JPH02185304A - Differential four-claw powder chuck - Google Patents

Differential four-claw powder chuck

Info

Publication number
JPH02185304A
JPH02185304A JP108389A JP108389A JPH02185304A JP H02185304 A JPH02185304 A JP H02185304A JP 108389 A JP108389 A JP 108389A JP 108389 A JP108389 A JP 108389A JP H02185304 A JPH02185304 A JP H02185304A
Authority
JP
Japan
Prior art keywords
jaw
cam
type
differential
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP108389A
Other languages
Japanese (ja)
Other versions
JP2717294B2 (en
Inventor
Tokichi Shimizu
東吉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP64001083A priority Critical patent/JP2717294B2/en
Priority to PCT/JP1989/001306 priority patent/WO1990007394A1/en
Priority to DE19893991546 priority patent/DE3991546T1/en
Priority to US07/571,651 priority patent/US5143686A/en
Publication of JPH02185304A publication Critical patent/JPH02185304A/en
Application granted granted Critical
Publication of JP2717294B2 publication Critical patent/JP2717294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Gripping On Spindles (AREA)

Abstract

PURPOSE:To make a variety of chucking easily with single operation by forming a jaw drive cam hole on the center line of a jaw grooves, both of which are crossed at right-angle, of a chuck body to make a jaw drive cam changeable into inward tightening type, outward tightening type, and positioning type. CONSTITUTION:A differential cam hole 2 is drilled at the center of a chuck body 1 and jaw grooves 3 are formed on the orthogonal diameter lines on its front surface in crossing shape. A jaw drive cam hole 12, in which various jaw drive cams are closely fitted rotatably, is formed on the center line of the jaw groove 3. Various types of jaw drive cams are available: inward tightening type 131 and 132, outward tightening type 133 and 134 and positioning type 135, and these are changeable. By just replacing the above various jaw drive cams or jaw drive section 13c, a variety of chucking such as four-point outward tightening, four-point inward tightening, two-point outward and two- point inward tightening, one-point positioning, etc. can be made with easy operation without replacing a chuck main body.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不規則な形状の加工物をその形状および加工
目的に応じて四点外締め、四点内締め、二点外締め二点
内締め、−点位置決め把持、二点位置決め把持等、各種
型式の把持をチャック本体を交換することなく、しかも
スクロールチャックと同様の単一操作で行うことができ
る差動四爪パワーチャックに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to irregularly shaped workpieces by four-point external tightening, four-point internal tightening, and two-point external tightening, depending on the shape and processing purpose. This product relates to a differential four-jaw power chuck that can perform various types of gripping, such as internal tightening, -point positioning gripping, two-point positioning gripping, etc., without replacing the chuck body, and with a single operation similar to a scroll chuck. be.

〔従来の技術〕[Conventional technology]

従来、旋盤などによる機械加工の場合、菱形や長方形、
その他いわゆる変形物と云われる素材、特に溶断素材、
鍛造素材、鋳造素材などの形状精度が粗悪な加工物を加
工する際のチャッキングは西瓜単独チャックを使用せざ
るを得す単独チャックを使用して加工物をチャフキング
する場合、冬瓜を個々に操作しなければならないため、
心出しに高度な熟練を必要とする上、スクロールチャッ
クや三方締、三方締パワーチャックに比べ多大な時間を
要し生産性を著しく阻害するという問題があった。
Conventionally, when machining using a lathe, etc., diamond, rectangular,
Other so-called deformed materials, especially fusing materials,
When processing workpieces with poor shape accuracy, such as forged or cast materials, a single watermelon chuck must be used. Because you have to operate
In addition to requiring a high level of skill for centering, it takes a lot of time compared to scroll chucks, three-way clamping, and three-sided power chucks, which significantly impedes productivity.

そこで本願出願人は、従来単独チャックを使用せざるを
得なかった不規則な形状の加工物を、熟練を要すること
なく単一の操作で三方締、三方締パワーチャックと殆ん
ど変わらない時間で心出しチャフキングでき、生産性の
向上が達成できる二方向差動求心弐西瓜連動パワーチャ
ックを発明して特許出願し、特許第1440379号で
権利設定登録がなされた。
Therefore, the applicant of the present application has developed a method for clamping irregularly shaped workpieces, which conventionally required the use of a single chuck, in a single operation without requiring any skill, in a time that is almost the same as that of a three-way power chuck. He invented a two-way differential centripetal two-watermelon interlocking power chuck that can perform centering and chuffing and improve productivity, and filed a patent application, which was registered as Patent No. 1440379.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記二方向差動求心弐西瓜連動パワーチャ
ックは、さらに複雑な形状の加工物を把持するため直交
二方向の4箇のジョーで二点外締め二点内締めする場合
には、別にこの把持型式のチャック本体を用意してこれ
に交換しなければならず、また−点位置決め、あるいは
二点位置決めで加工物を把持する場合には、やはり西瓜
単独チャックを使用したり、新たに治具を作って取付け
たりしなければならないという問題があった。
However, the above two-way differential centripetal two-watermelon interlocking power chuck requires two-point external tightening and two-point internal tightening using four jaws in two orthogonal directions in order to grip a workpiece with a more complex shape. It is necessary to prepare a chuck body of the same model and replace it with this, and when gripping a workpiece using -point positioning or two-point positioning, a watermelon-only chuck must be used or a new jig must be installed. There was a problem in that it had to be manufactured and installed.

本発明は上記問題に鑑み、四点内締め、四点外締めの通
常の把持は勿論、二点外締め二点内締め、さらに−点位
置決め、二点位置決め把持等各種の把持型式をチャック
本体を交換することなく、しかもスクロールチャックと
同様の単一操作で行うことができる差動四爪パワーチャ
ックを提供することを目的としている。
In view of the above problems, the present invention has developed various types of gripping methods such as four-point internal tightening, four-point external tightening, two-point external tightening, two-point internal tightening, -point positioning, two-point positioning gripping, etc. The purpose of the present invention is to provide a differential four-jaw power chuck that can be operated in a single operation similar to a scroll chuck without having to replace the chuck.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため本発明は、チャックボデーの前
面に形成された直交二方向のジョー溝に、2箇ずつ対向
されて摺動自在に保持された4箇のジョーと、ドローパ
ーの軸線方向の移動により同軸線方向に移動されると共
に、同軸線回りに回動自在な差動カム駆動カムと、上記
差動カム駆動カムと同時に係合する互いに逆方向の受動
斜面を有し、差動カム駆動カムの前記軸線方向の移動に
よって互いに逆方向に駆動され、一方の駆動が拘束され
た時、拘束された側の受動斜面に沿って差動カム受動カ
ムが回動して移動することによって他方が差動される一
対の差動カムと、前記一対の差動カムの夫々に係合する
差動カム受動部と、前記各ジョーの夫々に係合するジョ
ー駆動部とが形成され、チャックボデーに形成されたジ
ョー駆動カム孔に回動自在に嵌合されたジョー駆動カム
とを有して構成される差動四爪パワーチャックにおいて
、前記ジョー駆動カム孔をチャックボデーの直交二方向
のジョー溝の各中心線上に形成すると共に、ジョー駆動
カムを外締め型、内締め型、位1決め型に変換可能にし
たことを特徴としている。
In order to achieve the above object, the present invention has four jaws that are slidably held in two orthogonal jaw grooves formed on the front surface of a chuck body, and two that are opposed to each other and are slidably held in two orthogonal jaw grooves. The differential cam has a differential cam driving cam that is moved in the direction of the coaxial line by movement and is rotatable around the coaxial line, and passive slopes in mutually opposite directions that engage simultaneously with the differential cam driving cam. The drive cams are driven in opposite directions by the movement of the drive cams in the axial direction, and when one drive is restrained, the differential cam driven cam rotates and moves along the driven slope on the restrained side, thereby driving the other drive cam. a pair of differential cams that are differentially driven, a differential cam driven part that engages with each of the pair of differential cams, and a jaw drive part that engages with each of the jaws, and the chuck body In a differential four-jaw power chuck, the jaw drive cam hole is rotatably fitted into a jaw drive cam hole formed in the chuck body. It is characterized in that it is formed on each center line of the groove, and that the jaw drive cam can be converted into an external tightening type, an internal tightening type, and a positioning type.

〔作 用〕[For production]

従って、直交二方向のジョー駆動カムをすべて外締め型
または内締め型のものに交換すれば、四点外締め式また
は四点内締め式、一方向のジョー駆動カムを外締め型、
直交他方向のジョー駆動カムを内締め型のものに交換す
れば二点外締め二点内締め式、ジョー駆動カムの一箇を
位置決め型、他の3箇のジョー駆動カムを外締め型また
は内締め型のものに交換すれば、−点位置決め三点外締
め式または一点位置決め三点内締め式、直交二方向のジ
ョー駆動部の各1箇ずつを位置決め型、他の2箇のジョ
ー駆動カムを外締め型または内締め型のものに交換すれ
ば二点位置決め二点外締め式または二点位置決め二点内
締め式、前記−点位置決め式の位置決め型以外の直交す
る二方向のジョー駆動カムを互いに逆の外締め型と内締
め型に交換すれば一点位置決め一点外締め二点内締め式
、または−点位置決め一点内締め二点外締め式、前記二
点位置決め式の位置決め型以外の直交する二方向のジョ
ー駆動カムを互いに逆の外締め型と内締め型にすれば二
点位置決め一点外締め一点内締め式の差動四爪パワーチ
ャックに、チャック本体を交換することなく容易に交換
することができ、各種多様な不規則形状の加工物に対応
して適切な把持を行うことができる。
Therefore, if all the jaw drive cams in two orthogonal directions are replaced with external or internal clamping types, the jaw drive cams in one direction can be replaced with four-point external clamping or four-point internal clamping types.
If you replace the jaw drive cam in the other orthogonal direction with an internal tightening type, you can use a two-point external tightening two-point internal tightening type, one jaw drive cam of the positioning type, and the other three jaw drive cams of the external tightening type or If you replace it with an internal tightening type, you can use a three-point external tightening type with - point positioning or a three-point internal tightening type with one-point positioning, a positioning type for each of the jaw drive parts in two orthogonal directions, and a positioning type for the other two jaw drive parts. If you replace the cam with an external tightening type or an internal tightening type, you can drive the jaws in two orthogonal directions other than the two-point positioning two-point external tightening type, the two-point positioning two-point internal tightening type, or the above-mentioned -point positioning type. If you replace the cam with an external tightening type and an internal tightening type that are opposite to each other, you can use one-point positioning, one-point external tightening, two-point internal tightening type, --point positioning, one-point internal tightening, two-point external tightening type, or other positioning types other than the two-point positioning type mentioned above. By changing the jaw drive cams in two orthogonal directions to opposite external clamping types and internal clamping types, you can easily create a differential four-jaw power chuck with two-point positioning, one-point external tightening, and one-point internal tightening type without replacing the chuck body. It can be replaced and can appropriately grip a variety of irregularly shaped workpieces.

〔実施例〕〔Example〕

以下本発明を図示の一実施例に基いて詳細に説明する。 The present invention will be described in detail below based on an illustrated embodiment.

図は一点位置決め三点外締弐〇差動四爪パワーチャック
を例示したもので、第1図はその折面断面図、第2図は
半部断面正面図、第3図〜第5図はチャックボデーの詳
細図で、チャックボデー1は略円筒状をなし中心部に差
動カム孔2が穿設され、前面にはその直交直径線上にジ
ョー溝3が十字状に形成されている。図中4は前面に螺
着されたフロントカバー、5は後面に螺着されたバック
カバー、6は取付ポルト7のボルト孔である。
The figure shows an example of a differential four-jaw power chuck with one-point positioning and three-point external tightening. This is a detailed view of the chuck body. The chuck body 1 has a substantially cylindrical shape, has a differential cam hole 2 bored in the center, and has a cross-shaped jaw groove 3 formed on the front surface on a perpendicular diameter line. In the figure, 4 is a front cover screwed on the front side, 5 is a back cover screwed on the rear side, and 6 is a bolt hole of the mounting port 7.

直交二方向のジョー溝3には一方向のジョー溝3につき
2箇ずつ対向された計4箇のマスタージ!I−8が摺動
自在に保持されている。マスタージョー8は第6図〜第
8図に詳細に示すごとく、両側部にジョー溝3の凹係合
部3aに係合する凸保合部8a、前面に後述するトップ
ジョー9を係止する波形溝8bおよびトップジョー9を
取付けるためのTナツト溝80、後面に後述するジョー
駆動カム13のジョー駆動部13aと係合する横断方向
の溝状受動部8dが形成されている。
The jaw grooves 3 in two orthogonal directions have a total of 4 master jigs, 2 facing each jaw groove 3 in one direction! I-8 is slidably held. As shown in detail in FIGS. 6 to 8, the master jaw 8 has convex retaining portions 8a that engage with concave engaging portions 3a of the jaw groove 3 on both sides and engages a top jaw 9, which will be described later, on the front surface. A wave-shaped groove 8b, a T-nut groove 80 for attaching the top jaw 9, and a transverse groove-shaped passive portion 8d that engages with a jaw drive portion 13a of a jaw drive cam 13, which will be described later, are formed on the rear surface.

トップジョー9は第9図〜第11図に詳細に示すごとく
、前面から後面へ貫通する2箇の取付ボルト孔9aが穿
設され、後面にはマスタ−ジョー8前面の波形溝8bと
咬合う波形溝9bが刻設され、マスタージョー8のTナ
ツト溝8cにTナツト10(第1図)を挿入し、マスタ
ージー3−8前面の波形溝8bにトップジg9の波形溝
9bを係合し、取付ポル)11(第1.2図)を取付ボ
ルト孔9aに挿入してTナラ目0に螺着してマスタージ
ョー8に取付けられる。
As shown in detail in FIGS. 9 to 11, the top jaw 9 has two mounting bolt holes 9a penetrating from the front surface to the rear surface, and engages with the wave-shaped groove 8b on the front surface of the master jaw 8 on the rear surface. A wave-shaped groove 9b is carved, and the T-nut 10 (Fig. 1) is inserted into the T-nut groove 8c of the master jaw 8, and the wave-shaped groove 9b of the top jig g9 is engaged with the wave-shaped groove 8b on the front surface of the master jaw 3-8. , a mounting pole) 11 (Fig. 1.2) is inserted into the mounting bolt hole 9a and screwed onto the T-hole 0 to be mounted on the master jaw 8.

チャックボデー1の直交二方向のジョー溝3の各中心線
上同心位置に4箇のジョー駆動カム孔12が形成され、
各ジョー駆動カム孔12に第12図〜第19図に示す、
外締め型2種(第13図、第16図)、内締め型2種(
第14図、第17図)、位置決め型1種(第19図)の
計5種類の軸状のジョー駆動カム13、、13□、 1
33.134.135が差替え可能に保持されるように
なっている。
Four jaw drive cam holes 12 are formed at concentric positions on each center line of the jaw grooves 3 in two orthogonal directions of the chuck body 1,
In each jaw drive cam hole 12, as shown in FIGS. 12 to 19,
Two types of external tightening type (Fig. 13, Fig. 16), two types of internal tightening type (
A total of five types of shaft-shaped jaw drive cams 13, 13□, 1 (Figs. 14, 17) and 1 positioning type (Fig. 19) are provided.
33, 134, and 135 are held replaceably.

第1種および第2種のジョー駆動カム13.、13□は
後述する外輪差動カム15に駆動される外締め型および
内締め型であって、軸部13aに外輪差動カム15の駆
動溝15cに係合する半径方向の歯形の受動部13b、
端部に受動部13bを下にして正面視、第1種では右偏
心(第13図)、第2種では左偏心(第14図)したビ
ン状のジョー駆動部13cが夫々形成され、第3種およ
び第4種のジョー駆動カム13s、134は後述する内
輪差動カム16に駆動される外締め型および内締め型で
あって、軸部13aに内輪差動カム16の駆動溝16c
に係合する半径方向の歯形の受動部13b′、端部に受
動部13b’を下にして正面視、第3種では左偏心(第
16図)、第4種では右偏心(第17図)したピン状の
ジョー駆動部13cが夫々形成され、第5種のジョー駆
動カム13sは位置決め型であって、軸部13aに差動
カムの受動部が無く、端部のジョー駆動部13cはマス
タージa −8の溝状受動部8dに係合しマスタージョ
ー8を定位置にしっかり保持するように凸状の平行二面
形に形成されている。
First and second type jaw drive cams 13. , 13□ are an outer tightening type and an inner tightening type driven by an outer differential cam 15, which will be described later, and a radial tooth-shaped passive portion that engages with a drive groove 15c of the outer differential cam 15 on the shaft portion 13a. 13b,
When viewed from the front with the passive portion 13b facing downward, a bottle-shaped jaw driving portion 13c is formed, which is eccentric to the right in the first type (FIG. 13) and eccentric to the left in the second type (FIG. 14). The third and fourth types of jaw drive cams 13s and 134 are of an outer tightening type and an inner tightening type driven by an inner differential cam 16, which will be described later, and have a drive groove 16c of the inner differential cam 16 in the shaft portion 13a.
A radial tooth-shaped passive part 13b' that engages with the end, front view with the passive part 13b' facing down, type 3 has left eccentricity (Fig. 16), type 4 has right eccentricity (Fig. 17). ), the fifth type of jaw drive cam 13s is of a positioning type, and the shaft portion 13a has no differential cam passive part, and the jaw drive portion 13c at the end is of a positioning type. It is formed into a convex parallel dihedral shape so as to engage with the groove-shaped passive portion 8d of the master jaw a-8 and firmly hold the master jaw 8 in a fixed position.

前記したごとく、ジョー駆動カム孔12は直交二方向の
ジョー溝3の各中心線上にあるため、偏心ジョー駆動部
をもつジョー駆動カム13.、13□、 13.。
As mentioned above, since the jaw drive cam holes 12 are located on the respective center lines of the jaw grooves 3 in two orthogonal directions, the jaw drive cams 13 . , 13□, 13. .

134をジョー駆動カム孔12に差込んだ時、左右いず
れに偏心したジョー駆動部もジョー溝3の中心線に対し
て左右対称位置に位置し、従っ・てジョー駆動部はマス
タージー!−8に対等の駆動力を及ぼすことになる。
134 into the jaw drive cam hole 12, the jaw drive section eccentric to either the left or right is located at a symmetrical position with respect to the center line of the jaw groove 3, so that the jaw drive section is mastered! -8 will have an equal driving force.

チャックボデ−1中心部の差動カム孔2には円筒状の外
輪差動カム15が回動自在に保持され、外輪差動カム1
5は第20図〜第22図に詳細に示すごとく、筒状部1
5aの一端にフランジ部15bが形成され、フランジ部
15bの外周上対向位置に第1種および第2種ジョー駆
動カム131.13□の受動部13bに係合する1対の
駆動溝15cと、筒状部15aの外周上対向位置に軸線
Cに対し所定角度で一方向に傾斜する長孔で成る1対の
受動斜面15dが夫々形成されている。
A cylindrical outer ring differential cam 15 is rotatably held in the differential cam hole 2 at the center of the chuck body 1.
5 is the cylindrical portion 1 as shown in detail in FIGS. 20 to 22.
A flange portion 15b is formed at one end of the flange portion 15b, and a pair of drive grooves 15c that engage with the driven portions 13b of the first and second type jaw drive cams 131.13□ are provided at opposing positions on the outer periphery of the flange portion 15b; A pair of passive slopes 15d each consisting of a long hole inclined in one direction at a predetermined angle with respect to the axis C is formed at opposing positions on the outer periphery of the cylindrical portion 15a.

外輪差動カム15には、外輪差動カム15と略同形の内
輪差動カム16が回動自在に内嵌され、内輪差動カム1
6は第23図〜第25図に示すごとく、筒状部16aの
一端にフランジ部16bが形成され、フランジ部16b
の外周上対向位置に第3種および第4種ジョー駆動カム
133.134の受動部13b’に係合する1対の駆動
溝16cと、筒状部16aの外周上対向位置に軸線Cに
対し前記外輪差動カム15の受動斜面15dと逆方向に
傾斜する長孔でなる1対の受動斜面16dが形成されて
いる。
An inner differential cam 16 having substantially the same shape as the outer differential cam 15 is rotatably fitted into the outer differential cam 15 .
6, as shown in FIGS. 23 to 25, a flange portion 16b is formed at one end of the cylindrical portion 16a.
A pair of drive grooves 16c that engage with the driven portions 13b' of the third and fourth type jaw drive cams 133 and 134 are located at opposing positions on the outer periphery of the cylindrical portion 16a, and a pair of drive grooves 16c are provided at opposing positions on the outer periphery of the cylindrical portion 16a with respect to the axis C. A pair of passive slopes 16d formed of long holes that are inclined in the opposite direction to the passive slopes 15d of the outer ring differential cam 15 are formed.

そして図示例の一点位置決め三点外締め式のチャックで
は、第2図に示したように一方向のジョー溝3の一側の
ジョー駆動カム孔12(第2図上方)に第1種のジョー
駆動カム13+が、他側のジョー駆動カム孔12(第2
図下方)に第5種のジョー駆動カム13.が、直交他方
向のジョー溝3の両側ジョー駆動カム孔12.12(第
2図左右)には共に第3種のジョー駆動カム133が挿
入され、前記第1種のジョー駆動カム131の受動部1
3bは外輪差動カム15の駆動溝15cに、第3種のジ
ョー駆動カム13.の受動部13b’は内輪差動カム1
6の駆動溝16cに夫々係合され、各ジョー駆動カム1
31゜133、135のジョー駆動部13cは各マスタ
ージョー8の溝状受動部8dに係合されている。なお第
1種〜第5種のジョー駆動カム13.〜13.のジョー
駆動部13cには摩耗防止用のカラー14が嵌着される
In the illustrated example of a one-point positioning, three-point external tightening type chuck, as shown in FIG. The drive cam 13+ is connected to the other jaw drive cam hole 12 (second
5th type jaw drive cam 13. However, a third type of jaw drive cam 133 is inserted into both the jaw drive cam holes 12 and 12 (left and right in FIG. 2) of the jaw groove 3 in the other orthogonal direction, and Part 1
3b is a third type jaw drive cam 13.3b in the drive groove 15c of the outer ring differential cam 15. The passive part 13b' is the inner differential cam 1.
6 drive grooves 16c, each jaw drive cam 1
The jaw driving portions 13c at 31° 133 and 135 are engaged with the groove-shaped passive portions 8d of each master jaw 8. Note that the first to fifth types of jaw drive cams 13. ~13. A collar 14 for preventing wear is fitted onto the jaw driving portion 13c.

外輪差動カム15のフランジ部15bの内側とチャック
ボデー1との接触部、外輪差動カム15のフランジ部1
5bの外側と内輪差動カム16のフランジ部16bの内
側との接触部、内輪差動カム16のフランジ部16bの
外側とバックカバー4の内面との接触部には夫々スラス
トニードルベアリング17.18゜19が介在され摩擦
抵抗を減じている。
The contact portion between the inside of the flange portion 15b of the outer ring differential cam 15 and the chuck body 1, the flange portion 1 of the outer ring differential cam 15
Thrust needle bearings 17 and 18 are provided at the contact portions between the outside of the flange portion 16b of the inner differential cam 16 and the inside of the flange portion 16b of the inner differential cam 16, and the contact portion between the outside of the flange portion 16b of the inner differential cam 16 and the inner surface of the back cover 4, respectively. 19 is interposed to reduce frictional resistance.

図中20は差動カム駆動カムで、この詳細は第26.2
7図に示すごとく、後述するドローバ−23を嵌入する
ドローパー孔20aが形成された環状体の外周上対向位
置に1対の軸状の差動カム駆動部20bが形成され、差
動カム駆動部20bは重合された前記外輪差動カム15
、内輪差動カム16の長孔で成る各受動斜面15d、1
6dを同時に貫通して係合される。
In the figure, 20 is a differential cam drive cam, details of which can be found in Section 26.2.
As shown in FIG. 7, a pair of shaft-shaped differential cam drive parts 20b are formed at opposing positions on the outer periphery of an annular body in which a drawer hole 20a into which a drawbar 23 (described later) is inserted is formed. 20b is the superposed outer ring differential cam 15;
, each passive slope 15d, 1 consisting of a long hole of the inner differential cam 16.
6d at the same time and are engaged.

なお各差動カム駆動部20bには両受動斜面15dと1
6dに夫々接する2箇の摩耗防止のカラー21.22が
嵌入されている。
Note that each differential cam drive section 20b has both passive slopes 15d and 1.
Two anti-wear collars 21, 22 are fitted, each contacting 6d.

ドローバ−23は前部がフロントカバ−4中心部内面の
ボス4aに支承され、後部がバックカバー5の中心部を
貫通し後端にパワーシリンダー(図示省略)に接続され
るドローロッド24が環状ナツト25で取付けられてお
り、前部に前記差動カム駆動カム20が嵌入され、差動
カム駆動カム20はドローバ−23前端部のフランジ2
3aと、ドローバ−23に螺入された環状ナツト26の
間で回動可能にかつ前後移動が規制されている。
The drawbar 23 has a front part supported by a boss 4a on the inner surface of the center of the front cover 4, and a rear part that passes through the center of the back cover 5 and has an annular draw rod 24 connected to a power cylinder (not shown) at the rear end. It is attached with a nut 25, and the differential cam drive cam 20 is fitted into the front part, and the differential cam drive cam 20 is attached to the flange 2 at the front end of the drawbar 23.
3a and an annular nut 26 screwed into the drawbar 23, it is rotatable and its back and forth movement is restricted.

畝上の構成において、ドローバー23を外部のパワーシ
リンダによって軸線C方向に移動させると、差動カム2
0も共に軸線C方向に移動する。差動カム駆動カム20
の差動カム駆動部20bは、傾斜が互いに逆方向である
ため交差状に重合している外輪差動カム15と内輪差動
カム16の両受動斜面15d。
In the ridge configuration, when the drawbar 23 is moved in the direction of the axis C by an external power cylinder, the differential cam 2
0 also moves in the direction of axis C. Differential cam drive cam 20
The differential cam drive unit 20b has both driven slopes 15d of the outer differential cam 15 and the inner differential cam 16, which overlap in a crosswise manner because their inclinations are in opposite directions.

16dを同時に軸線C方向に押し進むことにより、両差
動カム15.16の回動が規制されない場合、即ち各ト
ップジョー9がすべて遊んでいる場合、両差動カム15
.16は同時に互いに逆方向に回動される。ここで外輪
差動カム15が正面視左回りに回動し、内輪差動カム1
6が正面視右回りに回動すると、第2図において、上方
の第1種のジョー駆動カム13、は左回りに回動する外
輪差動カム15に駆動されて右回りに回動し、右偏心し
ているジョー駆動部13cはマスタージ=1−8をチャ
ック中心方向に移動させる。一方他側の第5種のジョー
駆動力ム13、は受動部をもたないから回動せず、これ
に係合するマスタージ!!−8を定位置に保持する。ま
た左右の第3種のジョー駆動カム13.は内輪差動カム
16の右回りの回動に駆動されて共に左回りに回動し、
左偏心しているジョー駆動部13cはマスタージョー8
をチャック中心方向に移動させる。
16d in the direction of axis C at the same time, if the rotation of both differential cams 15 and 16 is not restricted, that is, if all the top jaws 9 are idle, both differential cams 15 and
.. 16 are simultaneously rotated in opposite directions. Here, the outer differential cam 15 rotates counterclockwise in front view, and the inner differential cam 1
6 rotates clockwise in front view, the upper first type jaw drive cam 13 in FIG. 2 is driven by the outer differential cam 15 that rotates counterclockwise, and rotates clockwise. The jaw driving portion 13c eccentric to the right moves the master ji = 1-8 toward the center of the chuck. On the other hand, the fifth type jaw driving force arm 13 on the other side does not have a passive part, so it does not rotate, and the master gear that engages with it does not rotate. ! -Hold 8 in place. In addition, left and right third type jaw drive cams 13. are driven by the clockwise rotation of the inner differential cam 16 and both rotate counterclockwise,
The left eccentric jaw drive section 13c is the master jaw 8.
move toward the center of the chuck.

加工物は、定位置に保持されたマスタージョー8に位置
調整されて取付はボルト11で固定されたトップジョー
9に所定位置が当接されて位置決めされ、前記中心方向
に移動する三方向のトツブジq −9のいずれかが加工
物に当接して移動が停止されると、そのトップジ=19
を駆動する外輪または内輪差動カム15.160回動が
拘束される。
The workpiece is positioned by a master jaw 8 held in a fixed position, and a predetermined position is brought into contact with a top jaw 9 fixed with a bolt 11, and the workpiece is positioned by a three-way top jaw 9 that moves toward the center. When any of q-9 comes into contact with the workpiece and movement is stopped, its top position = 19
The rotation of the outer or inner differential cam 15.160 that drives the cam is restricted.

すると差動カム駆動カム20の差動カム駆動部20bは
停止された差動カム15または16の受動斜面15dま
たは16dに案内されて差動カム駆動カム20を回動さ
せながら斜面を摺動し、これに伴って回動が拘束されて
いない他方の差動カム15または16の受動斜面15d
または16dを押し進んでこれを回動させ、この差動カ
ム15または16に連動するトップジ=I−9を移動さ
せる。このトップジョー9が加工物に当接するとこの差
動カム15または16の回動は停止され、差動カム駆動
カム20の差動カム駆動部20bは両差動カム15.1
6の受動斜面15d、16dに等分の駆動力を及ぼし、
三方向のトップジョー9はチャック中心方向に等分の締
付力を加工物に作用する。従って加工物は一点を位置決
めされ、三点を不規則な外形に対応して差動されたトッ
プジョーで等分の締付力で締付けられ、この−点位置決
め三点外締めのチャッキングがドローバ−23を引くだ
けの単一操作で行われる。
Then, the differential cam drive section 20b of the differential cam drive cam 20 is guided by the passive slope 15d or 16d of the stopped differential cam 15 or 16, and slides on the slope while rotating the differential cam drive cam 20. , the passive slope 15d of the other differential cam 15 or 16 whose rotation is not restricted accordingly.
Alternatively, push forward 16d and rotate it to move top gear I-9 that is linked to differential cam 15 or 16. When the top jaw 9 comes into contact with the workpiece, the rotation of the differential cam 15 or 16 is stopped, and the differential cam drive portion 20b of the differential cam drive cam 20 is moved between the two differential cams 15.1.
Equal driving force is applied to the passive slopes 15d and 16d of No. 6,
The top jaws 9 in three directions apply equal clamping force to the workpiece in the direction of the center of the chuck. Therefore, the workpiece is positioned at one point, and the three points are tightened with equal tightening force by the top jaws, which are differentially moved in accordance with the irregular external shape. This is done in a single operation by subtracting -23.

第28図〜第36図は前記−点位置決め三点外締め式の
外、ジョー駆動カム13+、 13z、 133.LL
、13sの差替えによってできる各種チャックの変換モ
ードを示したもので、第28図は直交二方向のジョー駆
動カム4箇をすべて外締め型(第1種133、第3種1
3.)に変換した一般的の四点外締め式、第29図は直
交二方向のジョー駆動カム4箇をすべて内締め型(第2
種13□、第4種134)に変換した四点内締め式、第
30図は一方向のジョー駆動カム2箇を外締め型(第1
種13I)、直交他方向のジョー駆動カム2箇を内締め
型(第2種13□)に変換した二点外締め二点内締め式
、第31図は一方向一側のジョー駆動カム1箇を位置決
め型(第5種13.)、他の3箇のジョー駆動カムを内
締め型(第2種13□、第3種13.)に変換した一点
位置決め三点内締め式、第32図は一方向一側のジョー
駆動カム1箇を位置決め型(第5種13.)、これに対
向する他側のジョー駆動カム1箇を内締め型(第2種1
3り、直交他方向の両側のジョー駆動カム2箇を外締め
型(第3種13.)に変換した一点位置決め一点内締め
二点外締め式、第33図は直交二方向の各−側のジョー
駆動カム1箇を位置決め型(第5種13.)、これに対
向する他側のジョー駆動カム1箇を外締め型(第1種1
31)、直交他方向のジョー駆動カム2箇を内締め型(
第1種13+)に変換した一点位置決め一点外締め二点
内締め式、第34図は直交二方向の各−側のジョー駆動
カム2箇を位置決め型(第5種13.)、これに対向す
る各直交二方向他側のジョー駆動カム2箇を外締め型(
第1種13+、第3種13.)に変換した二点位置決め
二点外締め式、第35図は直交二方向の各−側のジョー
駆動カム2箇を位置決め型(第5種135)、これに対
向する各直交二方向他側のジョー駆動カム2箇を内締め
型(第2種13□、第4種134)に変換した二点位置
決め二点内締め式、第36図は直交二方向の各−側のジ
ョー駆動カム2箇を位置決め型(第5種13.)、これ
に対向する直交二方向の各他側のジョー駆動カムを互い
に逆の外締め型(第1種131)および内締め型(第4
種134)に変換した二点位置決め一点外締め一点内締
め式のチャックを示している。
Figures 28 to 36 show the jaw drive cams 13+, 13z, 133. LL
, 13s. Figure 28 shows the four jaw drive cams in two orthogonal directions that are all externally tightened (type 1 133, type 3 1
3. Fig. 29 shows a general four-point external tightening type that has been converted into a four-point external tightening type.
Type 13□, Type 4 134) is a four-point internal tightening type, and Figure 30 shows two unidirectional jaw drive cams converted to an external tightening type (first type 134).
Type 13I), two-point external tightening two-point internal tightening type in which the two jaw drive cams in the other orthogonal direction are converted to an internal tightening type (Type 2 13□), Fig. 31 shows the jaw drive cam 1 in one direction and one side. One-point positioning three-point internal tightening type, with the other three jaw drive cams converted to internal tightening types (second type 13□, third type 13.), No. 32. The figure shows one jaw drive cam on one side in one direction of the positioning type (5th type 13.), and the opposite side jaw drive cam on the other side of the internal tightening type (2nd type 1).
3. One-point positioning, one-point internal tightening, two-point external tightening type, in which the two jaw drive cams on both sides in the other orthogonal directions were converted to external tightening type (Type 3 13.), Fig. 33 shows each side of the two orthogonal directions. One jaw drive cam on the side is a positioning type (5th type 13.), and one jaw drive cam on the other side opposite to this is an external tightening type (1st type 1).
31), the two jaw drive cams in the other orthogonal directions are internally tightened (
One-point positioning, one-point external tightening, two-point internal tightening type converted to 1st type 13+), Fig. 34 shows a positioning type (5th type 13.) with two jaw drive cams on each negative side in two orthogonal directions, opposed to this type. The two jaw drive cams on the other side in each of the two orthogonal directions are externally tightened (
1st type 13+, 3rd type 13. ) has been converted into a two-point positioning two-point external tightening type, Fig. 35 shows a positioning type (5th type 135) with two jaw drive cams on each negative side in two orthogonal directions, and a two-point positioning type (type 5 135) opposite to this on the other side in each orthogonal direction. Two-point positioning, two-point internal tightening type in which the two jaw drive cams of the above are converted to internal tightening types (2nd type 13□, 4th type 134), Fig. 36 shows the jaw drive cams 2 on each negative side in two orthogonal directions. The jaw drive cams on the other sides in the two orthogonal directions opposite to the jaw drive cams are formed using an outer tightening die (first type 131) and an inner tightening die (fourth type 13.), which are opposite to each other.
This shows a two-point positioning, one-point external tightening, one-point internal tightening type chuck converted to Type 134).

上記ジョー駆動カムを外締め型、内締め型、位置決め型
に変換する手段は、外締め型、内締め型、位置決め型の
ジョー駆動部を形成した各ジョー駆動カムをジョー駆動
カム孔に差替えるものであるが、第37図は共通の軸部
にジョー駆動部を差替えて外締め型、内締め型、位置決
め型のジョー駆動カムに変換する手段を示している。
The means for converting the above-mentioned jaw drive cams into external clamping type, internal clamping type, and positioning type is to replace each jaw driving cam forming the external clamping type, internal clamping type, and positioning type jaw drive part with a jaw driving cam hole. However, FIG. 37 shows means for converting the jaw drive cam into an external clamping type, internal clamping type, or positioning type jaw driving cam by replacing the jaw drive unit with a common shaft part.

即ち、ジョー駆動カム13’は軸部13a′とジョー駆
動部130′と別体に形成され、軸部13a′は外輪差
動カム15の駆動溝15cに係合する受動部13bを形
成したものと、内輪差動カム16の駆動溝160に係合
する受動部13b′を形成したものと2種類あり、いず
れも端部中心に角孔13dが形成されている。
That is, the jaw drive cam 13' is formed separately from the shaft section 13a' and the jaw drive section 130', and the shaft section 13a' has a passive section 13b that engages with the drive groove 15c of the outer differential cam 15. There are two types, one in which a passive part 13b' that engages with the drive groove 160 of the inner differential cam 16 is formed, and a square hole 13d is formed in the center of the end.

ジョー駆動部130′は前記軸部13a′の角孔13d
に挿入する角軸状挿入部13eに偏心してビン状のジョ
ー駆動部13c+が一体に形成されたものと、同挿入部
13eに偏心しない中立ピン状のジョー駆動部13c2
が一体に形成されたものと2種類ある。
The jaw driving portion 130' is formed through the square hole 13d of the shaft portion 13a'.
There are two types: one in which a bottle-shaped jaw drive part 13c+ is eccentrically formed integrally with the square shaft-like insertion part 13e inserted into the square shaft-shaped insertion part 13e, and the other in which a neutral pin-shaped jaw drive part 13c2 is not eccentric in the same insertion part 13e.
There are two types: one formed in one piece and the other.

そして外輪差動カム15の駆動溝15cに係合する受動
部13bを有する軸部13a’に偏心したジョー駆動部
13ctを、受動部13bを下にして正面視右偏心させ
て挿入すれば前記第1種(外締め型)のジョー駆動カム
131となり、逆にして左偏心させて挿入すれば前記第
2種(内締め型)のジョー駆動部138、内輪差動カム
16の駆動溝16cに係合する受動部13b′を有する
軸部13a′に偏心したジョー駆動部13c1を、受動
部13b’を下にして正面視力偏心させて挿入すれば前
記第3種(外締め型)のジョー駆動カム13.となり、
逆にして右偏心させて挿入すれば前記第4種(内締め型
)のジョー駆動カム13.となり、外輪または内輪差動
カムの駆動溝15cまたは16cのいずれかに係合する
受動部13bまたは13b’を有する軸部13a’に偏
心しない中立のジョ−駆動部13c2を挿入すれば、前
記第5種(位置決め型)のジョー駆動カム13sとなる
。このジョー駆動カム13sは外輪または内輪差動カム
15または16に駆動されて軸部13a′は回動するが
、ジョー駆動部13czは偏心していないから中立を維
持する。
Then, if the jaw driving part 13ct eccentric to the shaft part 13a' having the driven part 13b that engages with the driving groove 15c of the outer ring differential cam 15 is inserted with the driven part 13b facing down and eccentric to the right in front view, The jaw drive cam 131 is of type 1 (outer tightening type), and if it is reversed and inserted eccentrically to the left, it will engage the jaw drive portion 138 of the second type (inner tightening type) and the drive groove 16c of the inner differential cam 16. If the jaw drive part 13c1 eccentric to the shaft part 13a' having the mating driven part 13b' is inserted with the driven part 13b' facing down and the front sight eccentric, the third type (external tightening type) jaw drive cam can be obtained. 13. Then,
If it is reversed and inserted eccentrically to the right, the fourth type (inner tightening type) jaw drive cam 13. If a neutral jaw drive part 13c2 that is not eccentric is inserted into the shaft part 13a' having a passive part 13b or 13b' that engages with either the drive groove 15c or 16c of the outer ring or inner ring differential cam, the above-mentioned There are 5 types (positioning type) of jaw drive cams 13s. This jaw drive cam 13s is driven by the outer ring or inner ring differential cam 15 or 16, and the shaft portion 13a' rotates, but the jaw drive portion 13cz is not eccentric and therefore remains neutral.

従って前記全10種類のチャック変換を、ジョー駆動カ
ムの差替え方式で行うと、5種類のジョー駆動カムが各
2箇ずつ必要となるのに対し、ジョー駆動部の差替え方
式で行うと、軸部は2種類2箇ずつ、ジョー駆動部は偏
心型4箇、中立型2箇の2種M6箇ですむことになる。
Therefore, if all 10 types of chuck conversion were performed by replacing the jaw drive cams, two of each of the five types of jaw drive cams would be required, whereas if conversion was performed by replacing the jaw drive parts, the shaft The number of jaw drive parts is 2 types, 2 types, and the jaw drive parts are 6 types, 4 eccentric types and 2 neutral types.

第38図は差動カム駆動カム20の差動カム駆動部20
dを直交三直径方向に2対設け、これに対応して外輪差
動カム15、内輪差動カム16の受動斜面15d、16
dを同じく直交二直径線上に2対ずつ設けた実施例を示
したものである。このように差動カム駆動部20dを複
数対に増加することによってチャックの強度増強をはか
ることができる。
FIG. 38 shows the differential cam drive section 20 of the differential cam drive cam 20.
d are provided in two pairs in three orthogonal diametrical directions, and correspondingly, passive slopes 15d and 16 of the outer differential cam 15 and the inner differential cam 16 are provided.
This figure shows an embodiment in which two pairs of d are provided on two orthogonal diameter lines. By increasing the number of pairs of differential cam drive units 20d in this manner, the strength of the chuck can be increased.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明は、チャックボデーの前面に
形成された直交二方向のジョー溝に、2箇ずつ対向され
て摺動自在に保持された4箇のジョーと、ドローパーの
軸線方向の移動により同軸線方向に移動されると共に、
同軸線回りに回動自在な差動カム駆動カムと、上記差動
カム駆動カムと同時に係合する互いに逆方向の受動斜面
を有し、差動カム駆動カムの前記軸線方向の移動によっ
て互いに逆方向に駆動され、一方の駆動が拘束された時
、拘束された側の受動斜面に沿って差動カム受動カムが
回動して移動することによって他方が差動される一対の
差動カムと、前記一対の差動カムの夫々に係合する差動
カム受動部と、前記各ジョーの夫々に係合するジョー駆
動部とが形成され、チャックボデーに形成されたジョー
駆動カム孔に回動自在に嵌合されたジョー駆動カムとを
有して構成される差動四爪パワーチャックにおいて、前
記ジョー駆動カム孔をチャックボデーの直交二方向のジ
ョー溝の各中心線上に形成すると共に、ジョー駆動カム
を外締め型、内締め型、位置決め型に変換可能にしたか
ら、チャック本体を交換せずにジョー駆動カムまたはそ
のジョー駆動部を差替えるだけで、四点内締め、四点外
線めは勿論、二点外締め二点内締め、さらに−点位置決
め、二点位置決め把持等各種多様の把持ができる差動四
爪パワーチャックに変換することができる。
As described in detail above, the present invention has four jaws that are slidably held in two orthogonal jaw grooves formed on the front surface of the chuck body, and that are slidably held in the jaw grooves in two orthogonal directions. While being moved in the coaxial direction by movement,
It has a differential cam drive cam that is rotatable around the same axis, and passive slopes that engage simultaneously with the differential cam drive cam and are opposite to each other, and that are reversed by the movement of the differential cam drive cam in the axial direction. A pair of differential cams that are driven in a direction, and when one drive is restrained, the other is differentially driven by the driven cam rotating and moving along the driven slope on the restrained side. , a differential cam driven part that engages with each of the pair of differential cams, and a jaw drive part that engages with each of the jaws, and is rotatable in a jaw drive cam hole formed in the chuck body. In a differential four-jaw power chuck configured with a jaw drive cam that is freely fitted, the jaw drive cam holes are formed on each center line of the jaw groove in two orthogonal directions of the chuck body, and the jaw The drive cam can be converted to an external tightening type, an internal tightening type, or a positioning type, so you can perform four-point internal tightening or four-point external tightening by simply replacing the jaw drive cam or its jaw drive part without replacing the chuck body. Of course, it can be converted to a differential four-jaw power chuck that can perform various types of gripping such as two-point external tightening, two-point internal tightening, -point positioning, and two-point positioning gripping.

従って不規則形状の加工物を形状に応じた最も適切な把
持方法で把持することができ、しかもこの把持は従来の
スクロールチャックと同様の単一操作で行えるから、熟
練者でなくても生産性を著しく向上することができる。
Therefore, irregularly shaped workpieces can be gripped using the most appropriate gripping method depending on the shape, and this gripping can be done with a single operation similar to a conventional scroll chuck, so even non-skilled workers can increase productivity. can be significantly improved.

そしてチャックはペースとなるチャック1つですむから
設備費が大幅に節減される等経済的効果が多大である。
Since only one chuck is required as a pace, there are great economic effects such as a significant reduction in equipment costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のゴ実施例を示し、第1図、第2図は本発
明に係るパワーチャックの全体図で、第1図はその折面
断面図、第2図はその半部断面正面図、第3図〜第5図
はチャックボデーの詳細図で、第3図はその側断面図、
第4図はその半部正面図、第5図はそのジョー溝の横断
面図、第6図〜第8図はマスタージョーの詳細図で、第
6図はその側面図、第7図はその平面図、第8図はその
背面図、第9図〜第11図はトップジョーの詳細図で、
第9図はその側面図、第10図はその平面図、第11図
はその正面図、第12図は第1種および第2種のジョー
駆動カムの側面図、第13図は第1種のジョー駆動カム
の正面図、第14図は第2種のジョー駆動カムの正面図
、第15図は第3種および第4種のジョー駆動カムの側
面図、第16図は第3種のジョー駆動カムの正面図、第
17図は第4種のジョー駆動カムの正面図、第18図は
第5種のジョー駆動カムの側面図、第19図は同第5種
のジョー駆動カムの正面図、第20図〜第22回は外輪
差動カムの詳細図で、第20図はその背面図、第21図
は第20図のA−A線折面断面図、第22図はその受動
斜面の展開図、第23図〜第25図は内輪差動カムの詳
細図で、第23図はその背面図、第24図は第23図の
B−B線折面断面図、第25図はその受動斜面の展開図
、第26図、第27図は差動カム駆動カムの詳細図で、
第26図はその正面図、第27図はその側面図、第28
図〜第36図は各種チャックの変換モードを示したもの
で、第28図は四点外締め式、第29図は四点内締め式
、第30図は二点外締め二点内締め式、第31図は一点
位置決め三点内締め式、第32図は一点位置決め一点内
締め二点外締め式、第33図は一点位置決め一点外締め
二点内締め式、第34図は二点位置決め二点外締め式、
第35図は二点位置決め二点内締め式、第36図は二点
位置決め一点外締め一点内締め式のチャック、第37図
はジョー駆動カムの変換手段の他の実施例を示す斜視図
、第38図は差動カム駆動カムの他の実施例を示す断面
図である。 1・・・チャックボデー、3・・・ジョー溝、8・・・
マスタージョー 9・・・トップジョー、12・・・ジ
ョー駆動カム孔、13.、13□・・・外締め型のジョ
ー駆動カム、13□、134・・・内締め型ジョー駆動
カム、13.・・・位置決め型ジョー駆動カム、13′
・・・ジョー駆動部差替え式ジョー駆動カム、13a、
 13a’ ・−軸部、13b。 13b′・・・受動部、13c、 13c’・・・ジョ
ー駆動部、15・・・外輪差動カム、15d・・・受動
斜面、16・・・内輪差動カム、16d・・・受動斜面
、20・・・差動カム駆動カム、23・・・ドローパー 第1図 第 図 第 図 第 お 図 第 ■ 第 詔 図 第 酋 図 第 図 第 あ 図 5C
The drawings show embodiments of the present invention, and FIGS. 1 and 2 are general views of the power chuck according to the present invention, FIG. 1 is a folded cross-sectional view thereof, and FIG. 2 is a half-sectional front view thereof. , Figures 3 to 5 are detailed views of the chuck body, and Figure 3 is its side sectional view.
Figure 4 is a half front view of the master jaw, Figure 5 is a cross-sectional view of its jaw groove, Figures 6 to 8 are detailed views of the master jaw, Figure 6 is its side view, and Figure 7 is its side view. A plan view, FIG. 8 is a rear view, and FIGS. 9 to 11 are detailed views of the top jaw.
Fig. 9 is a side view thereof, Fig. 10 is a plan view thereof, Fig. 11 is a front view thereof, Fig. 12 is a side view of the first and second type jaw drive cams, and Fig. 13 is a side view of the first type jaw drive cam. 14 is a front view of the second type of jaw driving cam, FIG. 15 is a side view of the third and fourth types of jaw driving cams, and FIG. 16 is a front view of the third type of jaw driving cam. FIG. 17 is a front view of the fourth type of jaw driving cam, FIG. 18 is a side view of the fifth type of jaw driving cam, and FIG. 19 is a front view of the fifth type of jaw driving cam. The front view, Figures 20 to 22 are detailed views of the outer ring differential cam, Figure 20 is its rear view, Figure 21 is a cross-sectional view taken along line A-A in Figure 20, and Figure 22 is its cross-sectional view. 23 to 25 are detailed views of the inner differential cam, FIG. 23 is a rear view thereof, FIG. 24 is a sectional view taken along the line B-B in FIG. 23, and FIG. 25 is a developed view of the passive slope. The figure is a developed view of the passive slope, and Figures 26 and 27 are detailed views of the differential cam drive cam.
Figure 26 is its front view, Figure 27 is its side view, and Figure 28 is its front view.
Figures to Figures 36 show the conversion modes of various chucks. Figure 28 is a four-point external tightening type, Figure 29 is a four-point internal tightening type, and Figure 30 is a two-point external tightening type and a two-point internal tightening type. , Fig. 31 shows one-point positioning, three-point internal tightening type, Fig. 32 shows one-point positioning, one-point internal tightening, two-point external tightening type, Fig. 33 shows one-point positioning, one-point external tightening, two-point internal tightening type, and Fig. 34 shows two-point positioning. Two-point external tightening type,
FIG. 35 is a two-point positioning, two-point internal tightening type chuck, FIG. 36 is a two-point positioning, one-point external tightening, one-point internal tightening type chuck, and FIG. 37 is a perspective view showing another embodiment of the jaw drive cam conversion means. FIG. 38 is a sectional view showing another embodiment of the differential cam drive cam. 1... Chuck body, 3... Jaw groove, 8...
Master jaw 9...Top jaw, 12...Jaw drive cam hole, 13. , 13□...Outer tightening type jaw drive cam, 13□, 134...Inner tightening type jaw drive cam, 13. ...Positioning type jaw drive cam, 13'
... Jaw drive unit replaceable jaw drive cam, 13a,
13a' - shaft portion, 13b. 13b'... Passive part, 13c, 13c'... Jaw drive part, 15... Outer ring differential cam, 15d... Passive slope, 16... Inner ring differential cam, 16d... Passive slope , 20...Differential cam drive cam, 23...Drawer Figure 1 Figure 1 Figure ■ Figure 5C

Claims (4)

【特許請求の範囲】[Claims] (1)チャックボデーの前面に形成された直交二方向の
ジョー溝に、2箇ずつ対向されて摺動自在に保持された
4箇のジョーと、ドローバーの軸線方向の移動により同
軸線方向に移動されると共に、同軸線回りに回動自在な
差動カム駆動カムと、上記差動カム駆動カムと同時に係
合する互いに逆方向の受動斜面を有し、差動カム駆動カ
ムの前記軸線方向の移動によって互いに逆方向に駆動さ
れ、一方の駆動が拘束された時、拘束された側の受動斜
面に沿って差動カム受動カムが回動して移動することに
よって他方が差動される一対の差動カムと、前記一対の
差動カムの夫々に係合する差動カム受動部と、前記各ジ
ョーの夫々に係合するジョー駆動部とが形成され、チャ
ックボデーに形成されたジョー駆動カム孔に回動自在に
嵌合されたジョー駆動カムとを有して構成される差動四
爪パワーチャックにおいて、前記ジョー駆動カム孔をチ
ャックボデーの直交二方向のジョー溝の各中心線上に形
成すると共に、ジョー駆動カムを外締め型、内締め型、
位置決め型に変換可能にしたことを特徴とする差動四爪
パワーチャック。
(1) Four jaws are slidably held in two orthogonal jaw grooves formed on the front surface of the chuck body, and move in the coaxial direction by the axial movement of the drawbar. and a differential cam drive cam rotatable about the same axis, and passive slopes in mutually opposite directions that engage simultaneously with the differential cam drive cam, and the differential cam drive cam is rotated in the axial direction. A pair of differential cams that are driven in opposite directions by movement, and when one drive is restrained, the other is differentially driven by the driven cam rotating and moving along the passive slope on the restrained side. A jaw drive cam formed on a chuck body, including a differential cam, a differential cam driven part that engages with each of the pair of differential cams, and a jaw drive part that engages with each of the jaws. In a differential four-jaw power chuck configured with a jaw drive cam rotatably fitted in the hole, the jaw drive cam hole is formed on each center line of the jaw groove in two orthogonal directions of the chuck body. At the same time, the jaw drive cam can be of external tightening type, internal tightening type,
A differential four-jaw power chuck that can be converted into a positioning type.
(2)前記ジョー駆動カムを外締め型、内締め型、位置
決め型に変換する手段は、外締め型、内締め型、位置決
め型のジョー駆動部を夫々形成した各ジョー駆動カムを
ジョー駆動カム孔に差替えるようにしたことを特徴とす
る請求項(1)記載の差動四爪パワーチャック。
(2) The means for converting the jaw drive cam into an outer tightening type, an inner tightening type, and a positioning type is a means for converting each jaw drive cam into an outer tightening type, an inner tightening type, and a positioning type jaw drive portion, respectively. The differential four-jaw power chuck according to claim 1, wherein the differential four-jaw power chuck is adapted to be replaced with a hole.
(3)前記ジョー駆動カムを外締め型、内締め型、位置
決め型に変換する手段は、外締め型、内締め型、位置決
め型のジョー駆動部をジョー駆動カムに差替えるように
したことを特徴とする請求項(1)記載の差動四爪パワ
ーチャック。
(3) The means for converting the jaw driving cam into an external clamping type, internal clamping type, or positioning type is such that an external clamping type, internal clamping type, or positioning type jaw drive section is replaced with a jaw driving cam. The differential four-jaw power chuck according to claim (1).
(4)前記差動カム駆動カムの差動カム駆動部を複数設
けると共に、これに対応して各差動カムの受動斜面を複
数設けたことを特徴とする請求項(1)または(2)ま
たは(3)記載の差動四爪パワーチャック。
(4) Claim (1) or (2) characterized in that a plurality of differential cam drive portions of the differential cam drive cam are provided, and a plurality of passive slopes of each differential cam are provided correspondingly. Or the differential four-jaw power chuck described in (3).
JP64001083A 1989-01-05 1989-01-05 Differential four-jaw power chuck Expired - Lifetime JP2717294B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP64001083A JP2717294B2 (en) 1989-01-05 1989-01-05 Differential four-jaw power chuck
PCT/JP1989/001306 WO1990007394A1 (en) 1989-01-05 1989-12-26 Four-clawed differential chuck
DE19893991546 DE3991546T1 (en) 1989-01-05 1989-12-26 DIFFERENTIAL CHUCK WITH FOUR Jaws
US07/571,651 US5143686A (en) 1989-01-05 1989-12-26 Chuck with four differential jaws

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP64001083A JP2717294B2 (en) 1989-01-05 1989-01-05 Differential four-jaw power chuck

Publications (2)

Publication Number Publication Date
JPH02185304A true JPH02185304A (en) 1990-07-19
JP2717294B2 JP2717294B2 (en) 1998-02-18

Family

ID=11491607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP64001083A Expired - Lifetime JP2717294B2 (en) 1989-01-05 1989-01-05 Differential four-jaw power chuck

Country Status (1)

Country Link
JP (1) JP2717294B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859707A (en) * 1981-10-05 1983-04-08 Tokichi Shimizu Four-click linkage power chuck with two-direction differential centripetal contrivance
JPS6040324A (en) * 1983-08-16 1985-03-02 Tokyu Constr Co Ltd Bulk material take-in device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859707A (en) * 1981-10-05 1983-04-08 Tokichi Shimizu Four-click linkage power chuck with two-direction differential centripetal contrivance
JPS6040324A (en) * 1983-08-16 1985-03-02 Tokyu Constr Co Ltd Bulk material take-in device

Also Published As

Publication number Publication date
JP2717294B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
CN206263615U (en) A kind of eccentric shaft processing clamp
CN110052874A (en) A kind of inclined hole indexing drill jig and its application method
CN115255973A (en) Disc workpiece clamping tool
CN207888260U (en) A kind of horizontal Machining centers experimental teaching special fixture
US5544556A (en) Reversibly rotatable chuck with internal cam for shifting work axis
WO1990007394A1 (en) Four-clawed differential chuck
JPH02185304A (en) Differential four-claw powder chuck
KR940003777B1 (en) Roll charged with heat transfer medium
JPS6246284B2 (en)
JPH0516017U (en) Tooth surface checking nail
CN208787564U (en) Crankshaft processing device
CN211758553U (en) A upset chuck for digit control machine tool
CN110052875A (en) A kind of indexing drill jig and its application method
EP3438507B1 (en) Cam manipulator, especially for automatic tool change on a machine tool
CN206123217U (en) Camshaft flank hole manually rotate the anchor clamps
KR940003778B1 (en) Chuck with four differential jaws
JPH02185305A (en) Positioning differential four-claw chuck
CN217493237U (en) Rotating mechanism
JPS63174805A (en) Two-direction differential centripetal type four-pawl interlocking chuck
JPH0639844Y2 (en) Work reversing device
CN108544476B (en) Reversing clamping manipulator
CN213289541U (en) Swing arm type mechanical arm for numerical control lathe
JPH0118249Y2 (en)
JPH071212Y2 (en) Face clamp chuck
JPH0329078Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 12