JPH0218380A - Device for pulling up semiconductor single crystal - Google Patents

Device for pulling up semiconductor single crystal

Info

Publication number
JPH0218380A
JPH0218380A JP16772288A JP16772288A JPH0218380A JP H0218380 A JPH0218380 A JP H0218380A JP 16772288 A JP16772288 A JP 16772288A JP 16772288 A JP16772288 A JP 16772288A JP H0218380 A JPH0218380 A JP H0218380A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
pulling
carbon
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16772288A
Other languages
Japanese (ja)
Inventor
Hideyasu Matsuo
松尾 秀逸
Masayuki Saito
正行 斎藤
Yasusane Sasaki
佐々木 泰実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP16772288A priority Critical patent/JPH0218380A/en
Publication of JPH0218380A publication Critical patent/JPH0218380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the title pulling up device especially capable of preventing the pulled-up single crystal semiconductor from being adversely affected by a carbon member by providing a freely rotatable crucible, a heater outside the crucible, and a heat-insulating material formed by an SiC porous body outside the heater in a vessel. CONSTITUTION:A crucible consisting of a quartz crucible 10 formed with a high-purity split body and a carbon crucible 12 holding the crucible 10 is provided in the vessel 19 of the device 1 for pulling up a semiconductor single crystal. A carbon heater 14 is provided outside the crucible, and a heat-insulating cylinder 16 formed with an SiC porous body is furnished around the heater 14. An Si seed crystal 18' is rotated in direction of the arrow D to pull up an Si single crystal 18 in direction of the arrow C by a lifting means 17 provided above the crucible. By this pulling up device, the contamination with the gaseous impurities, heavy metals, etc., is reduced at the time of pulling up the Si single crystal, hence the yield is drastically improved, and a remarkable effect is produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

−の 本発明は半導体単結晶引上げ装置に関する。 − of The present invention relates to a semiconductor single crystal pulling apparatus.

【1111 半導体デバイスの基板として用いられる半導体単結晶(
特にシリコン単結晶)は、主にC7法により製造されて
いる。 ここでCZ法について簡単に説明する。まず、ルツボ内
に例えば多結晶シリコン原料を装填し、周囲から加熱し
て多結晶シリコン原料を溶融する。次に、上方から種結
晶を吊下してシリコン融液に浸し、これを引上げること
によりシリコン単結晶インゴットを製造する。 上記ルツボとして、一般に石英ガラス製のものを用いて
いる。この石英ガラスルツボを支持するためにカーボン
ルツボを用い、ざらにルツボの外側にカーボンヒータ及
びカーボン製の保湿材を設ける。また、半導体単結晶引
上げ装置の周囲を、金属製の容器(チャンバーとも言う
)で覆って、この容器を水冷する。従来の半導体中結晶
引上げ装置は、以上のように構成するのが常であった。 しよ と る 前述したように、このような半導体単結晶引上げ装置に
使用されるルツボやヒータ、保温筒はカーボン類である
。このため、石英ガラスルツボと組合せて使用する場合
に、次のような様々な欠点がある。 即ち、シリコン単結晶引上げ時に、石英ガラスルツボが
シリコン融液に浸蝕され(第0式)、シリコン融液中の
酸素濃度が^くなる。 5i02+Si→2Si O・・・・・・・・・0式こ
のシリコン融液中の酸素の一部は、酸素とシリコンの蒸
気圧の差により、融液の外にSiOとなって放出される
。また、引上げられるシリコン単結晶中に取り込まれ、
シリコン単結晶中の微小欠陥の原因となる。 一方、このようなシリコン単結晶中の酸素濃度を低減す
る目的で近年MCZ法が注目されている。MCZ法によ
れば、磁場によって石英ガラスルツボ中のシリコン融液
の対流が抑止される。従って、シリコン融液による石英
ガラスルツボの浸蝕が少なくなり、シリコン単結晶中の
酸素濃度が減少する。しかしながら、C7法、MCZ法
の何れによっても次に述べる問題は解決されていない。 即ち、シリコン融液中から放出された3i0はカーボン
ルツボ及びカーボンヒータのカーボンと反応し、COが
生成される(第2式st o+c→S+ +CO・・・
・・・・・・・・・0式このCOが再びシリコン融液中
に取り込まれ、引上げられるシリコン単結晶中の炭素濃
度が大きくなり、微小欠陥の原因となる。 シリコン単結晶中の炭素濃度を低減する方法としてはF
Z法が考えられる。しかし、FZ法はかなりのコストが
かかり、また引上げられるシリコン単結晶の径大化が困
難である。 このため、FZ法は特殊な用途にしか用いられていない
。 さらに、カーボン部材、特にカーボンヒータの外側に位
置する保温材番よ断熱性を高めるためにカーボンフェル
ト等と組合せて使用される。従って、表面積が大きく、
且つガスを吸着し易い。カーボン部材に吸着した不純物
は、高温時に再び半導体単結晶引上げ装置内に放出され
て汚染の原因になる。不純物がシリ:】ン融液中に混入
すると、シリコン単結晶中に転位等が生じ易く、歩留り
が低下する原因となる。 また、カーボンヒータの外側に配置されるカーボン類の
保温材は断熱性が悪く、半導体単結晶引上げ装置を覆う
金属製の容器を水冷しむければならない。このため熱効
木が悪いという欠点がある。 さらに、装置内部はヒータにより加熱され高温状態にな
るのでカーボンフェルト等から不純物を含んだパーティ
クルが発生し易く、引上げるシリコン単結晶に悪影響を
与える。 11悲1江 本発明は前述した様々な問題点を解決することを目的と
しており、特に引上げた単結晶半導体がカーボン部材か
ら受ける悪影響を排除した半導体単結晶引上げ装置を提
供することを目的としている。 た  の 本発明の単結晶引上げ装置は容器内に回転自在に設けた
ルツボと、ルツボの外側に設けたヒータと、ヒータの外
側に設けた保温材とを儀え、回転自在に吊下げた種結晶
を引上げで単結晶半導体を製造する構成の半導体単結晶
引上げe*において、保温材をSiC多孔体で構成する
ことを特徴とする。 SiC多孔体の気孔率を15〜60%にすると有利であ
る。 気孔率を限定したのは、気孔率が15%以下であると断
熱性が悪く、60%以上であると強度が低下するためで
ある。 さらに、Coガスの発生を防止するために、ヒータ、ル
ツボをカーボン以外の材質、例えばM、W等で構成する
のが好ましい。 1皿 SiC多孔体からなる保温材は、シリコン単結晶引上げ
時のa温においてもSiOガスと反応しにくく、スムー
スにSiOガスを排気する。 したがって、カーボン類の保温材の使用時に問題となる
CoガスがSiC多孔体から発生せず、引上げるシリコ
ン単結晶中の炭素濃度が減少する。また、発生するSi
Oをスムースに排気できるので、甲結晶中の酸素′a麿
も減少する。 さらに、本発明のSiC多孔体からなる保温材はカーボ
ン類の保温材に比較して比表面積が小さく、表面が滑ら
かである。従って、[e等の不純物の吸着がほとんどな
い。 支11 第1図は、本発明による半導体単結晶引上げ装置の実施
例を示している。 半導体単結晶引上げ装置1の容器19内には、ルツボが
設けである。容器はチャンバー本体19a、チャンバー
上部+419c、チャンバー下部材19bにより構成し
である。ルツボtよ高純度の分割体からなる石英ルツボ
10とそれを保持するカーボン類のルツボ12で構成さ
れている。 ルツボは矢印Bの方向に回転可能であり、矢印への方向
に上下移動可能である。 ルツボの外側には、カーボン類のヒータ14が設けであ
る。 ヒータ14のまわりにはSiC多孔体からなる保温筒1
6が段けである。5i−C多孔体の保温@16は次のよ
うにして作成した。 まず、純Jff99.8%で平均粒径20〜5μの高純
度SiC粉に7エノールレジンを加え、混線造粒して乾
燥後、アスソスタティックプレスで成形して外形666
 mm1内径5471IIII11高さ562 mmの
成形体を得た。次いでこれを200℃で加熱してフェノ
ールレジンを硬化した。その後、1aoo℃で加熱して
焼成し、続いてHC9ガスによって純化処理を行い、気
孔率45%のSiC多孔体からなる保温筒を製造した。 ルツボの上方には、種結晶の引上げ手段17が設けであ
る。引上げ手段17は、シリコンの硬結品18′を矢印
り方向に回転させながら、矢印C方向に引上げる。 この半導体単結晶引上げ装置を用いて、35kvの高純
度シリコンを約11n+/minの条件で引上げ、結晶
方位(100)の直径5インチのシリコン単結晶18を
得た。 [比較例] 実施例のSiC多孔体と同寸法のカーボン製保温筒を使
用し、カーボンヒータ、カーボン類の保温筒を使用する
従来のシリコン単結晶引上げ装置で実施例と同様にして
シリコン単結晶を引上げた。 実施例、及び比較例で引上げられたシリコン単結晶のラ
イフタイム、O8F密度を第1表に示す。 尚、MCZによって引上げられたシリコン単結晶の特性
も参考例として記載する。 第1表によれば、実施例では、従来例と比較してライフ
タイムの良いシリコン単結晶が得られた。これは、シリ
コン単結晶引上げ時に発生するSi O,Coガスがス
ムースに排気され、シリコン単結晶中に取り込まれるm
が少なくなり、且つ雰囲気がクリーンであったことを意
味する。 また、Fe、Qu等の不純物の吸着とパーティクルの発
生がはとんどなく雰囲気がクリーンになるため、08F
15aの低い良好なシリコン中結晶が得られた。 さらに、実施例ではシリコン単結晶引上げ時に結晶欠陥
の発生を抑制できるので、Dis+ocatton (
転位)が発生しにくり、歩留りが大幅に向上した。 以上詳述したように本発明の半導体単結晶引上げ装置に
よれば、シリコン申結晶の引上げに際し、不純物ガスや
重金属等による汚染が減少するので、大幅に歩留りが向
上する等、顕著な効果を奏するものである。
[1111 Semiconductor single crystal used as a substrate for semiconductor devices (
In particular, silicon single crystals are mainly manufactured by the C7 method. Here, the CZ method will be briefly explained. First, a polycrystalline silicon raw material, for example, is loaded into a crucible, and the polycrystalline silicon raw material is melted by heating from the surroundings. Next, a seed crystal is suspended from above, immersed in silicon melt, and pulled up to produce a silicon single crystal ingot. The crucible is generally made of quartz glass. A carbon crucible is used to support this quartz glass crucible, and a carbon heater and a carbon moisturizing material are provided roughly outside the crucible. Further, the semiconductor single crystal pulling device is surrounded by a metal container (also referred to as a chamber), and this container is cooled with water. Conventional semiconductor medium crystal pulling apparatuses have usually been configured as described above. As mentioned above, the crucibles, heaters, and heat-insulating cylinders used in such semiconductor single crystal pulling equipment are made of carbon. Therefore, when used in combination with a silica glass crucible, there are various drawbacks as follows. That is, when pulling a silicon single crystal, the quartz glass crucible is corroded by the silicon melt (Equation 0), and the oxygen concentration in the silicon melt decreases. 5i02+Si→2Si O...0 Formula A part of the oxygen in the silicon melt is released outside the melt as SiO due to the difference in vapor pressure between oxygen and silicon. In addition, it is incorporated into the pulled silicon single crystal,
Causes micro defects in silicon single crystals. On the other hand, the MCZ method has recently attracted attention for the purpose of reducing the oxygen concentration in such silicon single crystals. According to the MCZ method, convection of silicon melt in a silica glass crucible is suppressed by a magnetic field. Therefore, the erosion of the quartz glass crucible by the silicon melt is reduced, and the oxygen concentration in the silicon single crystal is reduced. However, neither the C7 method nor the MCZ method solves the following problem. That is, 3i0 released from the silicon melt reacts with carbon in the carbon crucible and carbon heater, and CO is generated (second equation sto+c→S++CO...
......Formula 0 This CO is taken into the silicon melt again, increasing the carbon concentration in the pulled silicon single crystal and causing micro defects. F is a method for reducing the carbon concentration in silicon single crystals.
The Z method can be considered. However, the FZ method requires considerable cost, and it is difficult to increase the diameter of the silicon single crystal to be pulled. For this reason, the FZ method is used only for special purposes. Furthermore, the carbon member, especially the heat insulating material located outside the carbon heater, is used in combination with carbon felt or the like to improve the heat insulation properties. Therefore, the surface area is large,
Moreover, it easily adsorbs gas. Impurities adsorbed on the carbon member are released into the semiconductor single crystal pulling apparatus again at high temperatures, causing contamination. When impurities are mixed into the silicon melt, dislocations, etc. are likely to occur in the silicon single crystal, causing a decrease in yield. Furthermore, the heat insulating material made of carbon placed outside the carbon heater has poor insulation properties, and the metal container covering the semiconductor single crystal pulling device must be cooled with water. For this reason, it has the disadvantage of poor thermal performance. Furthermore, since the inside of the apparatus is heated by a heater and reaches a high temperature state, particles containing impurities are likely to be generated from the carbon felt, etc., and have an adverse effect on the silicon single crystal to be pulled. SUMMARY OF THE INVENTION The present invention aims to solve the various problems mentioned above, and particularly aims to provide a semiconductor single crystal pulling apparatus that eliminates the adverse effects of a carbon member on a pulled single crystal semiconductor. The single crystal pulling device of the present invention includes a crucible rotatably provided in a container, a heater provided outside the crucible, and a heat insulating material provided outside the heater, and a seed suspended rotatably. Semiconductor single crystal pulling e*, which is configured to produce a single crystal semiconductor by pulling a crystal, is characterized in that the heat insulating material is made of a SiC porous body. It is advantageous for the porous SiC body to have a porosity of 15 to 60%. The reason for limiting the porosity is that if the porosity is 15% or less, the heat insulation properties will be poor, and if the porosity is 60% or more, the strength will decrease. Furthermore, in order to prevent the generation of Co gas, it is preferable that the heater and crucible be made of a material other than carbon, such as M or W. A heat insulating material made of a one-plate SiC porous material does not easily react with SiO gas even at a temperature of a when pulling a silicon single crystal, and smoothly exhausts SiO gas. Therefore, Co gas, which is a problem when using carbon-based heat insulating materials, is not generated from the SiC porous body, and the carbon concentration in the silicon single crystal to be pulled is reduced. In addition, the generated Si
Since O can be smoothly exhausted, the amount of oxygen in the crystal A is also reduced. Furthermore, the heat insulating material made of the SiC porous body of the present invention has a smaller specific surface area and a smoother surface than heat insulating materials made of carbon. Therefore, there is almost no adsorption of impurities such as [e]. Support 11 FIG. 1 shows an embodiment of a semiconductor single crystal pulling apparatus according to the present invention. A crucible is provided in the container 19 of the semiconductor single crystal pulling apparatus 1 . The container is composed of a chamber main body 19a, a chamber upper part +419c, and a chamber lower member 19b. The crucible t is composed of a quartz crucible 10 made of high-purity divided bodies and a carbon crucible 12 that holds the quartz crucible 10. The crucible is rotatable in the direction of arrow B and can be moved up and down in the direction of the arrow. A carbon heater 14 is provided outside the crucible. Around the heater 14 is a heat insulating cylinder 1 made of porous SiC material.
6 is the step. 5i-C porous body @16 was created as follows. First, 7-enol resin was added to high-purity SiC powder with pure Jff 99.8% and average particle size 20-5μ, cross-wire granulated, dried, and then molded with an assostatic press to an external diameter of 666.
A molded body having an inner diameter of 5471 mm, a height of 562 mm, and a height of 562 mm was obtained. Next, this was heated at 200°C to harden the phenol resin. Thereafter, it was heated and fired at 100° C., and then purified with HC9 gas to produce a heat-retaining cylinder made of a porous SiC body with a porosity of 45%. Seed crystal pulling means 17 is provided above the crucible. The pulling means 17 pulls up the silicon hardened product 18' in the direction of arrow C while rotating it in the direction of arrow C. Using this semiconductor single crystal pulling apparatus, 35 kV of high purity silicon was pulled under conditions of about 11 n+/min to obtain a silicon single crystal 18 with a crystal orientation of (100) and a diameter of 5 inches. [Comparative Example] A silicon single crystal was grown in the same manner as in the example using a conventional silicon single crystal pulling apparatus that uses a carbon heater and a carbon heat insulation cylinder, using a carbon heat insulation cylinder with the same dimensions as the SiC porous body of the example. was raised. Table 1 shows the lifetime and O8F density of silicon single crystals pulled in Examples and Comparative Examples. Note that the characteristics of a silicon single crystal pulled by MCZ are also described as a reference example. According to Table 1, in the example, a silicon single crystal with a longer lifetime than in the conventional example was obtained. This is because the SiO, Co gases generated during the pulling of the silicon single crystal are smoothly exhausted, and the m
This means that the atmosphere was clean. In addition, since the adsorption of impurities such as Fe and Qu and the generation of particles are completely eliminated, the atmosphere becomes clean, so 08F
A good crystal in silicon with a low molecular weight of 15a was obtained. Furthermore, in the example, since the generation of crystal defects can be suppressed during pulling of silicon single crystal, Dis+ocatton (
(dislocations) are less likely to occur, resulting in a significant improvement in yield. As detailed above, according to the semiconductor single crystal pulling apparatus of the present invention, contamination by impurity gases, heavy metals, etc. is reduced during pulling of silicon crystals, so that significant effects such as significantly improved yield can be achieved. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体単結晶引上げheの実施例
を示す概念図である。 1・・・・・・半導体単結晶引上げ装置10・・・石英
ルツボ 12・・・カーボンルツボ 14・・・カーボンヒータ 16・・・保温筒 17・・・種結晶の引上げ手段 18・・・シリコン単結晶 19・・・減圧容器 第1図 第1表
FIG. 1 is a conceptual diagram showing an embodiment of the semiconductor single crystal pulling he according to the present invention. 1...Semiconductor single crystal pulling device 10...Quartz crucible 12...Carbon crucible 14...Carbon heater 16...Heat retaining cylinder 17...Seed crystal pulling means 18...Silicon Single crystal 19...Reduced pressure container Figure 1 Table 1

Claims (1)

【特許請求の範囲】[Claims]  容器内に回転自在に設けたルツボと、ルツボの外側に
設けたヒータと、ヒータの外側に設けた保温材とを備え
、回転自在に吊下げた種結晶を引上げて単結晶半導体を
製造する構成の半導体単結晶引上げ装置において、保温
材をSiC多孔体で構成することを特徴とする半導体単
結晶引上げ装置。
A configuration that includes a crucible that is rotatably installed in a container, a heater that is installed outside the crucible, and a heat insulating material that is installed outside the heater, and that pulls up a rotatably suspended seed crystal to produce a single crystal semiconductor. 1. A semiconductor single crystal pulling apparatus characterized in that the heat insulating material is made of a porous SiC material.
JP16772288A 1988-07-07 1988-07-07 Device for pulling up semiconductor single crystal Pending JPH0218380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16772288A JPH0218380A (en) 1988-07-07 1988-07-07 Device for pulling up semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16772288A JPH0218380A (en) 1988-07-07 1988-07-07 Device for pulling up semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH0218380A true JPH0218380A (en) 1990-01-22

Family

ID=15854965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16772288A Pending JPH0218380A (en) 1988-07-07 1988-07-07 Device for pulling up semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH0218380A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104096A (en) * 1981-10-23 1983-06-21 Toshiba Ceramics Co Ltd Drawing-up device for silicon single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104096A (en) * 1981-10-23 1983-06-21 Toshiba Ceramics Co Ltd Drawing-up device for silicon single crystal

Similar Documents

Publication Publication Date Title
US20220002906A1 (en) SiC Single Crystal Sublimation Growth Apparatus
JP5304792B2 (en) Method and apparatus for producing SiC single crystal film
JP3165685B2 (en) Sublimation growth of silicon carbide single crystal
JP2745408B2 (en) Semiconductor single crystal pulling equipment
EP0229322B1 (en) Method and apparatus for czochralski single crystal growing
US3275415A (en) Apparatus for and preparation of silicon carbide single crystals
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
JP4815003B2 (en) Crucible for silicon crystal growth, crucible manufacturing method for silicon crystal growth, and silicon crystal growth method
US4676968A (en) Melt consolidation of silicon powder
US4040848A (en) Polycrystalline silicon articles containing boron by sintering
JP2008001569A (en) SINGLE CRYSTAL SiC AND PRODUCTION METHOD THEREFOR, AND APPARATUS FOR PRODUCING SINGLE CRYSTAL SiC
WO1999005338A2 (en) Surface converted graphite components and methods of making same
JP4416040B2 (en) Compound semiconductor crystal
JPS61247683A (en) Pulling device for single crystal sapphire
JP2001233697A (en) Silicon carbide single crystal
JPH0218380A (en) Device for pulling up semiconductor single crystal
US3407090A (en) Fibers of submicroscopic beta-silicon carbide crystals with sheath of silica
JP2717669B2 (en) Semiconductor single crystal pulling equipment
JPS6018638B2 (en) Silicon single crystal pulling equipment
JP2710288B2 (en) Graphite heating element for single crystal manufacturing equipment
JPH0568433B2 (en)
JPH0218375A (en) Device for pulling up semiconductor single crystal
JP4347325B2 (en) Single crystal SiC, method for manufacturing the same, and apparatus for manufacturing single crystal SiC
JPS62138385A (en) Device for pulling semiconductor single crystal
JPH0751473B2 (en) Carbon crucible for single crystal production