JPH02186805A - Antenna device - Google Patents

Antenna device

Info

Publication number
JPH02186805A
JPH02186805A JP688389A JP688389A JPH02186805A JP H02186805 A JPH02186805 A JP H02186805A JP 688389 A JP688389 A JP 688389A JP 688389 A JP688389 A JP 688389A JP H02186805 A JPH02186805 A JP H02186805A
Authority
JP
Japan
Prior art keywords
feed
parasitic element
parasitic
antenna device
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP688389A
Other languages
Japanese (ja)
Inventor
Hitoshi Mizutame
水溜 仁士
Shinkei Orime
晋啓 折目
Takashi Kataki
孝至 片木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP688389A priority Critical patent/JPH02186805A/en
Publication of JPH02186805A publication Critical patent/JPH02186805A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an antenna device with high reliability and with superior heat resistance by unifying a feed element and a parasitic element with a heat resistant dielectric. CONSTITUTION:A signal fed from a feed line 2 permits a current to flow on the feed element 1, and radiates energy accumulated in the heat resistant dielectric 7 sandwiched between the feed element 1 and a ground conductor 3 as a wave. At this time, since the current also flows on the parasitic element 5 by the mutual coupling of the feed element 1 with the parasitic element 5, the parasitic element 5 also functions as a radiation element. The feed element 1 and the parasitic element 5 can be fixed with high accuracy because they are unified with the heat resistant dielectric 7. In such a way, the antenna device for space airframe with high reliability having high heat resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無給電素子を用いるアンテナ装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an antenna device using a parasitic element.

〔従来の技術〕[Conventional technology]

第5図は従来のアンテナ装置を示す断面図であシ1図に
おいて、(1)は給電素子、(2)は給電素子(1)に
接続でれた給電線路、(3)は地導体、(4)は基板。
FIG. 5 is a sectional view showing a conventional antenna device. In FIG. 1, (1) is a feeding element, (2) is a feeding line connected to the feeding element (1), (3) is a ground conductor, (4) is the board.

(5)は無給ms子、(6)は無給電素子(5)を所定
の位置に固足するサポートである。
(5) is a parasitic element, and (6) is a support that fixes the parasitic element (5) in a predetermined position.

次に動作につめて説明する。従来のアンテナ装置は上記
のように構成これ、給11線路(2)から給電された信
号は給電素子illに電流を流し、給電素子(11と地
導体(3)に挾まれた基板に蓄積されたエネルギーを電
波として放射する。このとき、給電素子(1)と無給電
素子(5)の相互結合によシ、無給!素子(5)にも1
′流が流れるため、無#電素子(5)も放射素子として
動作する。廿ボート(6)は給電素子(1)と無給電素
子(5)を所定の位置関係に固定し、アンテナの動作の
最適状態を維持している。
Next, the operation will be explained. The conventional antenna device is constructed as described above.The signal fed from the feed line 11 (2) causes a current to flow through the feed element ill, and is accumulated on the substrate sandwiched between the feed element (11) and the ground conductor (3). radiates the energy as radio waves.At this time, due to the mutual coupling between the feed element (1) and the parasitic element (5), 1 is also generated in the non-feed element (5).
Since the current flows, the electroless element (5) also operates as a radiating element. The floating boat (6) fixes the feeding element (1) and the parasitic element (5) in a predetermined positional relationship, thereby maintaining the optimum operation of the antenna.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のアンテナ装置は以上のように構成されているので
、無給電素子(5)はサポート(6)で支持されている
だけなので機械的に弱く、給電素子(1)と無給電素子
(5)の固定精度が悪い、振動や衝撃に対しても弱いと
いう課題があった。また宇宙用飛翔体アンテナとして用
いようとするときには、アンテナは約1000℃以上の
温度になるため、サポート(6)や無給11L素子(5
)等が熱によシ変形または破壊するという課題があった
Since the conventional antenna device is configured as described above, the parasitic element (5) is mechanically weak because it is only supported by the support (6), and the parasitic element (1) and the parasitic element (5) The problem was that the fixing accuracy was poor, and it was also vulnerable to vibration and shock. In addition, when trying to use it as a spacecraft antenna, the temperature of the antenna will exceed approximately 1000°C, so the support (6) and the unfed 11L element (5
) etc. were deformed or destroyed by heat.

この発明は上記のような課題を解消するためになされた
もので、無給電素子(5)の固定精度が高く。
This invention was made to solve the above problems, and the parasitic element (5) can be fixed with high precision.

耐掘性、耐衝撃性を有した高信頼性のアンテナ装置を得
、かつ、  N100℃以上の温度に耐える耐熱性に愛
れたアンテナ装置を得ることを目的とする。
The purpose of the present invention is to obtain a highly reliable antenna device having digging resistance and impact resistance, and to obtain an antenna device with good heat resistance that can withstand temperatures of N100°C or higher.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るアンテナ装置は、給電素子+11と無給
電素子(5)を誘電体にて基板(4)と一体で構成した
ものであり、さらに上記誘電体としてtooo’c以上
の温度に耐える耐熱、S2体を用いたものである。
The antenna device according to the present invention includes a feeding element +11 and a parasitic element (5) made of a dielectric and integrated with a substrate (4), and furthermore, the dielectric is made of a heat-resistant material that can withstand temperatures exceeding too'c. , S2 body is used.

〔作用〕[Effect]

この発明におけるアンテナ装置は、給電素子(11と無
給電素子(5)が耐熱誘電体で一体で構成されるため、
無給電素子(5)が給電素子(1)に対して高精度で固
定され、耐振性、耐衝撃性を有し、1000℃以上の潰
れた耐熱性を有する高信頼性アンテナ装置を実現するこ
とができる。
In the antenna device according to the present invention, since the feed element (11) and the parasitic element (5) are integrally made of a heat-resistant dielectric,
To realize a highly reliable antenna device in which a parasitic element (5) is fixed to a feeding element (1) with high precision, has vibration resistance and impact resistance, and has crushed heat resistance of 1000 degrees Celsius or more. Can be done.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(7)は耐熱誘電体である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (7) is a heat-resistant dielectric.

次に動作について説明する。給電線路(2)から給電さ
れた信号は給電素子(1)に電流を流し、給電素子(1
1と地導体(31に挾まれた耐熱誘電体(7)に蓄積さ
れたエネルギーを電波として放射する。このとき。
Next, the operation will be explained. The signal fed from the feed line (2) causes a current to flow through the feed element (1), causing the signal to flow through the feed element (1).
The energy accumulated in the heat-resistant dielectric material (7) sandwiched between 1 and the ground conductor (31) is radiated as radio waves.

給電素子+11と無給電素子(5)の相互結合によシ、
無給電素子(5)にも電流が流れるため、無給電素子(
5)も放射素子として動作する。給電素子+11と無給
電素子(5)は耐熱誘電体(7)により一体化されてい
るので高精度で固定はれ、耐振性、耐衝撃性を有し。
Due to the mutual coupling between the feed element +11 and the parasitic element (5),
Since current also flows through the parasitic element (5), the parasitic element (
5) also operates as a radiating element. Since the feed element +11 and the parasitic element (5) are integrated by a heat-resistant dielectric (7), they are fixed with high precision, have vibration resistance, and have shock resistance.

1000℃以上でも変形や破壊を起こさない高信頼性を
もつという効果がある。
It has the effect of having high reliability without causing deformation or destruction even at temperatures above 1000°C.

次にこの発明の他の実施例を図について説明する。第2
図において#(1)はダイポールを用いた給電素子であ
る。
Next, another embodiment of the invention will be described with reference to the drawings. Second
In the figure, #(1) is a feeding element using a dipole.

次に動作について説明する。給1!巌路(2)から給電
された信号は給電素子(1)に電流を流し、給電素子(
11と地導体(3)に挾まれた耐熱誘電体に蓄積された
エネルギーを電波として放射する。このとき。
Next, the operation will be explained. Salary 1! The signal fed from Iwaji (2) causes a current to flow through the feed element (1), and the signal feeds the feed element (1).
The energy accumulated in the heat-resistant dielectric material sandwiched between 11 and the ground conductor (3) is radiated as radio waves. At this time.

給電素子(1)と無給電素子(5)の相互結合により、
無給電素子(5)にも電流が流れるため、無給電素子(
5)も放射素子として動作する。給1゛素子であるダイ
ポールはダイポールに直交する面内でほぼ無指向性を有
するので、アンテナの指向性もほぼ無指向性になる。給
電素子(11と無給電素子(5)は耐熱誘電体(71に
より一体化されているので高精度で固定され、耐振性、
耐衝堪性を有し、1000℃以上でも変形や破壊を起こ
ζない高信頼性をもつという効果がある。
Due to the mutual coupling between the feeding element (1) and the parasitic element (5),
Since current also flows through the parasitic element (5), the parasitic element (
5) also operates as a radiating element. Since the dipole, which is a single-feed element, has almost omnidirectionality in a plane orthogonal to the dipole, the directivity of the antenna is also almost omnidirectional. The feed element (11) and the parasitic element (5) are integrated with a heat-resistant dielectric (71), so they are fixed with high precision and have excellent vibration resistance.
It has impact resistance and is highly reliable as it does not deform or break even at temperatures above 1000°C.

第3図はこの発明の他の実施例であシ、給1!素子(1
)として2つのダイポールを直交して配置し。
FIG. 3 shows another embodiment of this invention. Element (1
), two dipoles are placed orthogonally.

第1の給電素子(1a)とほぼ平行に第1の無給電素子
(5a)を固定し、第2の給電素子(1b)とほぼ平行
に第2の無給電素子(5b)を固定して2つの直交する
偏波を放射するようにしたものであシ。
A first parasitic element (5a) is fixed substantially parallel to the first feeding element (1a), and a second parasitic element (5b) is fixed substantially parallel to the second feeding element (1b). It is designed to emit two orthogonal polarized waves.

そhぞれの偏波を90°の位相差で給電することにより
1円偏波を放射することができる。
A circularly polarized wave can be emitted by feeding each polarized wave with a phase difference of 90°.

第4図はこの発明のさらに他の実施例であシ。FIG. 4 shows yet another embodiment of the invention.

複数の無給電素子(5)を給電素子(1)の前後に配置
し。
A plurality of parasitic elements (5) are arranged before and after the feeding element (1).

第1の無給電素子(5a)を半波長よシ少し長い反射器
とし、他の無給電素子(sb)、 (5c)・・・、 
を半波長よシ短い導波器として前記反射器と反対側に配
置した八木アンテナを耐熱誘電体(71で一体化構成し
たものである。このアンテナは上記実施例と同様、耐熱
性を有し2機械的に強めという特徴をもちながら、一方
向に高い指向性を有する効果がある。
The first parasitic element (5a) is a reflector slightly longer than half a wavelength, and the other parasitic elements (sb), (5c)...
The Yagi antenna, which is placed on the opposite side of the reflector as a waveguide shorter than half a wavelength, is integrated with a heat-resistant dielectric (71).This antenna has heat resistance as well as the above embodiment. 2.While having the characteristic of being mechanically strong, it has the effect of having high directivity in one direction.

耐熱誘電体としては、1000℃以上の温度に耐えるも
のとして例えば浴融シリカ、セラミックス。
Examples of heat-resistant dielectrics that can withstand temperatures of 1000°C or higher include bath-fused silica and ceramics.

アルミナ、ベリリア、マグネシア、炭化珪素などが使用
できる。
Alumina, beryllia, magnesia, silicon carbide, etc. can be used.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、耐熱sth体(7)を
用いて給電素子(1)と無給電素子(5)を一体で構成
したので、高精度で無給電素子(5)を固定でき、耐振
性、耐衝撃性等の機械的特性を高め、1000℃以上の
耐熱性を有する高信頼性宇宙飛翔体用アンテナ装置が得
られる効果がある。
As described above, according to the present invention, since the power feeding element (1) and the parasitic element (5) are integrally constructed using the heat-resistant sth body (7), the parasitic element (5) can be fixed with high precision. This has the effect of providing a highly reliable antenna device for spacecraft that has improved mechanical properties such as vibration resistance and impact resistance, and has heat resistance of 1000° C. or higher.

【図面の簡単な説明】[Brief explanation of the drawing]

第」図はこの発明の一実施例によるアンテナ装置を示す
図、第2図〜第4図はこの発明の他の実施例を示す図、
第5図は従来のアンテナ装置を示す断面図である。 図において(1)は給電素子、(2)は給電線路、(3
)は地導体、(5)は無給電素子、(71は耐熱誘電体
である。 なお1図中、同一符号は同一 または相当部分を示す。 代坤人大岩増雄 第 図
Fig. 1 is a diagram showing an antenna device according to one embodiment of the present invention, and Figs. 2 to 4 are diagrams showing other embodiments of the invention.
FIG. 5 is a sectional view showing a conventional antenna device. In the figure, (1) is the feed element, (2) is the feed line, and (3
) is a ground conductor, (5) is a parasitic element, and (71 is a heat-resistant dielectric material. In each figure, the same reference numerals indicate the same or corresponding parts. Figure 1 by Masuo Oiwa)

Claims (1)

【特許請求の範囲】[Claims] 給電線路と、前記給電線路に接続された給電素子と、前
記給電線路に接続されない無給電素子とから構成される
アンテナ装置において、前記給電素子と無給電素子とを
耐熱誘電体で一体化したことを特徴とするアンテナ装置
In an antenna device comprising a feed line, a feed element connected to the feed line, and a parasitic element not connected to the feed line, the feed element and the parasitic element are integrated with a heat-resistant dielectric. An antenna device characterized by:
JP688389A 1989-01-13 1989-01-13 Antenna device Pending JPH02186805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP688389A JPH02186805A (en) 1989-01-13 1989-01-13 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP688389A JPH02186805A (en) 1989-01-13 1989-01-13 Antenna device

Publications (1)

Publication Number Publication Date
JPH02186805A true JPH02186805A (en) 1990-07-23

Family

ID=11650631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP688389A Pending JPH02186805A (en) 1989-01-13 1989-01-13 Antenna device

Country Status (1)

Country Link
JP (1) JPH02186805A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145316A (en) * 1991-06-27 1993-06-11 Mitsubishi Electric Corp Filter antenna system
JPH07240622A (en) * 1994-02-28 1995-09-12 Nippon Dengiyou Kosaku Kk Bi-directional microstrip antenna
US5870057A (en) * 1994-12-08 1999-02-09 Lucent Technologies Inc. Small antennas such as microstrip patch antennas
JP2003051708A (en) * 2001-08-06 2003-02-21 Nippon Dengyo Kosaku Co Ltd Antenna
JP2008148305A (en) * 2006-12-04 2008-06-26 Agc Automotive Americas R & D Inc Beam-tilted cross-dipole dielectric antenna

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145316A (en) * 1991-06-27 1993-06-11 Mitsubishi Electric Corp Filter antenna system
JPH07240622A (en) * 1994-02-28 1995-09-12 Nippon Dengiyou Kosaku Kk Bi-directional microstrip antenna
US5870057A (en) * 1994-12-08 1999-02-09 Lucent Technologies Inc. Small antennas such as microstrip patch antennas
JP2003051708A (en) * 2001-08-06 2003-02-21 Nippon Dengyo Kosaku Co Ltd Antenna
JP4516246B2 (en) * 2001-08-06 2010-08-04 日本電業工作株式会社 antenna
JP2008148305A (en) * 2006-12-04 2008-06-26 Agc Automotive Americas R & D Inc Beam-tilted cross-dipole dielectric antenna

Similar Documents

Publication Publication Date Title
KR102412445B1 (en) Dual polarization antenna and dual polarization antenna assembly including the same
ES2232879T3 (en) MICROTIRA NETWORK ANTENNA.
KR100917847B1 (en) Omni-directional planar antenna
US3813674A (en) Cavity backed dipole-slot antenna for circular polarization
US8212730B2 (en) Low profile full wavelength meandering antenna
US5280286A (en) Surveillance and identification system antennas
EP0705486B1 (en) Radiation sensor
US4403222A (en) Passive RF path diverter
JPWO2016121375A1 (en) Frequency selection surface, radio communication device and radar device
JP2006508610A (en) Multilayer electrostatic coupling in phased array antennas.
WO1999033143A1 (en) Multiple parasitic coupling from inner patch antenna elements to outer patch antenna elements
US2820965A (en) Dual polarization antenna
US3823404A (en) Thin sandwich telemetry antenna
US3534376A (en) High impact antenna
JPH02186805A (en) Antenna device
JP2000278037A (en) Chip antenna
US2485138A (en) High-gain antenna system
US3717877A (en) Cavity backed spiral antenna
JP2022539397A (en) housing assemblies, antenna devices and electronics
TWI700864B (en) Antenna structure and wireless communication device using the same
KR100355090B1 (en) Planar Monopole Type Yagi-Uda Antenna
JPH07111418A (en) Plane antenna for polarized wave diversity
US3611399A (en) Tilted element and tilted screen antenna
JPH10322111A (en) Parabolic cylinder type reflector antenna device
CN117501537A (en) Dual polarized antenna element for generating millimeter wave frequency radiation