JPH02183795A - Welding method for double-walled thermal transmitting pipe and heat exchanger - Google Patents

Welding method for double-walled thermal transmitting pipe and heat exchanger

Info

Publication number
JPH02183795A
JPH02183795A JP206789A JP206789A JPH02183795A JP H02183795 A JPH02183795 A JP H02183795A JP 206789 A JP206789 A JP 206789A JP 206789 A JP206789 A JP 206789A JP H02183795 A JPH02183795 A JP H02183795A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
double
annular
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP206789A
Other languages
Japanese (ja)
Other versions
JP2746970B2 (en
Inventor
Hiroshi Yatabe
広志 谷田部
Toshiji Kameda
亀田 利治
Fumio Manabe
二三夫 真鍋
Takao Asaumi
隆夫 浅海
Hiroichi Furusaki
古崎 博一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP1002067A priority Critical patent/JP2746970B2/en
Publication of JPH02183795A publication Critical patent/JPH02183795A/en
Application granted granted Critical
Publication of JP2746970B2 publication Critical patent/JP2746970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/003Multiple wall conduits, e.g. for leak detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To provide a continuous outer pipe structure and prevent a leak sensing groove to be clogged by a method wherein an outer surface of an inner pipe and an inner surface of an outer pipe are formed with annular grooves, the annular grooves in the inner pipe and the annular grooves in the outer pipe are aligned to each other to form an annular spacing and then a welding is carried out while inert gas is being supplied from the annular spacing. CONSTITUTION:Inner pipes 10 of a double-walled thermal transmitting pipe 12 are butt-welded at 20 from a clearance 29 between outer pipes 11. Outer surfaces of the inner pipes 10 and inner surfaces of the outer pipes 11 are cut within a thickness range of more than a required wall thickness of each of the pipes. The outer surface of the inner pipe 10 is formed with an annular groove 25 and the inner surface of the outer pipe 11 is formed with an annular groove 26. The annular grooves 25 and 26 are aligned to each other to form an annular spacing 27. The outer pipes 11 are butt-welded at 28 while supplying inert gas to the annular spacing 27. The supplied inert gas is expanded in a circumferential direction of the annular spacing 27 at a time when the gas is blown from the leakage detecting groove 17, resulting in that a dropping of the penetration welding bead 28 is not generated, and a melting and adhering of the inner pipe 10 and the outer pipe 11 due to the butt-welding 28 is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速増殖炉(Fast Breder Rea
ctor以下単にFBRという)の過熱器、・蒸気発生
器などの熱交換器に用いられる二重壁伝熱管に係り、特
に二重壁伝熱管と二重壁伝熱管の欠陥を検出する検出機
構を備えた熱交換器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fast breeder reactor (Fast Breder Reactor).
ctor (hereinafter simply referred to as FBR), double-walled heat exchanger tubes used in heat exchangers such as steam generators, and in particular, a detection mechanism for detecting defects in double-walled heat exchanger tubes and double-walled heat exchanger tubes. The present invention relates to a heat exchanger equipped with a heat exchanger.

〔従来の技術〕[Conventional technology]

例えばFBR用の過熱器、蒸気発生器などの熱交換器に
は外管と内管によって形成された二重壁伝熱管が用いら
れ、この二重壁伝熱管の外側には加熱流体であるナトリ
ウムを、内側には被加熱流体である水をそれぞれ供給し
て外管の周囲を流れるナトリウムの熱を水で回収するこ
とが行なわれている。
For example, a double-walled heat exchanger tube formed by an outer tube and an inner tube is used for heat exchangers such as FBR superheaters and steam generators, and the outside of this double-walled heat exchanger tube is filled with sodium chloride, which is a heating fluid. Water, which is a fluid to be heated, is supplied to the inside of the tube, and the heat of the sodium flowing around the outer tube is recovered using the water.

そして、二重壁伝熱管の外管と内管との境界にはヘリウ
ム、アルゴンなどの不活性ガスを供給して二重壁伝熱管
の欠陥、漏れを常に検出している。
An inert gas such as helium or argon is supplied to the boundary between the outer tube and the inner tube of the double-walled heat exchanger tube to constantly detect defects and leaks in the double-walled heat exchanger tube.

それはナトリウム中へ水、蒸気が漏れた場合、ナトリウ
ムと水、蒸気との化学反応を防止するために二重壁伝熱
管の漏れを初期の段階で検出し、ナトリウム、あるいは
水の供給を停止したり、原子炉を停止するなどの適切な
処置を施す必要があるからである。
If water or steam leaks into the sodium, it detects the leak in the double-walled heat exchanger tube at an early stage and stops the sodium or water supply to prevent chemical reactions between sodium and water or steam. This is because it is necessary to take appropriate measures such as shutting down the reactor or shutting down the reactor.

第6図は熱交換器の縦断面図、第7図は二重壁伝熱管の
拡大縦断面図、第8図は第7図の■−■線横線面断面図
9図は外管の内面展開図である。
Figure 6 is a vertical cross-sectional view of the heat exchanger, Figure 7 is an enlarged vertical cross-sectional view of a double-walled heat transfer tube, Figure 8 is a cross-sectional view taken along the line ■-■ in Figure 7, and Figure 9 is the inner surface of the outer tube. This is a developed diagram.

第6図から第9図において、熱交換器l内には蒸気出口
側管板2、上管板3、下管板4および水入口側管板5に
よって蒸気ブレナム6、ヘリウムブレナム7.8および
水ブレナム9に仕切られ、蒸気出口側管板2と水入口側
管板5の間には内管10が配置されて蒸気ブレナム6と
水プレナム9はこの内管10によって接続されている。
6 to 9, inside the heat exchanger l, a steam outlet tube plate 2, an upper tube plate 3, a lower tube plate 4, and a water inlet tube plate 5 are arranged to form a steam blenum 6, a helium blenum 7.8, and The water plenum 9 is partitioned, and an inner pipe 10 is disposed between the steam outlet side tube plate 2 and the water inlet side tube plate 5, and the steam plenum 6 and the water plenum 9 are connected by this inner tube 10.

一方、上管板3と下管板4の間には外管11が配置され
てヘリウムブレナム7.8がこの外管11によって接続
されている。
On the other hand, an outer tube 11 is arranged between the upper tube plate 3 and the lower tube plate 4, and the helium blemish 7.8 is connected by this outer tube 11.

従って、ヘリウムブレナム7.8は内管lOと外管11
によって形成された二重壁伝熱管12によって接続され
、水ブレナム9と蒸気プレナム6は二重壁伝熱管12の
内管10によってのみ接続されている。
Therefore, the helium blenheim 7.8 has an inner tube lO and an outer tube 11
The water plenum 9 and the steam plenum 6 are connected only by the inner tube 10 of the double-walled heat exchanger tube 12 .

13はナトリウム入口ノズル、14はナトリウム出口ノ
ズル、15は水入口ノズル、16は蒸気出口ノズル、1
7は内管10と外管11の境界に形成されたリーク検出
用溝、18はリーク検出器である。
13 is a sodium inlet nozzle, 14 is a sodium outlet nozzle, 15 is a water inlet nozzle, 16 is a steam outlet nozzle, 1
7 is a leak detection groove formed at the boundary between the inner tube 10 and the outer tube 11, and 18 is a leak detector.

この様な構造において、熱交換器1内には第7図および
第8図に示す様に多数の二重壁伝熱管12が配置され、
高温のナトリウムはナトリウム入口ノズル13から供給
され熱交換器lと二重壁伝熱管12の間を下降して二重
壁伝熱管12の内管10内を流れる水と熱交換し、低温
になったナトリウムはナトリウム出口ノズル14より排
出される。
In such a structure, a large number of double-walled heat exchanger tubes 12 are arranged in the heat exchanger 1 as shown in FIGS. 7 and 8,
High-temperature sodium is supplied from the sodium inlet nozzle 13, descends between the heat exchanger 1 and the double-walled heat exchanger tube 12, exchanges heat with the water flowing in the inner tube 10 of the double-walled heat exchanger tube 12, and becomes low temperature. The sodium is discharged from the sodium outlet nozzle 14.

一方、水は水入口ノズル15より水プレナム9に入り水
入口側管板5より二重壁伝熱管12の内管10内へ分流
される。この二重壁伝熱管12で加熱された蒸気は蒸気
ブレナム6に集められ、蒸気出口ノズル16より排出さ
れる。
On the other hand, water enters the water plenum 9 through the water inlet nozzle 15 and is diverted from the water inlet side tube plate 5 into the inner tube 10 of the double-walled heat exchanger tube 12. The steam heated by the double-walled heat exchanger tube 12 is collected in the steam brenum 6 and discharged from the steam outlet nozzle 16.

他方、不活性ガスはヘリウムブレナム7から二重壁伝熱
管12の境界に形成されたリーク検出用溝17を経て、
ヘリウムブレナム8へ供給され、内管10、外管11か
ら万−水、蒸気、ナトリウムのリークが発生した場合、
ヘリウムブレナム7内での不活性ガスの湿分、圧力の変
化などによってリーク検出器18により、内管10、外
管11からの漏洩が検出される。
On the other hand, the inert gas passes from the helium blemish 7 through the leak detection groove 17 formed at the boundary of the double-walled heat exchanger tube 12.
If water, steam, or sodium leaks from the inner tube 10 and outer tube 11 while being supplied to the helium brenum 8,
Leakage from the inner tube 10 and outer tube 11 is detected by the leak detector 18 based on changes in the moisture and pressure of the inert gas within the helium blemish 7.

ところが、二重壁伝熱管12の外管11の内周面と内管
10の外周面は機械的に密着されており、この境界での
熱抵抗は極力低く抑える構造になっているが、わずかな
ギャップは残っている。
However, the inner circumferential surface of the outer tube 11 and the outer circumferential surface of the inner tube 10 of the double-walled heat transfer tube 12 are mechanically bonded to each other, and although the structure is such that the thermal resistance at this boundary is kept as low as possible, A gap remains.

従って二重壁伝熱管12で第9図に示す如くリーク個所
19が発生した場合、内管10と外管11のギャップは
極めて小さいために流動抵抗が大きく、このために第9
図の矢印で示す如く、リーク流体のリーク検出用溝17
への拡散、伝播が遅くなり、ヘリウムブレナム7での検
出遅れが発生する。
Therefore, when a leak point 19 occurs in the double-walled heat exchanger tube 12 as shown in FIG. 9, the flow resistance is large because the gap between the inner tube 10 and the outer tube 11 is extremely small.
As shown by the arrow in the figure, the leak detection groove 17 for leak fluid
Diffusion and propagation to the helium Blenheim 7 will be delayed, resulting in a delay in detection at Helium Blenheim 7.

一方、二重壁伝熱管12の溶接方法は、第7図に示すよ
うにまず内管10.10同志を突合せ溶接20によって
接続する。
On the other hand, in the welding method for the double-walled heat exchanger tube 12, as shown in FIG. 7, the inner tubes 10 and 10 are first connected together by butt welding 20.

そして、内管10の外周に外管11.11を挿入し外管
11.11の外周にスリーブ21を嵌め込み、外管11
とスリーブ21をすみ肉溶接22によって接続して内管
lOの突合せ溶接20の近傍に空間23を形成していた
Then, the outer tube 11.11 is inserted into the outer circumference of the inner tube 10, and the sleeve 21 is fitted onto the outer circumference of the outer tube 11.11.
and the sleeve 21 were connected by a fillet weld 22 to form a space 23 near the butt weld 20 of the inner pipe IO.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来技術の二重壁伝熱管12は第7図に示すように外管
11同志をスリーブ21で接続するので、外管11の外
径寸法がすみ肉溶接22とスリーブ21で太き(なり、
組立の場合に上、下管板3,4やじゃま板24への挿入
ができなくなり、外管11に構造不連続部があるためス
リーブ21に高応力が発生する欠点がある。また、スリ
ーブ21と内管10との空間23が大きくなり伝熱性能
が低下する欠点がある。そして、すみ肉溶接22のため
自動化作業がしにくく、すみ肉溶接22を施した後の被
破壊検査がやりにくい等の欠点がある。
In the conventional double-walled heat transfer tube 12, as shown in FIG.
When assembled, the sleeve 21 has the disadvantage that it cannot be inserted into the upper and lower tube plates 3 and 4 or the baffle plate 24, and that high stress is generated in the sleeve 21 because the outer tube 11 has a structural discontinuity. Further, there is a drawback that the space 23 between the sleeve 21 and the inner tube 10 becomes large, resulting in a decrease in heat transfer performance. Further, since the fillet welding 22 is performed, it is difficult to automate the work, and it is difficult to perform a destruction inspection after the fillet welding 22 is performed.

本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、外管を連続構造にすることが
できる二重壁伝熱管の溶接方法及びリーク検出用溝の閉
塞が防止できる二重壁伝熱管式熱交換器を提供すること
にある。
The present invention aims to eliminate such conventional drawbacks,
The purpose is to provide a welding method for a double-walled heat exchanger tube that allows the outer tube to have a continuous structure, and a double-walled heat exchanger tube type heat exchanger that can prevent the leak detection groove from clogging. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前述の目的を達成するために、内管同志の外面
と外管同志の内面にそれぞれ環状溝を形成し、内管の環
状溝と外管の環状溝を合せて構成した環状空間から不活
性ガスを供給しながら溶接するようにした二重壁伝熱管
の溶接方法と、前記環状空間でリーク検出用溝を連絡す
るようにした二重壁伝熱管式熱交換器により達成される
In order to achieve the above object, the present invention forms annular grooves on the outer surface of the inner tube and the inner surface of the outer tube, and creates an annular space formed by combining the annular groove of the inner tube and the annular groove of the outer tube. This is achieved by a double wall heat exchanger tube welding method in which welding is performed while supplying an inert gas, and a double wall heat exchanger tube type heat exchanger in which leak detection grooves are connected in the annular space.

〔作用〕[Effect]

外管同志の溶接時に、内管と外管の間に形成された環状
空間から不活性ガスが供給されるので、内管と外管の間
を周方向に流れる不活性ガスによって溶接部の裏波が均
一となり、リーク検出用溝が閉塞することがない。
When welding the outer tubes together, inert gas is supplied from the annular space formed between the inner tube and the outer tube, so the inert gas flowing circumferentially between the inner tube and the outer tube will cause damage to the back of the weld. The waves are uniform and the leak detection groove is not blocked.

〔実施例〕〔Example〕

第1図は二重壁伝熱管の縦断面図、第2図は第1図の■
−■線横線面断面図3図は第2図の■■線断面の斜視図
、第4図は溶接方法を説明する縦断面図、第5図は他の
実施例を示す第2図の■−■線断面斜視図である。
Figure 1 is a vertical cross-sectional view of a double-walled heat exchanger tube, and Figure 2 is the
Figure 3 is a perspective view of the cross section taken along line ■■ in Figure 2, Figure 4 is a longitudinal cross-sectional view for explaining the welding method, and Figure 5 is a cross-sectional view of Figure 2 showing another embodiment. It is a cross-sectional perspective view taken along the line -■.

第1図から第5図において、符号lOから20は従来の
ものと同一のものを示す。
In FIGS. 1 to 5, symbols 10 to 20 indicate the same components as the conventional ones.

25′は内管10の外側に設けた環状溝、26は外管1
1の内側に設けた環状溝、27は内管10の環状溝25
と外管11の環状溝26によって形成された環状空間、
28は外管11同志の突合せ溶接、29は外管11同志
の隙間である。
25' is an annular groove provided on the outside of the inner tube 10, and 26 is the outer tube 1.
1 is an annular groove provided inside the inner tube 10, and 27 is an annular groove 25 of the inner tube 10.
and an annular space formed by the annular groove 26 of the outer tube 11,
28 is a butt weld between the outer tubes 11, and 29 is a gap between the outer tubes 11.

この様な構造において、二重壁伝熱管12の溶接方法に
ついて説明する。
In such a structure, a method of welding the double-walled heat exchanger tube 12 will be explained.

二重壁伝熱管12の内管10と内管10は、第4図に示
すように外管11と外管11の隙間29から突合せ溶接
20が行われる。内管lOと内管10の突合せ溶接20
が行われた後に、外管11と外管11の溶接を行うが、
相互の外管11.11を溶接する前に、内管10と内管
10の外面側及び外管11と外管11の内面側を、各々
の管の必要板厚以上の厚さが残る厚さの範囲内で削り加
工して内管10の外面には環状溝25、外管11の内面
には環状溝26を形成する。
As shown in FIG. 4, butt welding 20 is performed between the inner tubes 10 of the double-walled heat transfer tube 12 through the gap 29 between the outer tubes 11. Butt welding 20 of inner pipe IO and inner pipe 10
After that, the outer tube 11 and the outer tube 11 are welded,
Before welding the outer tubes 11 and 11 to each other, the outer surfaces of the inner tube 10 and the inner tube 10 and the inner surfaces of the outer tube 11 and the outer tube 11 are made so that the thickness remains at least the required thickness of each tube. An annular groove 25 is formed on the outer surface of the inner tube 10 and an annular groove 26 is formed on the inner surface of the outer tube 11 by cutting within the range of the diameter.

そして、この環状溝25.26を合わせることによって
環状空間27が形成され、第3図に示すようにリーク検
出用溝17から環状空間27へ不活性ガスを供給しなが
ら第1図に示すように外管11.11同志を突合せ溶接
28によって接合する。
An annular space 27 is formed by aligning these annular grooves 25 and 26, and while supplying inert gas from the leak detection groove 17 to the annular space 27 as shown in FIG. The outer tubes 11 and 11 are joined together by butt welding 28.

第1図において、外管11.11の突合せ溶接28を行
なう時に、不活性ガスは、第3図に示すように内管10
と外管11の間に位置するリーク検出用溝17から環状
空間27を通して供給されるが溶接部において、内管1
0と外管11との間の環状空間27が、内管10の外面
から内側へ、外管11の内面から外側へ広がっているた
め、内管10と外管11の間を主としてリーク検出用溝
17を通って供給される不活性ガスは第3図に示す様に
リーク検出用溝17がら吹出した時点で環状空間27の
周方向に広がり、突合せ溶接28の裏波たれ込みが多く
生じたり、突合せ溶接28により、内管lOと外管11
が融着することは防止される。
In FIG. 1, when performing the butt welding 28 of the outer tube 11.11, the inert gas is applied to the inner tube 10 as shown in FIG.
It is supplied through the annular space 27 from the leak detection groove 17 located between the inner pipe 1 and the outer pipe 11 at the welding part
Since the annular space 27 between the inner tube 10 and the outer tube 11 extends inward from the outer surface of the inner tube 10 and outward from the inner surface of the outer tube 11, the space between the inner tube 10 and the outer tube 11 is mainly used for leak detection. As shown in FIG. 3, the inert gas supplied through the groove 17 spreads in the circumferential direction of the annular space 27 when it is blown out of the leak detection groove 17, causing a lot of sag in the butt weld 28. By butt welding 28, the inner pipe lO and the outer pipe 11 are connected.
is prevented from fusing.

第5図は第3図の他の実施例を示すもので、第3図のも
のと異なる点は第3図に示すものにおいては外管11.
11のリーク検出用溝17が直線的に配置されているが
、第5図に示すものにおいては、リーク検出用溝17.
17が互い違いに配置されているのみで、他の説明は第
3図のものと同一である。
FIG. 5 shows another embodiment of the embodiment shown in FIG. 3, and the difference from the embodiment shown in FIG. 3 is that the outer tube 11.
Although eleven leak detection grooves 17 are arranged linearly, in the one shown in FIG. 5, the leak detection grooves 17.
17 are arranged alternately, and the other explanations are the same as those in FIG.

第5図に示す他の実施例のものは、二重壁伝熱管12の
外管11の突合せ溶接28において、溶接する相互の管
のリーク検出用溝17.17の位置を管の周方向に互い
にずらした状態で不活性ガスの供給を行って突合せ溶接
28を行なうものである。この実施例の効果は、第5図
に示す様に一方の管のリーク検出用溝17を通って供給
される不活性ガスが、突合せ溶接28において、周方向
に確実に流れて他方の管のリーク検出用溝17に流れ込
むことになり、内管10と外管11が融着することが防
止でき、裏波たれ込みが大きくなってリーク検出用溝1
7を閉塞することがなくなる。
In another embodiment shown in FIG. 5, in the butt welding 28 of the outer tube 11 of the double-walled heat exchanger tube 12, the positions of the leak detection grooves 17 and 17 of the mutually welded tubes are adjusted in the circumferential direction of the tubes. Butt welding 28 is performed by supplying inert gas while being shifted from each other. The effect of this embodiment is that the inert gas supplied through the leak detection groove 17 of one pipe reliably flows in the circumferential direction at the butt weld 28, as shown in FIG. This causes the flow to flow into the leak detection groove 17, preventing the inner tube 10 and the outer tube 11 from being fused together, and increasing the amount of leakage flowing into the leak detection groove 1.
7 will no longer be blocked.

以上述べた二重壁伝熱管の溶接方法について説明したが
、第1図から第5図に示す突合せ溶接28によって接合
された二重壁伝熱管12で熱交換器を構成すれば、管板
や邪魔板への挿入は外径寸法に変化がないので容易とな
り、外管11は構造連続部となるので応力集中が軽減さ
れ、伝熱性能は向上する。
The welding method for double-walled heat exchanger tubes has been explained above, but if a heat exchanger is constructed of double-walled heat exchanger tubes 12 joined by butt welding 28 shown in FIGS. 1 to 5, the tube plate and Insertion into the baffle plate is easy because there is no change in the outer diameter dimension, and since the outer tube 11 becomes a continuous part of the structure, stress concentration is reduced and heat transfer performance is improved.

なお、環状空間27は外管11の突合せ溶接28を行な
う場合には、不活性ガスを突合せ溶接28の裏側から管
の周方向へ供給するために役立ち、溶接完了後はリーク
検出用溝17.17を連絡する連絡通路としても役立つ
ので、内管10、外管11のリーク検出をより確実に行
うことができる。
Note that when butt welding 28 of the outer tube 11 is performed, the annular space 27 serves to supply inert gas from the back side of the butt weld 28 to the circumferential direction of the tube, and after welding is completed, the leak detection groove 17. Since it also serves as a communication path for communicating the inner tube 10 and the outer tube 11, leak detection between the inner tube 10 and the outer tube 11 can be performed more reliably.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、二重壁伝熱管の外管溶接時に不活性ガ
スを溶接部全周にわたって均一に流すことができるので
局所的な裏波たれ込みによる内管と外管の融着やリーク
検出用溝の閉塞が防止できる。また、溶込み不良等によ
る欠陥の発生を防止できる。さらに、スリーブを使用す
る従来技術に比較して、溶接箇所が半減し、製作期間の
大巾な短縮が計れると共に、放射線透過試験及び超音波
探傷試験を行うことが可能となり、信転性の高い溶接部
、熱交換となる。
According to the present invention, when welding the outer tube of a double-walled heat exchanger tube, inert gas can be uniformly flowed over the entire circumference of the welded part, so we can detect fusion and leakage between the inner tube and outer tube due to local sag. This prevents the drainage ditch from clogging. Moreover, the occurrence of defects due to poor penetration etc. can be prevented. Furthermore, compared to conventional technology that uses sleeves, the number of welding points is halved, significantly shortening the manufacturing period, and it is also possible to perform radiographic tests and ultrasonic flaw detection tests, resulting in high reliability. The welded part becomes a heat exchanger.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第5図は本発明の実施例に係るもので、第1
図は二重壁伝熱管の縦断面図、第2図は第1図のu−n
線機断面図、第3図および第5図は第2図のm−m線断
面の斜視図、第4図は溶接方法を説明する縦断面図、第
6図は二重壁伝熱管式熱交換器の縦断面図、第7図は従
来の二重壁伝熱管の縦断面図、第8図は第7図の■−■
線横線面断面図9図は外管の展開図である。 10・・・・・・内管、11・・・・・・外管、12・
・・・・・二重壁伝熱管、17・・・・・・リーク検出
用溝、25.26・・・・・・環状溝、27・・・・・
・環状空間。
1 to 5 relate to embodiments of the present invention, and the first
The figure is a vertical cross-sectional view of a double-walled heat exchanger tube, and Figure 2 is the u-n of Figure 1.
Figures 3 and 5 are perspective views of the mm-m line cross section in Figure 2, Figure 4 is a longitudinal cross-sectional view explaining the welding method, and Figure 6 is a double-walled heat exchanger tube type heat exchanger. A longitudinal cross-sectional view of the exchanger, Fig. 7 is a longitudinal cross-sectional view of a conventional double-walled heat transfer tube, and Fig. 8 is a cross-sectional view of the conventional double-walled heat exchanger tube.
FIG. 9, which is a horizontal cross-sectional view, is a developed view of the outer tube. 10... Inner tube, 11... Outer tube, 12.
...Double wall heat exchanger tube, 17...Leak detection groove, 25.26...Annular groove, 27...
- Annular space.

Claims (2)

【特許請求の範囲】[Claims] (1)、内管と管内面にリーク検出用溝を有する外管と
からなる二重壁伝熱管の内管同志と外管同志を突合せ溶
接によつて接合するに、前記内管同志の外面と外管同志
の内面にそれぞれ環状溝を形成し、内管の環状溝と外管
の環状溝を合せて構成した環状空間から不活性ガスを供
給しながら溶接することを特徴とする二重壁伝熱管の溶
接方法。
(1) When the inner tube and the outer tube of a double-walled heat exchanger tube consisting of an inner tube and an outer tube having a leak detection groove on the inner surface of the tube are joined by butt welding, the outer surface of the inner tube is joined by butt welding. An annular groove is formed on the inner surface of the inner tube and the outer tube, respectively, and welding is performed while an inert gas is supplied from an annular space formed by combining the annular groove of the inner tube and the annular groove of the outer tube. How to weld heat exchanger tubes.
(2)、内管と管内面にリーク検出用溝を有する外管と
からなる二重壁伝熱管の内管内の被加熱流体と外管外の
加熱流体が熱交換するものにおいて、前記内管同志の外
面と外管同志の内面にそれぞれ環状溝を形成し、内管の
環状溝と外管の環状溝を合せて構成した環状空間でリー
ク検出用溝を連絡したことを特徴とする熱交換器。
(2) In a double-walled heat transfer tube consisting of an inner tube and an outer tube having a leak detection groove on the inner surface of the tube, the fluid to be heated in the inner tube and the heated fluid outside the outer tube exchange heat, wherein the inner tube A heat exchanger characterized in that annular grooves are formed on the outer surface of the inner tube and the inner surface of the outer tube, and the leak detection groove is connected to the annular space formed by combining the annular grooves of the inner tube and the outer tube. vessel.
JP1002067A 1989-01-10 1989-01-10 Double wall heat transfer tube welding method and heat exchanger Expired - Fee Related JP2746970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002067A JP2746970B2 (en) 1989-01-10 1989-01-10 Double wall heat transfer tube welding method and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002067A JP2746970B2 (en) 1989-01-10 1989-01-10 Double wall heat transfer tube welding method and heat exchanger

Publications (2)

Publication Number Publication Date
JPH02183795A true JPH02183795A (en) 1990-07-18
JP2746970B2 JP2746970B2 (en) 1998-05-06

Family

ID=11519001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002067A Expired - Fee Related JP2746970B2 (en) 1989-01-10 1989-01-10 Double wall heat transfer tube welding method and heat exchanger

Country Status (1)

Country Link
JP (1) JP2746970B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527076A4 (en) * 2010-01-20 2017-06-28 Kabushiki Kaisha Toshiba Double-walled pipe, method for manufacturing double-walled pipe, and vapor generator
CN115958326A (en) * 2023-03-16 2023-04-14 江苏伟力无损检测设备制造有限公司 Pipe plate radiographic inspection welding equipment and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252679A (en) * 1987-04-10 1988-10-19 Babcock Hitachi Kk Welding method for double pipe

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252679A (en) * 1987-04-10 1988-10-19 Babcock Hitachi Kk Welding method for double pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527076A4 (en) * 2010-01-20 2017-06-28 Kabushiki Kaisha Toshiba Double-walled pipe, method for manufacturing double-walled pipe, and vapor generator
CN115958326A (en) * 2023-03-16 2023-04-14 江苏伟力无损检测设备制造有限公司 Pipe plate radiographic inspection welding equipment and method

Also Published As

Publication number Publication date
JP2746970B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
JP4865256B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
JPH0730213Y2 (en) Heat exchanger
US5205038A (en) Method of replacing a tube on a straight-tube heat exchanger
JPH02183795A (en) Welding method for double-walled thermal transmitting pipe and heat exchanger
JPS63153398A (en) Method of repairing or protecting terminal of metallic heat exchanging tube and sleeve used for said method
US4519445A (en) Tube-in-shell heat exchangers
JPS61108482A (en) Joining method of tube plate and heat exchanger tube
JP6150380B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD
CN102149499A (en) Asymmetric heat sink welding using a penetration enhancing compound
US4612976A (en) Steam generator for a nuclear reactor cooled with liquid metal
JPS5844960B2 (en) Installation structure and installation method of thermal shock-resistant plate in shell-and-tube heat exchanger
JPH0353794Y2 (en)
JPH04232899A (en) Method for plugging pipe of straight-pipe type heat exchanger and use of this method
JPH1034373A (en) Welding method for double tube structure
JPH01142392A (en) Double tube type heat transfer tube
JP2504458B2 (en) Welding method of double structure pipe
JPH0711281Y2 (en) Heat exchanger with double tube type heat transfer tube
CN205484128U (en) Collection case pipe box structure of detecting a flaw
CN203343578U (en) Welding auxiliary tool
JP3099971B2 (en) Double tube steam generator
JPH0440637B2 (en)
JPH0285696A (en) Connecting construction for double heat exchanger tube and tube plate
JPH059579Y2 (en)
JPH08155540A (en) Structure for joining double tube
JPH0612216B2 (en) Heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees