JPH02186413A - Reducing valve - Google Patents

Reducing valve

Info

Publication number
JPH02186413A
JPH02186413A JP711489A JP711489A JPH02186413A JP H02186413 A JPH02186413 A JP H02186413A JP 711489 A JP711489 A JP 711489A JP 711489 A JP711489 A JP 711489A JP H02186413 A JPH02186413 A JP H02186413A
Authority
JP
Japan
Prior art keywords
pressure
valve
pilot
pilot valve
secondary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP711489A
Other languages
Japanese (ja)
Other versions
JPH0792706B2 (en
Inventor
Koichi Ikeda
耕一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP711489A priority Critical patent/JPH0792706B2/en
Publication of JPH02186413A publication Critical patent/JPH02186413A/en
Publication of JPH0792706B2 publication Critical patent/JPH0792706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To prevent the generation of a chattering phenomenon in a used condition at a large decompression ratio by providing a pressure operation member at a pilot system which drives a pilot valve at a reducing valve, applying primary side pressure on one surface of the member, closing the pilot valve, and applying secondary side pressure on the other surface of the member. CONSTITUTION:When set pressure is substantially smaller than the primary pressure, a pilot valve 26 is closed, a main valve 18 is closed as well, and when the secondary side pressure is decreased lower than the set pressure, a pressure setting spring 44 exceeds the pressure applying on the underside of a diaphragm 28, drops the diaphragm 28, and opens the valve 26. At such a time a pressure plate 88 upward pulls a pilot stem 72 by the pressure corresponding to the difference between the primary side pressure and the secondary side pressure, the valve 26 is pushed to a pilot seat 82 by force more than the force of a pilot spring 27, and the quantity of fluid on the primary side is restricted, a shock in a piston chamber 20a is reduced, and the chattering can be prevented.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は蒸気や圧縮空気等の配管系に取り(=Jけて、
二次側の流体圧力を減じて一定の設定圧力に保つ減圧弁
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention applies to piping systems for steam, compressed air, etc.
This relates to a pressure reducing valve that reduces fluid pressure on the secondary side and maintains it at a constant set pressure.

〈従来の技術〉 従来の減圧弁は第2図に示す通りであり、減圧弁部1と
気水分前器部2と排水弁部3とから成る。
<Prior Art> A conventional pressure reducing valve is as shown in FIG. 2, and consists of a pressure reducing valve section 1, a steam/moisture preparator section 2, and a drain valve section 3.

本体10で入口12.弁口14.出口16を形成する。The main body 10 has an entrance 12. Valve port 14. An outlet 16 is formed.

入口は一次側の高圧流体源に出口は二次側低圧域に接続
する。主弁18を弁口]4の入口側端に主弁ばね19で
弾性的に付勢して配置する。
The inlet is connected to a high-pressure fluid source on the primary side, and the outlet is connected to a low-pressure region on the secondary side. The main valve 18 is disposed at the inlet side end of the valve port 4 while being elastically biased by a main valve spring 19.

ピストン20をシリンダ22内に摺動自在に配置し、ピ
ストン棒20bを弁口14を通して主弁18の中央突起
部18aに当接ぜしめる。ピストン20の下面とピスト
ン棒20bとをほぼ半球面で接続し、上面と下面を連通
する連通口20Cを開ける。入口12とピストン20の
上部空間、即ちピストン室20aを連通する一次圧通路
24にパイロット弁26を配置する。ダイヤフラム28
をその外周縁を7ランジ30.32の間に挟んで取り付
ける。ダイヤフラム28の下方空間は二次圧検出通路3
4を通して出口16に連通する。パイロット弁26の弁
棒36の頭部端面はダイヤフラム28の中央下面に当接
する。また、パイロット弁26はパイロットばね27で
閉弁方向に付勢されている。
The piston 20 is slidably disposed within the cylinder 22, and the piston rod 20b is brought into contact with the central protrusion 18a of the main valve 18 through the valve port 14. The lower surface of the piston 20 and the piston rod 20b are connected through a substantially hemispherical surface, and a communication port 20C is opened to communicate the upper surface and the lower surface. A pilot valve 26 is disposed in a primary pressure passage 24 that communicates the inlet 12 with the upper space of the piston 20, that is, the piston chamber 20a. diaphragm 28
is attached by sandwiching its outer peripheral edge between 7 flange 30 and 32. The space below the diaphragm 28 is the secondary pressure detection passage 3
4 to the outlet 16. The head end surface of the valve stem 36 of the pilot valve 26 abuts against the central lower surface of the diaphragm 28 . Further, the pilot valve 26 is biased in the valve closing direction by a pilot spring 27.

ダイヤフラム28の上面にばね座38を介して、圧力設
定用のコイルばね40を当接せしめる。調節ねじ448
スプリングケース66にねじ結合して取り付ける。
A pressure setting coil spring 40 is brought into contact with the upper surface of the diaphragm 28 via a spring seat 38. Adjustment screw 448
It is attached by screwing to the spring case 66.

調節ねじ44を左右に回すと、圧力設定ばね40のダイ
ヤフラム28を押し下げる弾性力が変る。
By turning the adjustment screw 44 left and right, the elastic force of the pressure setting spring 40 that pushes down the diaphragm 28 changes.

この圧力設定ばね40の弾性力を基準値として、ダイヤ
フラム28はその下面に作用する二次側圧力に応じて湾
曲し、弁棒36を変位せしめてパイロット弁26を開閉
せしめる。この結果、π次側流体圧ツノがピストン室2
0aに導入され、ピストン20が駆動されて主弁18が
変位せしめられ、入口12の流体が弁口14を通って出
口16に流れる。これは二次側の流体圧力が低下すると
弁口14が開き、上壁すると閉じる様に自動的に作動す
る。
Using the elastic force of the pressure setting spring 40 as a reference value, the diaphragm 28 curves in response to the secondary pressure acting on its lower surface, displacing the valve rod 36 and opening and closing the pilot valve 26. As a result, the piston side fluid pressure horn is
0a, the piston 20 is driven to displace the main valve 18, and the fluid at the inlet 12 flows through the valve port 14 to the outlet 16. This automatically operates so that when the fluid pressure on the secondary side decreases, the valve port 14 opens and closes when the upper wall reaches the upper wall.

弁口14の下方に円筒形状の隔壁部材46@取り付け、
これを囲む本体10との間に環状空間48を形成し、そ
の上部はコーン形状のスクリーン50を通して入口12
に連通し、下部は排水弁室52の上部に連通ずる。また
、排水弁室52の上部は隔壁部材46の中央開口を通し
て弁口14に連通する。環状空間48には傾斜壁から成
る旋回羽根54を配置する。
A cylindrical partition member 46@ is installed below the valve port 14,
An annular space 48 is formed between the main body 10 surrounding the annular space 48, and the upper part of the annular space 48 is passed through a cone-shaped screen 50 to the inlet 12.
The lower part communicates with the upper part of the drain valve chamber 52. Further, the upper part of the drain valve chamber 52 communicates with the valve port 14 through the central opening of the partition member 46 . In the annular space 48, a swirling vane 54 consisting of an inclined wall is arranged.

従って、入口12の流体は、弁口14が問いて環状空間
48を通過するときに、旋回羽根54で方向を曲げられ
て旋回せしめられる。液体は外側に振り出されて周囲の
本体内壁に当たって排水弁室52に流下し、軽い気体は
中央部を旋回して、隔壁部材46の中央開口から弁口1
4に向い、そこを通過して出口16に流れ去る。
Therefore, when the fluid in the inlet 12 passes through the annular space 48 through the valve port 14, its direction is bent by the swirl vanes 54 and the fluid is swirled. The liquid is shaken out to the outside, hits the surrounding inner wall of the main body, and flows down into the drain valve chamber 52, while the light gas swirls in the center and flows from the central opening of the partition member 46 to the valve port 1.
4, through which it flows away to exit 16.

排水弁室52の底部には、排水口56に通じる排水弁口
58を形成する。フロートカバー62で覆って、球形の
弁7a−トロ0を変位自在に収容する。フロートカバー
62の上部には通気孔64を開ける。
A drain valve port 58 communicating with the drain port 56 is formed at the bottom of the drain valve chamber 52 . Covered with a float cover 62, the spherical valve 7a-toro 0 is housed in a freely displaceable manner. A ventilation hole 64 is opened in the upper part of the float cover 62.

従って、弁フロート60は排水弁室52の水位と共に)
、7上降下して排水弁口58を開閉し、排水弁室52に
溜る水を自動的に排除する。
Therefore, the valve float 60 (along with the water level in the drain valve chamber 52)
, 7 to open and close the drain valve port 58 and automatically remove water accumulated in the drain valve chamber 52.

〈発明が解決しようとする課題〉 前述した構成の従来の減圧弁を含め現存する全ての減圧
弁に於て、どうしても解消できない現蒙として、習しい
撮動と騒音を発生するチPタリング規染がある。−次圧
に対して設定圧(二次圧)が小さい時、つまり減圧比が
大きい時に発生する。
<Problems to be Solved by the Invention> In all existing pressure reducing valves, including the conventional pressure reducing valve with the above-mentioned configuration, a problem that cannot be solved is the problem of unnatural photography and chittering that generates noise. There is. - Occurs when the set pressure (secondary pressure) is smaller than the next pressure, that is, when the pressure reduction ratio is large.

その減圧比は例えば、一次側圧力’l0K9/c/rt
を二次側圧力2 Kl / ctrt程度以下に減圧す
る場合であり、主弁18及びピストン20等の可動部が
振動してチャタリング現蒙を起こす。これは二次側圧力
が低下してその圧力変化が二次圧検出通路34を介して
パイロット弁26が開弁する時、主弁18は微開した程
度にも拘らず、一次側と二次側の圧力差が大きいために
高圧の一次側流体が二次側で体積膨張を起こし、二次側
圧力を瞬時にして上昇させてしまう。そしてその圧力が
再び二次側圧力検出通路34を介してパイロット弁26
を急閉弁させる。そうすればピストン室20aへの流体
が急所され、ピストン20及び主弁18も急閉弁する。
The pressure reduction ratio is, for example, the primary side pressure 'l0K9/c/rt
In this case, the secondary side pressure is reduced to about 2 Kl/ctrt or less, and movable parts such as the main valve 18 and the piston 20 vibrate, causing chattering. This is because when the secondary pressure decreases and the pressure change causes the pilot valve 26 to open via the secondary pressure detection passage 34, even though the main valve 18 is slightly opened, the primary and secondary Due to the large pressure difference between the two sides, the high-pressure primary fluid undergoes volumetric expansion on the secondary side, causing the secondary pressure to rise instantly. Then, the pressure is again transmitted to the pilot valve 26 via the secondary side pressure detection passage 34.
close the valve suddenly. This causes fluid to flow into the piston chamber 20a, causing the piston 20 and the main valve 18 to close quickly.

主弁18が急閉弁すれば二次側圧力も急低下してダイヤ
フラム28は圧力設定ばね44に押されてパイロット弁
26を急開弁する。以上の過程が加速度的に行なわれて
大きな撮動状態を?する。
When the main valve 18 suddenly closes, the pressure on the secondary side also drops rapidly, and the diaphragm 28 is pushed by the pressure setting spring 44 to suddenly open the pilot valve 26. The above process is performed at an accelerated rate to create a large imaging state? do.

また、撮動は主弁18の急′aな開弁によって二次側へ
向かう蒸気の噴流がピストン2Qの下面に作用してピス
トン20を急激に押し上げてその上壁に衝突し、このピ
ストン20の上昇に主弁18が追従できず、再びピスト
ン20が下降してきた時に衝突するからであると考えら
れる。再接触は衝撃的であり、この様な主弁18とピス
トン20の作動はピストン棒20bの破損や、主弁18
の弁座の損傷等を生じる問題かめる。これらの部材の損
傷により、二次側圧力が設定不能になったり、減圧弁と
しての寿命が短くなる。
In addition, when the main valve 18 suddenly opens, a jet of steam toward the secondary side acts on the lower surface of the piston 2Q, rapidly pushing up the piston 20 and colliding with its upper wall. It is thought that this is because the main valve 18 cannot follow the rise of the piston 20 and collides with the piston 20 when it descends again. Re-contact is shocking, and such operation of the main valve 18 and piston 20 may cause damage to the piston rod 20b or damage to the main valve 18.
This can cause problems such as damage to the valve seat. Damage to these members may make it impossible to set the secondary pressure or shorten the life of the pressure reducing valve.

このヂX・タリング現象を起こさないようにする為には
パイロット弁26が開弁し雌くし、そこからピストン室
20aへの一次側流体の供給量を少なくすることが考え
られるが、これは−次圧と設定圧との差圧が大きい使用
状態では有効であるが、その差圧が小さいときは流子特
性が悪化すると言う別の問題を生じる。
In order to prevent this zigzag phenomenon from occurring, it is conceivable to open and close the pilot valve 26 and reduce the amount of primary fluid supplied from there to the piston chamber 20a. Although this method is effective when the differential pressure between the next pressure and the set pressure is large, another problem arises in that the fluid characteristics deteriorate when the differential pressure is small.

従って、本発明の技術的課題は減圧比が大きい使用状態
でもチャタリング現象を起こさず、減圧比が小ざい使用
状態でも流Φ特性が悪化しない減圧弁を提供することで
ある。
Therefore, the technical problem of the present invention is to provide a pressure reducing valve that does not cause chattering even when used with a large pressure reduction ratio, and whose flow Φ characteristics do not deteriorate even when used with a small pressure reduction ratio.

〈課題を解決するための技術的手段〉 上記課題を解決する為に講じた本発明の技術的手段は、
前述したような従来の減圧弁に於て、パイロット弁を駆
動するパイロットステムに圧力応動部材を設け、上記パ
イロット弁を閉弁せしめるように上記圧力応動部材の一
面に一次側圧力を作用せしめ、圧力応動部材のもう一方
の面に二次側圧力を作用せしめるようにしたものである
<Technical means for solving the problems> The technical means of the present invention taken to solve the above problems are as follows:
In the conventional pressure reducing valve as described above, a pressure responsive member is provided on the pilot stem that drives the pilot valve, and primary pressure is applied to one surface of the pressure responsive member so as to close the pilot valve. A secondary side pressure is applied to the other surface of the responsive member.

〈作用〉 この発明に於て、圧力応動部材は一次側圧力と二次側圧
力との圧力差に略比例してパイロット弁の閉弁力を変化
させる構成で必るから、パイロット弁を介してピストン
室へ導入される圧力流体の流量は、減圧比の大ぎい場合
にはその差圧がパイロット弁がより閉弁方向に作用する
為に少なく、減圧比の小ざい場合にはその差圧がパイロ
ット弁の閉弁方向にあまり作用しないために多くなる。
<Operation> In this invention, since the pressure responsive member must be configured to change the closing force of the pilot valve approximately in proportion to the pressure difference between the primary side pressure and the secondary side pressure, The flow rate of pressurized fluid introduced into the piston chamber is small when the pressure reduction ratio is large because the pilot valve acts more in the valve closing direction, and when the pressure reduction ratio is small, the pressure difference is small. The amount increases because it does not act much in the direction of closing the pilot valve.

従って、チャタリング現象を起こしやすい減圧比の大き
い使用状態ではパイロット弁からピストン室への流量が
少なくなることでチャタリング防止作用を生じ、チャタ
リング現象を起こし難い減圧比の小さい使用状態では流
量が多くなることでピストンの作動応答性の低下を防止
して主弁の流中特性の悪化を防止する。
Therefore, in operating conditions where the pressure reduction ratio is high, which is likely to cause chattering, the flow rate from the pilot valve to the piston chamber is reduced, thereby creating a chattering prevention effect, and in operating conditions, where the pressure reduction ratio is low, which is less likely to cause chattering, the flow rate increases. This prevents deterioration of the piston's operational response and prevents deterioration of the flow characteristics of the main valve.

〈実施例〉 上記の技術的手段の具体例を示す実施例を説明する。(
第1及び第2図参照) 本実施例は従来のパイロット式減圧弁のパイロット弁部
を改良したもので、第2図に対応する部位には同じ参照
番号を付して、減圧弁としての詳細な説明は省略する。
<Example> An example showing a specific example of the above technical means will be described. (
(See Figures 1 and 2) This embodiment is an improved pilot valve part of a conventional pilot-operated pressure reducing valve. Parts corresponding to those in Figure 2 are given the same reference numerals, and details of the pressure reducing valve are shown below. Further explanation will be omitted.

パイロット弁部70はパイロットステム72、ステムカ
イト74及びパイロット弁26から構成される。ステム
ガイド74の中央にステムガイド孔78を11通し、そ
の下端にパイロット弁口80を有するパイロット弁座8
2を形成する。また、ステムガイド孔78と交わる84
を開はピストン室20aに連通させる。そしてステムガ
イド74の周側面は雄ねじを施し、パイロットボディ7
4にねじ結合する。パイロット弁26はパイロット弁座
82に下方から当接するように配置し、パイロットばね
27で閉弁方向に付勢する。
The pilot valve section 70 is composed of a pilot stem 72, a stem kite 74, and a pilot valve 26. A pilot valve seat 8 having a stem guide hole 78 passed through 11 in the center of the stem guide 74 and having a pilot valve port 80 at its lower end.
form 2. In addition, 84 which intersects with the stem guide hole 78
The opening communicates with the piston chamber 20a. The circumferential side of the stem guide 74 is male-threaded, and the pilot body 7
Connect to 4 with screws. The pilot valve 26 is arranged so as to abut the pilot valve seat 82 from below, and is biased in the valve closing direction by a pilot spring 27.

ステムガイド74の上部は下部より大径で内側が円筒の
鍔部86を形成する。その円筒部に突出するようにパイ
ロットステム72をステムガイド孔78に摺動自在に挿
入し、その突出した部分に受圧板88を形成し、その最
上端はダイヤフラム28の下面に当接ぜしめる。パイロ
ットステム72とパイロット弁体26は図示していない
がねじ結合されており両者は一体化に形成する。受圧板
88の外周には円筒内面との気密の為にOリング90を
介在ざぜ上記円筒内面をII動可能にする。
The upper part of the stem guide 74 has a larger diameter than the lower part and forms a cylindrical collar part 86 on the inside. The pilot stem 72 is slidably inserted into the stem guide hole 78 so as to protrude from the cylindrical portion, and a pressure receiving plate 88 is formed on the protruding portion, the uppermost end of which is brought into contact with the lower surface of the diaphragm 28 . Although not shown, the pilot stem 72 and the pilot valve body 26 are screwed together and are integrally formed. An O-ring 90 is interposed on the outer periphery of the pressure receiving plate 88 for airtightness with the cylindrical inner surface, thereby making the cylindrical inner surface movable.

パイロットボディ76の一次圧通路24から上方に連通
口94を門通し、その上端は鍔部86の下面にha工し
た環状の溝92と連通し、更に通孔96を開けることに
より一次圧通路24の圧力流体を受圧板88の下面に導
入する。一方受任板88の上面には二次圧検出通路34
により二次側圧力が作用している。
A communication port 94 is passed upward from the primary pressure passage 24 of the pilot body 76, the upper end of which communicates with an annular groove 92 carved in the lower surface of the flange 86, and a through hole 96 is further opened to connect the primary pressure passage 24. pressure fluid is introduced into the lower surface of the pressure receiving plate 88. On the other hand, a secondary pressure detection passage 34 is provided on the upper surface of the acceptance plate 88.
Due to this, secondary pressure is acting.

作用は以下の通りである。The action is as follows.

減圧比が大きい状態で使用する場合、即ち一次圧に対し
て設定圧が相当に小ざい場合、今図示のようにパイロッ
ト弁26が閉弁し主弁18も閉弁している状態から二次
側の圧力が低下して設定圧よりも低くなったとすると、
圧力設定ばね44がダイヤフラム28の下面に作用して
いる圧力に打勝ってこれを下降させるから、パイロット
弁26が開弁する。この時、受圧板88は一次側の圧力
と二次側の圧力との差圧に相当する力でパイロットステ
ム72を上方に引き上げようとする。つまり、パイロッ
ト弁体26もパイロットばね27の付勢力以上の力でパ
イロット弁座82に押し付けられる。従ってパイロット
弁26からの一次側の流体はその便が制限されてピスト
ン室20aG、:導入される為にピストンへの衝撃作用
が従来よりも大幅に小さくなり、チャタリングは起こさ
なくなる。
When used with a large pressure reduction ratio, that is, when the set pressure is considerably smaller than the primary pressure, the pilot valve 26 is closed and the main valve 18 is also closed, as shown in the diagram. If the side pressure drops and becomes lower than the set pressure,
The pilot valve 26 opens because the pressure setting spring 44 overcomes the pressure acting on the lower surface of the diaphragm 28 and lowers it. At this time, the pressure receiving plate 88 tries to pull the pilot stem 72 upward with a force corresponding to the pressure difference between the pressure on the primary side and the pressure on the secondary side. That is, the pilot valve body 26 is also pressed against the pilot valve seat 82 with a force greater than the biasing force of the pilot spring 27. Therefore, the fluid on the primary side from the pilot valve 26 is introduced into the piston chamber 20aG with its flow restricted, so that the impact on the piston is much smaller than in the past, and chattering does not occur.

減圧比が小さい状態で使用する場合、受圧板88の上面
と下面に作用する圧力の差が小さい為にパイロット弁2
6を閉弁させる力は殆どパイロットばね27のノ〕だけ
なので、二次圧の低下によりパイロット弁26が開弁し
ようとすると前記減圧比が大きい使用状態の時よりも大
ぎく開弁じて一次側圧力流体がピストン室20aに導入
される。
When used with a small pressure reduction ratio, the pilot valve 2
Since the force that closes the valve 6 is almost exclusively the force of the pilot spring 27, when the pilot valve 26 tries to open due to a drop in secondary pressure, the valve opens much more than when the pressure reduction ratio is high and the primary side is closed. Pressure fluid is introduced into the piston chamber 20a.

しかし、前述したように減圧比が小ざい場合にはチャタ
リング現象を起こし難いので、この場合もチャタリング
現象は起こらず、しかも主弁18の流星特性の悪化が防
止される。
However, as described above, when the pressure reduction ratio is small, the chattering phenomenon is unlikely to occur, so the chattering phenomenon does not occur in this case as well, and furthermore, deterioration of the meteor characteristics of the main valve 18 is prevented.

従ってこの減圧弁は、異なる減圧比の夫々の使用状態で
、その一次側圧力と設定圧力との圧力差に適切に対応し
てピストン室20aに一次側圧力流体を導入してチャタ
リング現象の発生を防止し得ると共に流量特性の悪化を
も防止し得るものである。
Therefore, this pressure reducing valve introduces the primary side pressure fluid into the piston chamber 20a in response to the pressure difference between the primary side pressure and the set pressure in each usage state with different pressure reducing ratios, thereby preventing the occurrence of chattering phenomenon. This can be prevented and also prevent deterioration of flow characteristics.

〈発明の効果〉 以上のように本願によればチャタリングが解消されるの
で、振動は無くなり各部材は損(セすることなく、減圧
弁は安定した状態で設定圧力を雑持し続けることができ
る。また、チャタリングが解消されることにより従来設
定できなかった低圧域の圧力δ2定が可能となり、減圧
弁としての使用範囲が広くなる。
<Effects of the Invention> As described above, according to the present application, chattering is eliminated, so there is no vibration, and the pressure reducing valve can continue to maintain the set pressure in a stable state without causing damage to each member. Furthermore, by eliminating chattering, it becomes possible to maintain a constant pressure δ2 in the low pressure range, which could not be set conventionally, and the range of use as a pressure reducing valve is widened.

また、チャタリング現象を防止できたのと同時に、減圧
比の小さい使用状態で悪化していた流量特性を理想流量
特性に近くなるように改善できる効果を有する。
In addition, it is possible to prevent the chattering phenomenon, and at the same time, it is possible to improve the flow rate characteristics, which had deteriorated under usage conditions where the pressure reduction ratio is small, to be close to the ideal flow rate characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のパイロット弁部断面図、第2
図は従来の減圧弁の断面図である。 第118 入口 出口 ピストン パイロット弁 パイロットステム ステムガイド 0b 弁口 主弁 ピストン棒 ダイヤフラム 連通口 受圧板
Fig. 1 is a cross-sectional view of the pilot valve part of the embodiment of the present invention;
The figure is a sectional view of a conventional pressure reducing valve. No. 118 Inlet/outlet piston pilot valve pilot stem stem guide 0b valve port main valve piston rod diaphragm communication port pressure receiving plate

Claims (1)

【特許請求の範囲】[Claims] 1、一次側に接続される入口と二次側に接続される出口
との間に設けた主弁口を開閉するように設けられ閉弁作
用ばねを有する主弁と、二次側圧力の低下に基いて開弁
するように設けられたパイロット弁と、パイロット弁の
開弁により一次側圧力流体を圧力室に導入されその圧力
により移動して上記主弁を開弁させるように設けられた
ピストンとを具備する減圧弁に於て、パイロット弁を駆
動するパイロットステムに圧力応動部材を設け、上記パ
イロット弁を閉弁せしめるように上記圧力応動部材の一
面に一次側圧力を作用せしめ、圧力応動部材のもう一方
の面に二次側圧力を作用せしめるようにしたことを特徴
とする減圧弁。
1. A main valve provided between an inlet connected to the primary side and an outlet connected to the secondary side, which opens and closes the main valve port and has a valve-closing spring, and a reduction in secondary side pressure. A pilot valve is provided to open based on the pilot valve, and a piston is provided to open the main valve by introducing primary side pressure fluid into the pressure chamber when the pilot valve opens and moving due to the pressure. A pressure-responsive member is provided in the pilot stem that drives the pilot valve, and a primary side pressure is applied to one surface of the pressure-responsive member so as to close the pilot valve, and the pressure-responsive member A pressure reducing valve characterized in that a secondary side pressure is applied to the other side of the valve.
JP711489A 1989-01-12 1989-01-12 Pressure reducing valve Expired - Fee Related JPH0792706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP711489A JPH0792706B2 (en) 1989-01-12 1989-01-12 Pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP711489A JPH0792706B2 (en) 1989-01-12 1989-01-12 Pressure reducing valve

Publications (2)

Publication Number Publication Date
JPH02186413A true JPH02186413A (en) 1990-07-20
JPH0792706B2 JPH0792706B2 (en) 1995-10-09

Family

ID=11657061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP711489A Expired - Fee Related JPH0792706B2 (en) 1989-01-12 1989-01-12 Pressure reducing valve

Country Status (1)

Country Link
JP (1) JPH0792706B2 (en)

Also Published As

Publication number Publication date
JPH0792706B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JPH02186413A (en) Reducing valve
EP0266007A2 (en) Piston restraining construction of pressure reducing valve
JPS59133878A (en) Fixed control safety valve
JPH02211506A (en) Pressure reducing valve
WO2021024595A1 (en) Discharge valve unit and fluid device
JPH01234908A (en) Pressure reducing valve
JPH0250709A (en) Structure of main valve of pressure reducing valve
JPH02184905A (en) Reducing valve
JPH01234907A (en) Pressure reducing valve
JPH0449695Y2 (en)
JPH0250210A (en) Pressure reducing valve
JPS62163122A (en) Pressure reducing valve
JP2565706B2 (en) Pressure reducing valve
JPH02187808A (en) Reducing valve
JPH02158812A (en) Pressure reducing valve
JPH01128105A (en) Pressure reducing valve
JPH01258010A (en) Pressure reducing valve
JPS62103717A (en) Pressure reducing valve
JPS63255713A (en) Piston structure for pressure reducing valve
JPH01129312A (en) Main valve spring structure for pressure reducing valve
JPS63174112A (en) Reducing valve
JPH01181111A (en) Voltage reducing valve
JPH0248713A (en) Depressurizing valve
JPH01234909A (en) Pressure reducing valve
JPH0436406B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees