state heating furnace 1 passes through an air preheater 18, a dust remover 19, and an exhaust blower 20, and is released into the atmosphere.

ガス発生炉3で発生した水性ガスは、サイクロン12を
経由し、熱回収ボイラー13で冷却された後、一部は熱
風発生炉17の燃料として使用され、残りは水性ガスと
して回収される。
The water gas generated in the gas generator 3 passes through the cyclone 12 and is cooled in the heat recovery boiler 13, and then a portion is used as fuel for the hot air generator 17, and the rest is recovered as water gas.

回収された水性ガスはそのまま燃料ガスとして使用して
もかまわないが、本実施例においては、洗浄冷却塔15
を経た後、水性ガスの付加価値を高めるため水素ガス分
離装置22と組合せ、純水素ガスとして回収するフロー
を示している。
The recovered water gas may be used as fuel gas as it is, but in this example, the cleaning cooling tower 15
After passing through this process, in order to increase the added value of water gas, it is combined with a hydrogen gas separator 22 to recover pure hydrogen gas.

次に配置上の特徴に付いて述べる。固体加熱炉1、コー
クス加熱炉2、ガス発生炉3、空気予熱炉4は、上方か
ら順次配列されている。
Next, we will discuss the characteristics of the arrangement. The solid heating furnace 1, the coke heating furnace 2, the gas generating furnace 3, and the air preheating furnace 4 are arranged in order from above.

従って、高温の耐火性固体は重力のみで移動(降下)す
る。パケットコンベアー5を通過する時点で耐火性固体
は冷却されており、耐火性固体の循環をスムースに行な
うことができる。
Therefore, the high temperature refractory solid moves (falls) only by gravity. The refractory solid is cooled at the time of passing through the packet conveyor 5, and the refractory solid can be circulated smoothly.

次に本発明の実施例として、その制御フローを第3図に
又、運転条件を表−2に示す。
Next, as an example of the present invention, the control flow is shown in FIG. 3, and the operating conditions are shown in Table 2.

表−2運転条件 第3図に示すように、燃焼ガス、水性ガス及び空気の各
々の混合が起らないよう、各部の圧力制御と圧力比制御
が行なわれる。例えば、固体加熱炉1の下部と、ガス発
生炉3の上部は同圧力に制御される。従って固体加熱炉
1では燃焼ガスは上方のみに流れ、コークス加熱炉2や
ガス発生炉3へ流れ込むことはない。
Table 2 Operating Conditions As shown in FIG. 3, pressure control and pressure ratio control are performed at each part to prevent mixing of combustion gas, water gas, and air. For example, the lower part of the solid state heating furnace 1 and the upper part of the gas generating furnace 3 are controlled to have the same pressure. Therefore, in the solid state heating furnace 1, the combustion gas flows only upward, and does not flow into the coke heating furnace 2 or the gas generating furnace 3.

表−2は本装置で、コークス2500kg/IIRを処
理した場合の運転条件を示している。これによれば、発
生ガスの回収効率(生成水性ガスの発熱量の消費コーク
スの熱量に対する百分率)は約60%となる。
Table 2 shows the operating conditions when 2500 kg of coke/IIR is processed using this device. According to this, the recovery efficiency of the generated gas (the percentage of the calorific value of the generated water gas to the calorific value of the consumed coke) is approximately 60%.

〔発明の効果〕〔Effect of the invention〕

従来サイクリック運転であったものを連続運転とした事
によって下記の如き顕著な効果が得られる。
By changing the conventional cyclic operation to continuous operation, the following remarkable effects can be obtained.

■ サイクリック運転方式に比べて運転操作が容易とな
る。
■ Easier to operate than the cyclic operation method.

■ メータとブロー間ガスのロスが無くなり、発生ガス
の回収効率が良い。
■ Eliminates gas loss between the meter and the blower, improving recovery efficiency of generated gas.

■ 装置内での温度変化がないため、装置の寿命が長く
なる。
■ Since there is no temperature change within the device, the life of the device is extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例装置及びそのフロー図、第2図
はコークス加熱炉内詳細図、第3図は本発明の実施例の
制御フロー図である。 1・・・固体加熱炉    2・・・コークス加熱炉3
・・・ガス発生炉    4・・・空気予熱炉5・・・
パケットコンベアー 6・・φロータリーバルブ 7・・・ロータリーバルブ
8・・・ロータリーバルブ 9・・・ホッパー10・・
・ロータリーバルブ 11・・・スクリューコンベアー 12・・・サイクロン   13・・・熱回収ボイラー
14・・・水性ガスブロワ− 15・・・洗浄冷却塔   16・・・昇圧ブロワ−1
7・・・熱風発生炉 18・・・エアープレヒーター 19・・・除塵機     20・・・排気ブロワ−2
1・・・エアーブロワ− 22・・・水素ガス分離装置 a・・・耐火性固体 b・・・コークス(粒粉状) 他4名
FIG. 1 is an apparatus according to an embodiment of the present invention and its flow diagram, FIG. 2 is a detailed view of the interior of a coke heating furnace, and FIG. 3 is a control flow diagram of an embodiment of the present invention. 1...Solid heating furnace 2...Coke heating furnace 3
...Gas generating furnace 4...Air preheating furnace 5...
Packet conveyor 6...φ rotary valve 7...Rotary valve 8...Rotary valve 9...Hopper 10...
・Rotary valve 11...Screw conveyor 12...Cyclone 13...Heat recovery boiler 14...Water gas blower 15...Washing cooling tower 16...Boosting blower 1
7...Hot air generator 18...Air preheater 19...Dust remover 20...Exhaust blower 2
1...Air blower 22...Hydrogen gas separation device a...Refractory solid b...Coke (granular powder) and 4 others

Claims (1)

【特許請求の範囲】 1 粉粒状のコークスを原料とする水性ガス製造方法に
おいて、加熱した耐火性固体とコークスを直接接触させ
てコークスを加熱した 後、該コークスに水蒸気を接触させて連続的に水性ガス
を製造することを特徴とする水性ガス製造方法。 2 粉粒状のコークスを原料とする水性ガス製造装置に
おいて、熱風により耐火性固体を直接加熱する固体加熱
炉、固体加熱炉で加熱された耐火性固体でコークスを加
熱するコークス加熱炉、コークス加熱炉で加熱されたコ
ークスに水蒸気を接触させ水性ガスを発生させるガス発
生炉、燃焼用空気の予熱を行なう空気予熱炉を順次竪型
に配置したことを特徴とする水性ガス製造装置。
[Claims] 1. In a water gas production method using powdered coke as a raw material, the coke is heated by directly contacting the heated refractory solid with the coke, and then the coke is continuously brought into contact with steam. A water gas production method characterized by producing water gas. 2. In water gas production equipment that uses powdered coke as raw material, solid heating furnaces that directly heat refractory solids with hot air, coke heating furnaces that heat coke with refractory solids heated in solid heating furnaces, and coke heating furnaces. A water gas production device characterized in that a gas generating furnace that brings steam into contact with heated coke to generate water gas, and an air preheating furnace that preheats combustion air are arranged vertically in sequence.
JP1007929A 1989-01-17 1989-01-17 Production of water gas and device therefor Pending JPH02187496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007929A JPH02187496A (en) 1989-01-17 1989-01-17 Production of water gas and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007929A JPH02187496A (en) 1989-01-17 1989-01-17 Production of water gas and device therefor

Publications (1)

Publication Number Publication Date
JPH02187496A true JPH02187496A (en) 1990-07-23

Family

ID=11679215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007929A Pending JPH02187496A (en) 1989-01-17 1989-01-17 Production of water gas and device therefor

Country Status (1)

Country Link
JP (1) JPH02187496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506813A (en) * 2006-10-18 2010-03-04 ミューレン ハインツ−ユルゲン Method for producing hydrogen-rich product gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506813A (en) * 2006-10-18 2010-03-04 ミューレン ハインツ−ユルゲン Method for producing hydrogen-rich product gas

Similar Documents

Publication Publication Date Title
EA014523B1 (en) Method for producing a product gas rich in hydrogen
US2182747A (en) Production of hydrogen by the high pressure iron process
NO157553B (en) PROCEDURE AND DEVICE FOR HEATING A FLUIDIZED LAYER BY INFLATION OF PLASMA, FOR USE BY SYNTHESIS OF NITROGEN OXIDES, GASATING A CARBON-CONTAINING MATERIAL AND REDUCTION OF ORE.
US2558746A (en) Production of carbon monoxide and other gases from carbonaceous materials
US9914663B2 (en) Manufacturing facility for quicklime, and manufacturing facility and manufacturing process for slaked lime
JPS59250B2 (en) Continuous reaction method
CN109982775B (en) Method and apparatus for heat treatment in a fluidized bed reactor
CN110040733A (en) A kind of process units and method of oxygen thermal method calcium carbide
JP4680588B2 (en) Carbon black pellet drying
JPH0240717B2 (en)
CA2568087C (en) Reduced moisture chemical reactions
US2530077A (en) Metallurgical furnace
JPH02187496A (en) Production of water gas and device therefor
JPS6150995B2 (en)
GB723455A (en) Improvements in preparation of a charge for a calcium carbide furnace
US4080219A (en) Collateral drying process
CN113614049A (en) Method and apparatus for producing quick lime using coke dry fire extinguishing equipment
US9718701B2 (en) Method and device for reducing iron oxide-containing feedstocks
JPH11131078A (en) Production of fuel gas and synthetic gas from pyrolyzed product
CN100400686C (en) Magnesium-refined smelting method by resistance furnace
US826742A (en) Process of reducing metallic compounds and producing carbids.
SU1043159A1 (en) Method and apparatus for dry quenching of coke and for producing gases containing hydrogen and carbon oxide
JPH01113491A (en) Manufacture of coal tar
US3279887A (en) Apparatus and process for manufacturing thermal black
JPS61264090A (en) Coke oven