JPH02184344A - Catalyst for removal of nitrogen oxide - Google Patents

Catalyst for removal of nitrogen oxide

Info

Publication number
JPH02184344A
JPH02184344A JP1001349A JP134989A JPH02184344A JP H02184344 A JPH02184344 A JP H02184344A JP 1001349 A JP1001349 A JP 1001349A JP 134989 A JP134989 A JP 134989A JP H02184344 A JPH02184344 A JP H02184344A
Authority
JP
Japan
Prior art keywords
catalyst
weight
parts
titanium oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1001349A
Other languages
Japanese (ja)
Inventor
Kozo Iida
耕三 飯田
Yoshiaki Obayashi
良昭 尾林
Hiroshi Fujita
浩 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1001349A priority Critical patent/JPH02184344A/en
Publication of JPH02184344A publication Critical patent/JPH02184344A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst maintaining NOx removing performance and having low ability to oxidize SO2 to SO3 by incorporating phosphate ore and titanium oxide in a specified ratio and further incorporating the oxide of V, W, etc. CONSTITUTION:This catalyst for removal of NOx in exhaust gas after combus tion contains phosphate ore (A) and titanium oxide (B) in 0.05-0.3 weight ratio of B/(A+B) and further contains one or more among vanadium oxide, tungsten oxide and molybdenum oxide. This catalyst has slightly inferior denitrifying performance but is very effective in reducing the rate of oxidation of SO2 and has superior practicality.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はボイラ、ガスタービンあるいはディーゼルエン
ジン等の内燃機関、各種燃焼装置から排出される燃焼排
ガス中の窒素酸化物を除去する窒素酸化物除去用触媒に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a nitrogen oxide removal method that removes nitrogen oxides from combustion exhaust gas discharged from boilers, internal combustion engines such as gas turbines or diesel engines, and various combustion devices. related to commercial catalysts.

〔従来の技術〕[Conventional technology]

排ガス中の窒素酸化物を除去する方法としては、現在排
ガス中にアンモニアを添加して触媒上で窒素酸化物を接
触的に還元し、窒素と水に分解する方法が主流となって
いる。排ガス中の窒素酸化物を除去するだめに用いられ
ている触媒としては酸化チタンを主成分とし、活性金属
成分としてバナジウム、タングステン、モリブデン等を
含んだものが知られており、この触媒は窒素酸化物除去
効果がすぐれていることも知られている。
Currently, the mainstream method for removing nitrogen oxides from exhaust gas is to add ammonia to the exhaust gas, catalytically reduce the nitrogen oxides on a catalyst, and decompose them into nitrogen and water. Catalysts used to remove nitrogen oxides from exhaust gas are known to have titanium oxide as the main component and contain vanadium, tungsten, molybdenum, etc. as active metal components. It is also known to have an excellent object removal effect.

この触媒は排ガス中のダスト成分による目詰りを防止す
るだめ、あるいは排ガスの圧力損失低減のだめから、押
出成型による格子状ハニカムや板状のものを平行に配列
した形状の触媒成形体に成形されている。
In order to prevent clogging due to dust components in the exhaust gas and to reduce the pressure loss of the exhaust gas, this catalyst is extruded into a catalyst molded body in the form of a lattice-like honeycomb or plate-like structures arranged in parallel. There is.

しか17ながら、この酸化チタンを主成分とする触媒は
ハニカムに成形する際、良好な形状を保ち高強度を得る
ために、押出後の乾燥をヒビ割れを起すことなく十分に
時間をかけ慎重に行うことが安水され、製造は必ずしも
容易ではなかった。まだ触媒全体が比較的高価な材料で
ある酸化チタンとその他の活性成分で形成されているが
、触媒成形体の脱硝反応に寄与する部分は、発明者等の
検討によれば、触媒成形体の表面から100μ以内の表
層部であり、高価な材料が有効に活用されていない。
However, when forming this titanium oxide-based catalyst into a honeycomb, in order to maintain a good shape and obtain high strength, it is necessary to carefully dry it after extrusion for a sufficient amount of time without causing cracks. It was cheap to do and manufacturing was not always easy. Although the entire catalyst is still made of titanium oxide, which is a relatively expensive material, and other active ingredients, the portion of the catalyst molded body that contributes to the denitrification reaction, according to the inventors' study, This is the surface layer within 100μ from the surface, and expensive materials are not used effectively.

このような問題点を鑑みて、最近では担体に石膏を利用
した触媒が提案されており(例えば特公昭53−730
6号、特公昭6m−12902号各公報参照)、また発
明者等も■型無水石膏を利用した触媒を提案している(
特願昭62−304770号参照)。
In view of these problems, catalysts using gypsum as a carrier have recently been proposed (for example, Japanese Patent Publication No. 53-730).
No. 6 and Japanese Patent Publication No. 6m-12902), the inventors have also proposed a catalyst using ■-type anhydrite (
(See Japanese Patent Application No. 62-304770).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

脱硝触媒に要求される性能は窒素酸化物の除去性能がす
ぐれていることはもちろんであるがもう一つの要件とし
て、排ガス中に硫黄酸化物が含まれる場合に、SO2が
S03に酸化する能力ができるだけ小さいことが必要と
される。SO2のSO3への酸化は脱硝装置の後流機器
の腐蝕や閉塞の原因となり好1しくないからである。
The performance required of a denitration catalyst is, of course, that it has excellent ability to remove nitrogen oxides, but another requirement is that it has the ability to oxidize SO2 to S03 when sulfur oxides are included in the exhaust gas. It is required to be as small as possible. This is because the oxidation of SO2 to SO3 is undesirable because it causes corrosion and blockage of the downstream equipment of the denitrification equipment.

発明者らが先に提案した石膏を利用した触媒(特願昭6
2−504770号)はその後の検問により、酸化チタ
ンを主成分とした従来型触媒に比べて、上記の802の
803への酸化能が大きい欠点があることが判明した。
A catalyst using gypsum that the inventors had proposed earlier (patent application 1986)
2-504770) was found to have a drawback in that it had a greater ability to oxidize 802 to 803 than conventional catalysts containing titanium oxide as a main component.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は−1−記の欠点を改良すべ(鋭意検討を重ねて
見出したものであって、本発明の触媒は発明者等の先願
(特願昭62〜304770号)の■型無水石膏をリン
鉱石又は無水ケイ酸粉末に代えたものであり、このこと
によって先軸触媒の特徴をそのit残しかつ、SO2の
SO3への酸化能の小さな触媒としたものである。
The present invention aims to improve the shortcomings listed in -1- (this was discovered after repeated studies), and the catalyst of the present invention is based on the type 1 anhydrite of the inventors' earlier application (Japanese Patent Application No. 1983-304770). is replaced with phosphate rock or silicic anhydride powder, thereby retaining the characteristics of the lead shaft catalyst and making it a catalyst with a small ability to oxidize SO2 to SO3.

すなわち、本発明は (])  リン鉱石からなるA成分と酸化チタンからな
るB成分のB、/(A+B’)の重量比が0.05〜0
3であり、さらにバナジウム、タングステン及びモリブ
デンの酸化物を1種以−ヒ含むことを特徴とする窒素酸
化物除去用触媒(2)  無水ケイ酸からなるA成分と
酸化チタンからなるB成分のB/(A+B)の重量比が
0.05〜06でちゃ、さらにバナジウム、タングステ
ン及びモリブデンの酸化物を1種以−ヒ含むことを特徴
とする窒素酸化物除去用触媒でちる。
That is, the present invention provides (]) a weight ratio of B, /(A+B') of component A consisting of phosphate rock and component B consisting of titanium oxide from 0.05 to 0.
3 and further contains one or more oxides of vanadium, tungsten, and molybdenum (2) A catalyst consisting of component A consisting of silicic anhydride and component B consisting of titanium oxide. The catalyst for removing nitrogen oxides is characterized in that the weight ratio of /(A+B) is 0.05 to 06 and further contains one or more oxides of vanadium, tungsten and molybdenum.

本発明におけるリン鉱石又は無水ケイ酸と酸化チタンの
割合は酸化チタン/酸化チタン」−(リン鉱石又は無水
ケイ酸)重−は比で005〜03が好ましい。これは先
願と同じく、酸化チタン/酸化チタン+(リン鉱石又は
無水ケイ酸)重量比が005以下になると活性度が急激
に低下すること、また06以上では押出成型物が乾燥時
にヒビ割れし易いことによる。
The ratio of phosphate rock or silicic anhydride to titanium oxide in the present invention is preferably 005 to 03 in terms of titanium oxide/titanium oxide weight (phosphate rock or silicic anhydride). As with the previous application, this is because when the weight ratio of titanium oxide/titanium oxide + (phosphate rock or silicic acid anhydride) is less than 005, the activity decreases rapidly, and when it is more than 06, the extruded product may crack during drying. It depends on how easy it is.

リン鉱石又は無水ケイ酸を用いることによってSO2の
S03への酸化が抑制される理由については定かでない
ところが多いが、一つの要因としては本発明で用いるリ
ン鉱石(Oa5 F (PO2)3)及び無水ケイ酸原
料は水へほとんど溶解せず、水への溶解度が石膏に比べ
て非常に小さいため(例えばリン鉱石は石膏に比べて約
1/100)、触媒製造における水との混練時に溶出す
る成分(特にCa  イオン)の影響がほとんどなくな
ったためと考えられる。
The reason why the oxidation of SO2 to S03 is suppressed by using phosphate rock or anhydrous silicic acid is not clear, but one factor is that the phosphate rock (Oa5 F (PO2) 3) used in the present invention and the anhydrous oxidation of SO2 are suppressed. Silicic acid raw materials hardly dissolve in water, and the solubility in water is very low compared to gypsum (for example, phosphate rock is about 1/100 of that of gypsum), so it is a component that dissolves when kneaded with water during catalyst production. This is thought to be because the influence of (particularly Ca ions) has almost disappeared.

なお、本発明における無水ケイ酸原料としては、天然無
定形珪酸、珪砂、珪藻土、白土、パーライト、パーミュ
キュライト、ホワイトカーボン、シリカゲル等が用い得
る。
Note that as the silicic anhydride raw material in the present invention, natural amorphous silicic acid, silica sand, diatomaceous earth, white clay, pearlite, permiculite, white carbon, silica gel, etc. can be used.

実施例1 酸化チタン粉末に、メタバナジン酸アンモニウムとパラ
タングステン酸アンモニウムの10係メチルアミン水溶
液を含浸し、乾燥後450℃、5時間焼成し、V2O5
3重量係、WO38重量係を含む酸化チタン粉末を得だ
。この酸化チタン粉末a2重量部とリン鉱石粉末63重
量部、カオリン4重量部、ガラス繊維2重量部の割合で
混合した後、水16重量部と有機系バインダ成分6.8
重量部を加えて混練機で混練後、6閣φX 5 ran
 Lの円柱状に押出成型し、−i夜風乾後、電気炉内で
550℃、3時間焼成した。
Example 1 Titanium oxide powder was impregnated with a 10-functional methylamine aqueous solution of ammonium metavanadate and ammonium paratungstate, dried, and then calcined at 450°C for 5 hours to form V2O5.
Titanium oxide powder containing 3 weight ratio and WO 38 weight ratio was obtained. After mixing 2 parts by weight of this titanium oxide powder A with 63 parts by weight of phosphate rock powder, 4 parts by weight of kaolin, and 2 parts by weight of glass fiber, 16 parts by weight of water and 6.8 parts by weight of an organic binder component.
After adding parts by weight and kneading with a kneader, 6 kakuφX 5 ran
It was extruded into a cylindrical shape of size L, air-dried overnight, and then fired at 550°C for 3 hours in an electric furnace.

実施例2 実2tl’lJ1において、パラタングステン酸アンモ
ニウムの代シにモリブデン酸アンモニウムを用いて、■
2056重量係、MoO38重量部を含む酸化チタン粉
末を得た以外は同様の手順で処理した触媒を得だ。
Example 2 In fruit 2tl'lJ1, using ammonium molybdate in place of ammonium paratungstate,
A catalyst was obtained using the same procedure except that a titanium oxide powder containing 2056 parts by weight and 38 parts by weight of MoO was obtained.

実施例3 リン鉱石粉末66重量部、酸化チタン粉末73重量部、
カオリン4重量部、ガラス繊維2重量部をよく混合した
後、07重量部のWO3を含むパラタングステン酸アン
モニウムの10係メチルアミン水溶液及び025重量部
のv205を含むメタバナジン酸アンモニウムを含む1
0%メチルアミン水溶液と水10重量部を加え混練機で
混練後、3咽φX 5 ran Lの円柱状に押出成型
し、−M夜風乾後電気炉内で550℃、6時間焼成した
Example 3 66 parts by weight of phosphate rock powder, 73 parts by weight of titanium oxide powder,
After thoroughly mixing 4 parts by weight of kaolin and 2 parts by weight of glass fiber, a 10th scale methylamine aqueous solution of ammonium paratungstate containing 0.7 parts by weight of WO3 and ammonium metavanadate containing 0.25 parts by weight of V205 were added.
A 0% methylamine aqueous solution and 10 parts by weight of water were added and kneaded in a kneading machine, then extrusion molded into a cylindrical shape of 3 dia.

実施例4 実施例sにおいて、パラタングステン酸アンモニウムの
104メチルアミン水溶液を用いる代りに、08重量部
のMoO3を含むモリブデン酸アンモニウムの1091
+メチルアミン水溶液ヲ用いて、同様の手順で触媒を得
た。
Example 4 In Example s, instead of using an aqueous solution of ammonium paratungstate in 104 methylamine, an aqueous solution of ammonium paratungstate in 1091 containing 08 parts by weight of MoO3 was used.
A catalyst was obtained in the same manner using + methylamine aqueous solution.

比較例1〜4 実施例1〜4の各々においてリン鉱石の代りに■型態水
石貴粉末を用いて触媒を調製し、それぞれ比較例1〜4
としだ。
Comparative Examples 1 to 4 In each of Examples 1 to 4, catalysts were prepared using ■ type Suiseki noble powder instead of phosphate rock, and Comparative Examples 1 to 4 were prepared, respectively.
Toshida.

試験例1 実施例1から実施例4の触媒及び比較例1から比較例4
の触媒について、以下の条件で脱硝率及びSO2酸化率
の測定を行ったところ、表1に示す結果を得た。
Test Example 1 Catalysts from Examples 1 to 4 and Comparative Examples 1 to 4
Regarding the catalyst, the denitrification rate and SO2 oxidation rate were measured under the following conditions, and the results shown in Table 1 were obtained.

条件 触媒i : 20 ml      EI02 : 4
00 ppm5 V  :5000Hr ’    0
2  :54温度 :380℃    H2O:10c
I)N O: 150 ppm    残部二N2Nu
3: 150 ppm 入口No (ppm)−出口No (ppm)入口No
 (ppm) × 100 脱硝率幅) 表1 脱硝率及びSO2酸化率測定結果 触媒 脱硝率 (%) SO2酸化率 (憾) 実施例1 実施例2 実施例ろ 実施例4 比較例1 比較例2 比較例6 比較例4 92.0 91.0 89.0 9&5 実施例5 酸化チタン粉末にメタバナジン酸アンモニウムとパラタ
ングステン酸アンモニウムの10係メチルアミン水溶液
を含浸し、乾燥後450℃、5時間焼成し、■20.3
重量係、WO38038重量部酸化チタン粉末を得た。
Conditions Catalyst i: 20 ml EI02: 4
00 ppm5 V:5000Hr' 0
2:54 Temperature: 380℃ H2O: 10c
I) NO: 150 ppm remaining 2N2Nu
3: 150 ppm Inlet No. (ppm) - Outlet No. (ppm) Inlet No.
(ppm) × 100 NOx removal rate width) Table 1 Denitration rate and SO2 oxidation rate measurement results Catalyst denitration rate (%) SO2 oxidation rate (regret) Example 1 Example 2 Example 4 Comparative example 1 Comparative example 2 Comparison Example 6 Comparative Example 4 92.0 91.0 89.0 9 & 5 Example 5 Titanium oxide powder was impregnated with a 10th ratio methylamine aqueous solution of ammonium metavanadate and ammonium paratungstate, dried and then fired at 450°C for 5 hours. ■20.3
By weight, WO38038 parts by weight titanium oxide powder was obtained.

この酸化チタン粉末8.2重量部と珪砂粉末63重歎部
、カオリン4重量部、ガラス繊維2重量部の割合で混合
した後、水16重喰部と有機バインダー成分6.8重量
部を加えて混練機で混練後3咽φX 5 mm Lの円
柱状に押出成型し、−i夜風乾後、電気炉内で550℃
、ろ時間焼成した1、 実施例6 実Mli 例5において、パラタングステン酸アンモニ
ウムの代りにモリブデン酸アンモニウムを用いて、VB
053重量幅、MoO38重量部を含む酸化チタン粉末
を得た以外は同様の手順で処理した触媒を得た。
After mixing 8.2 parts by weight of this titanium oxide powder, 63 parts by weight of silica sand powder, 4 parts by weight of kaolin, and 2 parts by weight of glass fiber, 16 parts by weight of water and 6.8 parts by weight of an organic binder component were added. After kneading with a kneading machine, extrusion molding into a cylindrical shape of 3 mm φ x 5 mm L, air drying at -i night, and heating at 550°C in an electric furnace.
, filter time calcined 1, Example 6 Actual Mli In Example 5, using ammonium molybdate instead of ammonium paratungstate, VB
A catalyst was obtained using the same procedure except that titanium oxide powder having a weight width of 0.053 and containing 38 parts by weight of MoO was obtained.

実施例7 珪砂粉末63重量部、酸化チタン粉末73市欲部、カオ
リン4重量部、ガラス繊維2重量部、有機バインダー成
分68重量部をよく混合しだ後065重量部のWO3を
含むパラタングステン酸アンモニウムの10%メチルア
ミン水溶M 及ヒ0.2 s重量部の■205を含むメ
タバナジン酸アンモニウムの10係メチルアミン水溶液
ト水10重量部を加え混練機で混練後3■φ×5咽りの
円柱状に押出成型し、−嵐夜風乾後電気炉内550℃、
3時間焼成した。
Example 7 After thoroughly mixing 63 parts by weight of silica sand powder, 73 parts by weight of titanium oxide powder, 4 parts by weight of kaolin, 2 parts by weight of glass fiber, and 68 parts by weight of an organic binder component, paratungstic acid containing 0.65 parts by weight of WO3 was prepared. Add 10% methylamine aqueous solution of ammonium metavanadate containing 0.2 parts by weight of 205 to 10 parts by weight of water and mix with a kneader. Extruded into a cylindrical shape, air-dried on a stormy night, then heated in an electric furnace at 550°C.
It was baked for 3 hours.

実施例8 実施例7において、パラタングステン酸アンモニウムの
10係メチルアミン水溶液を用いる代りに、0.65重
量部のMoC2を含むモリブデン酸アンモニウムの10
係メチルアミン水溶液を用いて、同様の手順で触媒を得
た。
Example 8 In Example 7, instead of using a 10-group methylamine aqueous solution of ammonium paratungstate, a 10-group solution of ammonium paratungstate containing 0.65 parts by weight of MoC2 was used.
A catalyst was obtained in the same manner using an aqueous methylamine solution.

実施例9 実施例7において珪砂を用いる代りに、シリカゲル(富
士デヴイソン化学製、商品名サイロイド)を用いて同様
の手順で触媒を得た。
Example 9 A catalyst was obtained in the same manner as in Example 7 using silica gel (manufactured by Fuji Davison Chemical, trade name: Siloid) instead of using silica sand.

比較例5〜8 実施例5〜8の各々において珪砂の代りに■型無水石膏
粉末を用いて触媒を調製し、それぞれ比較例5〜8とし
た。
Comparative Examples 5 to 8 In each of Examples 5 to 8, catalysts were prepared using ■-type anhydrite powder instead of silica sand, and Comparative Examples 5 to 8 were prepared, respectively.

試験例2 実施例5から実施例?の触媒及び比較例5から比較例8
の触媒について、試験例1に示した条件で脱硝率及びS
O2酸化率の測定を行なったところ、表2に示す結果を
得だ。
Test Example 2 From Example 5 to Example? Catalysts and Comparative Examples 5 to 8
Regarding the catalyst, the denitrification rate and S
When the O2 oxidation rate was measured, the results shown in Table 2 were obtained.

表2   脱硝率及びSO2酸化率測定結果触媒 脱硝率 (係) SO2酸化率 (壬) 実施例5 実施例6 実施例7 実施例8 実施例9 比較例5 比較例6 比較例7 比較例8 91.0 90.5 91.0 95.0 93.5 〔発明の効果〕 表1,2から明らかなように、本発明の触媒は石膏を主
成分とする触媒に比べて、脱硝性能は若干劣っているも
のの、sO□酸化率の低減効果は著しいものがあり、実
用的に優れた触媒である。
Table 2 Denitration rate and SO2 oxidation rate measurement results Catalytic denitration rate (related) SO2 oxidation rate (壬) Example 5 Example 6 Example 7 Example 8 Example 9 Comparative example 5 Comparative example 6 Comparative example 7 Comparative example 8 91 .0 90.5 91.0 95.0 93.5 [Effects of the Invention] As is clear from Tables 1 and 2, the catalyst of the present invention has slightly inferior denitrification performance compared to the catalyst whose main component is gypsum. However, it has a remarkable effect of reducing the sO□ oxidation rate, and is a practically excellent catalyst.

Claims (2)

【特許請求の範囲】[Claims] (1)リン鉱石からなるA成分と酸化チタンからなるB
成分のB/(A+B)の重量比が0.05〜0.3であ
り、さらにバナジウム、タングステン及びモリブデンの
酸化物を1種以上含むことを特徴とする窒素酸化物除去
用触媒。
(1) Component A consisting of phosphate rock and B consisting of titanium oxide
A catalyst for removing nitrogen oxides, which has a weight ratio of components B/(A+B) of 0.05 to 0.3, and further contains one or more oxides of vanadium, tungsten, and molybdenum.
(2)無水ケイ酸からなるA成分と酸化チタンからなる
B成分のB/(A+B)の重量比が0.05〜0.3で
あり、さらにバナジウム、タングステン及びモリブデン
の酸化物を1種以上含むことを特徴とする窒素酸化物除
去用触媒。
(2) The weight ratio of B/(A+B) of component A consisting of silicic anhydride and component B consisting of titanium oxide is 0.05 to 0.3, and one or more oxides of vanadium, tungsten, and molybdenum are further added. A catalyst for removing nitrogen oxides, comprising:
JP1001349A 1989-01-10 1989-01-10 Catalyst for removal of nitrogen oxide Pending JPH02184344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001349A JPH02184344A (en) 1989-01-10 1989-01-10 Catalyst for removal of nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001349A JPH02184344A (en) 1989-01-10 1989-01-10 Catalyst for removal of nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH02184344A true JPH02184344A (en) 1990-07-18

Family

ID=11499013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001349A Pending JPH02184344A (en) 1989-01-10 1989-01-10 Catalyst for removal of nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH02184344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281539A (en) * 2007-05-14 2008-11-20 Toyo Seiyaku Kasei Kk Solid agent type indicator for determining effective concentration of aldehyde-based disinfectant
CN105879889A (en) * 2016-06-03 2016-08-24 武汉工程大学 Method for preparing catalyst from phosphate tailing or low-grade collophanite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281539A (en) * 2007-05-14 2008-11-20 Toyo Seiyaku Kasei Kk Solid agent type indicator for determining effective concentration of aldehyde-based disinfectant
CN105879889A (en) * 2016-06-03 2016-08-24 武汉工程大学 Method for preparing catalyst from phosphate tailing or low-grade collophanite

Similar Documents

Publication Publication Date Title
KR101088995B1 (en) Exhaust gas purification catalyst
KR101798713B1 (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing method thereof
CN106861675A (en) Cordierite honeycomb ceramic is integrated low temperature denitrating catalyst of matrix and preparation method thereof
EP0319457B1 (en) Catalysts for the removal of nitrogen oxides
JPH0768172A (en) Catalyst for catalyst production of nox and method thereof
CN109967069A (en) A kind of low-temperature SCR catalyst and preparation method thereof for cement kiln flue gas denitration
KR20170126837A (en) SCR Catalyst for Nitrogen Oxide Removal and Manufacturing Method Thereof
JP4508584B2 (en) Denitration catalyst for high temperature exhaust gas
WO2012086413A1 (en) Carrier for nox reduction catalyst
JP4824516B2 (en) Method for producing catalyst for removing nitrogen oxides in exhaust gas
WO2009107729A1 (en) Catalyst for treating discharge gas
JP4798909B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JPH02184344A (en) Catalyst for removal of nitrogen oxide
JP2000308832A (en) Exhaust gas cleaning catalyst compound, catalyst containing the same and manufacture of the same
JP4798908B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JPS5812057B2 (en) Shiyokubaisosabutsu
WO2009119639A1 (en) Exhaust gas purification catalyst on which influence of iron compound has been suppressed
JPH04110038A (en) Catalyst for removing nitrogen oxide
CN110787793A (en) Boiler flue gas denitration catalyst and preparation method thereof
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JPH11342333A (en) Shared of nox removal catalyst and its production
JP2014046299A (en) Manufacturing method of denitration catalyst
JPH02184342A (en) Catalyst for denitrification of stack gas
JPS62250947A (en) Catalyst for simultaneous treatment of nitrogen oxide and carbon monoxide
JPH01270942A (en) Carrier for denitrification catalyst