JPH0218367A - Production of porous ceramics - Google Patents

Production of porous ceramics

Info

Publication number
JPH0218367A
JPH0218367A JP16804288A JP16804288A JPH0218367A JP H0218367 A JPH0218367 A JP H0218367A JP 16804288 A JP16804288 A JP 16804288A JP 16804288 A JP16804288 A JP 16804288A JP H0218367 A JPH0218367 A JP H0218367A
Authority
JP
Japan
Prior art keywords
sol
foaming agent
gel
porous ceramics
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16804288A
Other languages
Japanese (ja)
Inventor
Ryuichi Ozaki
隆一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP16804288A priority Critical patent/JPH0218367A/en
Publication of JPH0218367A publication Critical patent/JPH0218367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the porous ceramics which has excellent mechanical strength and thermal impact resistance and does not require a holding material at the time of use by adding and dispersing a foaming agent having the sp. gr. different from the sp. gr. of a sol into the sol, then solidifying and drying the sol in the stage when the concn. of the foaming agent in the sol is inclined by the difference in the sp. gr. CONSTITUTION:The following structure is adopted in the production of ceramics by a sol-gel method: The foaming agent having the sp. gr. difference from the sol is added into the formed sol and thereafter, the sol is cast into a mold of an arbitrary shape. The dry gel is then formed by solidifying and drying the sol in the stage when the concn. of the foaming agent in the sol is inclined by the difference in the sp. gr. This gel is heated to the decomposition temp. of the foaming agent or above to decompose the foaming agent incorporated therein and further, this mixture is calcined. The foaming agent to be used is exemplified by org. foaming agents of an azo system, hydrazine system, N-nitron system, etc., org. resins such as polystyrene and polyethylene and inorg. materials such as carbon and CaCO3 and all these compds. may be usable.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、高圧、高温下でのガス分離や、海水の淡水化
の触媒及び固定化酵素や無機触媒の担体等に使われる多
孔質セラミックスの製造方法に関する。 【従来の技術〕 従来の多孔質セラミックスとして最も有名な多孔質ガラ
スについて、その−船釣な製造方法を第5図に示す、N
ano−B*0s−SiOxからなる原料を調整後、約
1500℃の高温下で溶融し、さらに800℃〜110
0℃の温度で管、根などの形状に成形する。この時得ら
れるホウケイ酸ガラスは、未分相であるため、500℃
〜650℃の温度範囲で分相処理を行ない、N a *
 O−Bオ0.相とS i O*相の2相に分離される
。この分相ガラスに硝酸や塩酸などで酸処理を行うと、
酸に溶解しやすいN a * O−B□O1相は溶出し
てゆき、S i O*相のみが残存する。NagO−B
 * O*相と51b 絡み合っているため、残存するSiO*ガラスは、無数
の連続した細孔を持つ多孔質ガラスである。 また、ゾル−ゲル法でセラミックスを製造することがで
きる、(特開昭59−92924号公報参照)この場合
、得られるセラミックスに空孔が発生しやすいという特
徴を活かして、焼結条件を制御することにより多孔質セ
ラミックスを作る方法も考えられている。 さらに泡ガラスの製造方法のように、ガラス原料と発泡
剤を混合し、その後高温で処理して融着と発泡を同時に
行なう方法もある。 〔発明が解決しようとする課題] しかしながら従来の製造方法では、セラミックス中の空
孔率が、どの場所に於ても一定な多孔質セラミックスし
か作成できない、このため、従来の製造方法で°作成さ
れた多孔質セラミックスでは、通常使用するとき単独で
の使用が難しく保持材が必要となる、また他の部品との
接合・接着において、多孔質体では界面での強度の低下
が生じるため、高温中などの過酷な条件下での使用が困
難であるという問題点を有している。 本発明は、このような問題点を解決するものであり5そ
の目的とするところは、一つのセラミックスの中で多孔
性と緻密さという2つの相異なる特性を有することによ
り、機械的強度や耐熱衝撃性に優れ、且つ使用に際し保
持材などを必要としない多孔質セラミックスの製造方法
を提供することにある。 〔課題を解決するための手段〕 本発明の多孔質セラミックスの製造方法は、ゾル−ゲル
法によるセラミックスの製造において、作成したゾル中
に、該ゾルと比重差のある発泡剤を添加し分散させた後
、このゾルを任意の形状の型に注入し、その後比重差に
よりゾル中の発泡剤の濃度が傾斜した段階で固化、乾燥
しドライゲルとし、このゲルを発泡剤の分解温度以上に
加熱し、含有している発泡剤を分解させ、さらにこの混
合物を焼成することを特徴とする。 [作 用] 本発明によれば、ゾル中に比重の異なる発泡剤を添加・
分散させた後、比重差によりゾル中の発泡剤の濃度が傾
斜した段階で固化、乾燥を行うことにより、得られる多
孔質セラミックスの空孔率分布は傾斜している。 〔実 施 例1 (実施例1) 本発明の多孔質セラミックスの製造工程を第4図に示す
。 エチルシリケートを酸性下で加水分解し、これに平均粒
子径0.05〜0.4 (um)のSiO黛微粒子を添
加、さらに発泡材料としてアゾジカルボンアミドを0.
l(重量%)添加した後、アンモニア水を加えpHを4
.0に合わせゾルを調整する。このゾルをポリプロピレ
ン製容器に入れて、密閉状態のままゲル化を起こさない
ように48時間保管する。比重差によりゾル中の発泡剤
の濃度が傾斜した段階で、ウェットゲルを作成する。そ
の後、密閉容器からウェットゲルを取り出し、2週間乾
燥させドライゲルな作成する。 このドライゲルを焼成炉にいれて、30(’C/時間)
の昇温速度で200℃まで加熱し同温度で5時間保持し
、さらに300℃に加熱し同温度で5時間保持して、添
加したアゾジカルボンアミドを完全に分解するとともに
脱吸着水処理を行なう。 前記ドライゲルをさらに、30(’C/時間)の昇温速
度で1000℃に加熱し、同温度で20時間保持して焼
成を行い多孔質セラミックスを得る。焼成は窒素雰囲気
中或は真空中で行うが、発泡材料が完全に分解するまで
の発泡、脱ガス工程は真空中で行うことが望ましい。 使用する発泡材料は、アゾジカルボンアミド等のアゾ系
、ジフェニルスルホン−3,3°ジスルホヒドラジン等
のヒドラジン系、N、N’ −ジニトロソペンタメチレ
ンテトラミン等のN−ニトロソ系等で代表される有機発
泡剤及びポリスチレン、ポリエチレン等の有機樹脂そし
てカーボン、CaC0s等の無機材料の何れでもよい。 作成したセラミックスの形状は、φ80×t20(+n
m)のディスク状である。このセラミックスを厚さ方向
に10等分し、各試料について空孔率を測定した。この
セラミックスについて、底辺からの距離と空孔率の関係
を第1図に、また試料の断面の概略図を第4図に示す、
1は最上部、2は空孔、3は底面部である。 本実施例で使用した発泡剤アゾジカルボンアミドの比重
はゾルの比重よりも低いため、発泡剤は上部に集まって
くる。これを適当な段階でゲル化させると発泡剤の濃度
が傾斜した状態で固化し、発泡、焼成すると空効率が傾
斜した多孔質セラミックスが得られる。 (実施例2) 実施例−1おいて、その製造条件の中で、表−1に示す
ように発泡剤量と焼成温度を変化させ、色々な空孔率分
布を持つ多孔質セラミックスを作成した。 表−1 作成した試料を、実施例−1と同様に厚さ方向に10等
分し、各々の空孔率を測定した。各セラミックスについ
て、底辺からの距離と空孔率の関係を第2図に示す。 製造条件を変化させることで、空孔率の分布を変化させ
ることができる。また同様にセラミックス中の空孔径の
制御も可能であり、実験では数十(人)〜数百(μm)
の範囲の空孔が得られた。 (実施例3) アルミニウムイソプロポキシドを酸性下で加水分解し、
これに平均粒子径0.05〜0.08(μm)のA l
 m Os微粒子を添加、さらに発泡材料としてアゾジ
カルボンアミドを0.1(重量%)添加した後、アンモ
ニア水な加えpt−tを4.0に合わせゾルを調整する
。このゾルをポリプロピレン製容器に入れて、密閉状態
のままゲル化を起こさないように48時間保管する。比
重差によりゾルと発泡剤の濃度が傾斜した段階で、ウェ
ットゲルを作成する。その後、密閉容器からウェットゲ
ルを取り出し、2週間乾燥させドライゲルを作成する。 このドライゲルな焼結炉にいれて、真空中、30(℃/
時間)の昇温速度で200℃まで加熱し同温度で5時間
保管し、さらに300℃に加熱し同温度で5時間保持し
て、添加したアゾジカルボンアミドを完全に分解すると
ともに脱吸着水処理を行なう。前記ドライゲルなさらに
、窒素雰囲気下、30(’C/時間)の昇温速度で12
00℃に加熱し、同温度で20時間保持して焼成を行い
多孔質セラミックスを得る。この多孔質セラミックスの
形状は、(外径)100X (内径)70Xt20(+
n+n)であり、実施例−1と同様に、このセラミック
スを厚さ方向に10等分して、各試料の空孔率を測定す
る。 この多孔質セラミックスについて、底辺からの距離と空
孔率の関係を第3図に、その外観図を第4図に示す。 本発明の多孔質セラミックスの製造方法は、前記S t
 Ox系及びA 1 s Os系以外にもZnO系、S
nOs系、V x Os系等、全てのセラミックス材料
に有効である。 また本実施例で示したように、リング状などの従来の製
造方法では、二次加工を必要とした複雑な形状について
も容易に作成する事ができる。 〔発明の効果〕 以上述べたように本発明によれば、ゾルと比重差のある
発泡剤をゾル中に分散させた後、その比重差を利用して
発泡剤の濃度が傾斜した段階でゲル化し、さらに発泡・
焼成することにより、多孔性と緻密さという2つの相反
する特性を有する多孔質セラミックスが可能になるとい
う効果をゆうすものである。 また得られる多孔質セラミックスの空孔率分布は、製造
条件により変化させることができるため、任意の空孔率
分布をゆうするセラミックスを容易に製造することがで
きる。 さらに本発明の製造方法では、ゾル−ゲル法によるセラ
ミックスの製造方法の特性を活かして。 複雑形状の試料の製造が容易に行われるという効果を有
する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to porous ceramics used for gas separation under high pressure and high temperature, catalysts for desalination of seawater, and supports for immobilized enzymes and inorganic catalysts. Relating to a manufacturing method. [Prior art] Figure 5 shows the simple manufacturing method for porous glass, which is the most famous conventional porous ceramic.
After preparing the raw material consisting of ano-B*0s-SiOx, it is melted at a high temperature of about 1500°C, and further heated at a temperature of 800°C to 110°C.
It is molded into shapes such as tubes and roots at a temperature of 0°C. Since the borosilicate glass obtained at this time is unseparated, the temperature at 500°C
Phase separation treatment is performed in the temperature range of ~650°C, and N a *
O-B O0. It is separated into two phases: phase and S i O* phase. When this split-phase glass is acid-treated with nitric acid or hydrochloric acid,
The N a *O-B□O1 phase, which is easily soluble in acid, is eluted, and only the S i O* phase remains. NagO-B
Since the *O* phase and 51b are intertwined, the remaining SiO* glass is a porous glass having countless continuous pores. In addition, ceramics can be manufactured using the sol-gel method (see Japanese Patent Laid-Open No. 59-92924). In this case, the sintering conditions can be controlled by taking advantage of the fact that the resulting ceramics tend to have pores. A method of making porous ceramics by doing so is also being considered. Furthermore, there is also a method for producing foam glass, in which a glass raw material and a foaming agent are mixed and then treated at high temperature to perform fusing and foaming at the same time. [Problem to be solved by the invention] However, with the conventional manufacturing method, only porous ceramics can be created in which the porosity of the ceramic is constant regardless of the location. In normal use, porous ceramics are difficult to use alone and require a retainer, and porous materials lose strength at the interface when joining/adhering with other parts, so they cannot be used at high temperatures. The problem is that it is difficult to use under such harsh conditions. The present invention aims to solve these problems5.The purpose of the present invention is to improve mechanical strength and heat resistance by having two different characteristics, porosity and denseness, in a single ceramic. It is an object of the present invention to provide a method for producing porous ceramics that has excellent impact resistance and does not require a holding material during use. [Means for Solving the Problems] The method for producing porous ceramics of the present invention involves adding and dispersing a blowing agent having a specific gravity different from that of the sol in the produced sol in producing ceramics by the sol-gel method. After that, this sol is poured into a mold of any shape, and when the concentration of the blowing agent in the sol slopes due to the difference in specific gravity, it solidifies and dries to form a dry gel, and this gel is heated above the decomposition temperature of the blowing agent. , the foaming agent contained therein is decomposed, and the mixture is then fired. [Function] According to the present invention, foaming agents with different specific gravities are added to the sol.
After dispersion, the sol is solidified and dried at a stage where the concentration of the blowing agent in the sol is tilted due to the difference in specific gravity, so that the porosity distribution of the resulting porous ceramic is tilted. [Example 1 (Example 1) The manufacturing process of porous ceramics of the present invention is shown in FIG. 4. Ethyl silicate was hydrolyzed under acidic conditions, and SiO fine particles with an average particle size of 0.05 to 0.4 (um) were added thereto, and azodicarbonamide was added as a foaming material to the solution.
After adding 1 (wt%), ammonia water was added to adjust the pH to 4.
.. Adjust the sol to 0. This sol is placed in a polypropylene container and stored in a sealed state for 48 hours to prevent gelation. At the stage when the concentration of the blowing agent in the sol becomes gradient due to the difference in specific gravity, a wet gel is created. Thereafter, the wet gel is taken out from the sealed container and dried for two weeks to create a dry gel. Put this dry gel in a firing furnace for 30 ('C/hour)
Heat to 200°C at a heating rate of 200°C and hold at the same temperature for 5 hours, then further heat to 300°C and hold at the same temperature for 5 hours to completely decompose the added azodicarbonamide and perform desorption water treatment. . The dry gel is further heated to 1000°C at a heating rate of 30 ('C/hour), and fired by holding at the same temperature for 20 hours to obtain porous ceramics. Firing is performed in a nitrogen atmosphere or in a vacuum, but it is desirable to perform the foaming and degassing steps in a vacuum until the foamed material is completely decomposed. The foaming materials used are typified by azo-based materials such as azodicarbonamide, hydrazine-based materials such as diphenylsulfone-3,3° disulfohydrazine, and N-nitroso-based materials such as N,N'-dinitrosopentamethylenetetramine. Any of organic foaming agents, organic resins such as polystyrene and polyethylene, and inorganic materials such as carbon and CaCOs may be used. The shape of the created ceramic is φ80×t20(+n
m) is disc-shaped. This ceramic was divided into 10 equal parts in the thickness direction, and the porosity of each sample was measured. Regarding this ceramic, the relationship between the distance from the base and the porosity is shown in Figure 1, and a schematic diagram of the cross section of the sample is shown in Figure 4.
1 is the top, 2 is the hole, and 3 is the bottom part. Since the specific gravity of the blowing agent azodicarbonamide used in this example is lower than the specific gravity of the sol, the blowing agent gathers in the upper part. When this is gelled at an appropriate stage, it solidifies with a gradient in the concentration of the foaming agent, and when foamed and fired, a porous ceramic with a gradient in void efficiency is obtained. (Example 2) In Example 1, the amount of blowing agent and firing temperature were changed as shown in Table 1 under the manufacturing conditions to create porous ceramics with various porosity distributions. . Table 1 The prepared sample was divided into 10 equal parts in the thickness direction as in Example 1, and the porosity of each was measured. FIG. 2 shows the relationship between the distance from the base and the porosity for each ceramic. By changing the manufacturing conditions, the porosity distribution can be changed. It is also possible to control the pore size in ceramics in the same way, and in experiments it is possible to control the pore size in the range of tens (people) to hundreds (μm).
A range of pores was obtained. (Example 3) Hydrolyzing aluminum isopropoxide under acidic conditions,
To this, Al with an average particle diameter of 0.05 to 0.08 (μm)
After adding mOs fine particles and further adding 0.1 (wt%) of azodicarbonamide as a foaming material, ammonia water was added to adjust the pt-t to 4.0 to prepare a sol. This sol is placed in a polypropylene container and stored in a sealed state for 48 hours to prevent gelation. A wet gel is created at the stage where the concentrations of the sol and the foaming agent become gradient due to the difference in specific gravity. Thereafter, the wet gel is taken out from the sealed container and dried for two weeks to prepare a dry gel. Put it in this dry gel sintering furnace and heat it at 30℃/℃ in vacuum.
Heating to 200℃ at a temperature increase rate of 2 hours) and storing at the same temperature for 5 hours, further heating to 300℃ and keeping at the same temperature for 5 hours to completely decompose the added azodicarbonamide and treat the desorbed water. Do this. The dry gel was further heated under a nitrogen atmosphere at a heating rate of 30 ('C/hr) for 12
The sample is heated to 00°C and kept at the same temperature for 20 hours for firing to obtain porous ceramics. The shape of this porous ceramic is (outer diameter) 100X (inner diameter) 70Xt20 (+
n+n), and similarly to Example 1, this ceramic is divided into 10 equal parts in the thickness direction, and the porosity of each sample is measured. Regarding this porous ceramic, the relationship between the distance from the base and the porosity is shown in FIG. 3, and its external view is shown in FIG. 4. The method for producing porous ceramics of the present invention includes the above-mentioned S t
In addition to Ox-based and A 1 s Os-based materials, ZnO-based and S
It is effective for all ceramic materials such as nOs type and V x Os type. Furthermore, as shown in this embodiment, by conventional manufacturing methods such as ring shapes, complex shapes that require secondary processing can be easily created. [Effects of the Invention] As described above, according to the present invention, after dispersing a foaming agent having a specific gravity different from that of a sol into a sol, the gel is formed by using the difference in specific gravity at a stage where the concentration of the foaming agent is inclined. foaming and
By firing, it is possible to produce porous ceramics that have two contradictory properties: porosity and density. Further, the porosity distribution of the obtained porous ceramic can be changed depending on the manufacturing conditions, so that ceramics having any desired porosity distribution can be easily manufactured. Furthermore, the manufacturing method of the present invention takes advantage of the characteristics of the ceramic manufacturing method using the sol-gel method. This has the effect that samples with complex shapes can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法で作成したSiO3系の多
孔質セラミックスの空孔率分布を示す図。 第2図は、製造条件を代えて作成した多孔質セラミック
スの断面の外観図。 第3図は、本発明の製造方法で作成したA 1 x03
系の多孔質セラミックスの空孔率分布を示す図。 第4図は、本発明の製造方法で作成した多孔質セラミッ
クスの断面の概略図。 第5図は、本発明の多孔質セラミックスの製造方法を示
す工程図。 第6図は、従来の多孔質セラミックスの製造方法を示す
工程図。 以上 出願人 セイコーエプソン株式会社 代理人 弁理士 鈴 木 喜三部(他1名)第2図 諷イ=)/IX薗からの¥F亀1 (1〜)第3図 第4図 第5図
FIG. 1 is a diagram showing the porosity distribution of SiO3-based porous ceramics produced by the manufacturing method of the present invention. FIG. 2 is an external view of a cross section of porous ceramics prepared under different manufacturing conditions. FIG. 3 shows A 1 x03 manufactured by the manufacturing method of the present invention.
A diagram showing the porosity distribution of the porous ceramics of the system. FIG. 4 is a schematic diagram of a cross section of porous ceramics produced by the manufacturing method of the present invention. FIG. 5 is a process diagram showing the method for manufacturing porous ceramics of the present invention. FIG. 6 is a process diagram showing a conventional method for manufacturing porous ceramics. Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Kizobe Suzuki (and 1 other person) Figure 2 Rhythm =) / IX Sono ¥F Kame 1 (1~) Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims]  ゾル−ゲル法によるセラミックスの製造において、作
成したゾル中に、該ゾルと比重差のある発泡剤を添加し
分散させた後、このゾルを任意の形状の型に注入し、そ
の後比重差によりゾル中の発泡剤の濃度が傾斜した段階
で固化、乾燥しドライゲルとし、このゲルを発泡剤の分
解温度以上に加熱し、含有している発泡剤を分解させ、
さらにこの混合物を焼成することを特徴とする多孔質セ
ラミックスの製造方法。
In the production of ceramics by the sol-gel method, a blowing agent with a specific gravity different from that of the sol is added and dispersed in the created sol, and then this sol is poured into a mold of any shape, and then the sol is expanded due to the difference in specific gravity. When the concentration of the foaming agent in the gel reaches a gradient, it solidifies and dries to form a dry gel, and this gel is heated above the decomposition temperature of the foaming agent to decompose the foaming agent contained therein.
A method for producing porous ceramics, which further comprises firing this mixture.
JP16804288A 1988-07-05 1988-07-05 Production of porous ceramics Pending JPH0218367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16804288A JPH0218367A (en) 1988-07-05 1988-07-05 Production of porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16804288A JPH0218367A (en) 1988-07-05 1988-07-05 Production of porous ceramics

Publications (1)

Publication Number Publication Date
JPH0218367A true JPH0218367A (en) 1990-01-22

Family

ID=15860743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16804288A Pending JPH0218367A (en) 1988-07-05 1988-07-05 Production of porous ceramics

Country Status (1)

Country Link
JP (1) JPH0218367A (en)

Similar Documents

Publication Publication Date Title
CA1264905A (en) Hollow microspheres made from dispersed particle compositions
US20180186698A1 (en) Porous alumina ceramic ware and preparation method thereof
JP2010111579A (en) Method of producing ceramic foam
CN105837252B (en) porous alumina ceramic and preparation method thereof
CN109095948B (en) Method for preparing foamed ceramic with communicated pore walls by using hollow microspheres
Mao Processing of ceramic foams
CN108752038A (en) It is a kind of with can be thermally cured Polycarbosilane preparation foam silicon carbide ceramics
JPH0218367A (en) Production of porous ceramics
KR100262141B1 (en) Method for the preparation of small ceramic bead
CN105924211B (en) The method for preparing light porous ceramic with flyash and aluminium dihydrogen phosphate
JPH0222183A (en) Production of porous ceramics
JPH0234583A (en) Production of porous ceramic
JPH01133988A (en) Production of reticular silica whisker-porous ceramic composite
JPH0226835A (en) Manufacture of porous glass
CN105948794A (en) Preparation method for preparing lightweight and porous aluminium phosphate-calcium titanate ceramic ball
JPH0222182A (en) Production of porous ceramics
JPH04209772A (en) Ceramic porous material
JP4029150B2 (en) Method for producing lightweight ceramic molded body
JPH0383875A (en) Production of porous ceramic structure
SU747840A1 (en) Method of preparing porous quartz ceramics
JP2728838B2 (en) Method for producing porous sintered body
JPH0259452A (en) Porous glass and its production
JP2506502B2 (en) Method for manufacturing ceramic porous body
CN105948782B (en) A kind of preparation method of light porous aluminum phosphate-magnesium-aluminum spinel ceramic ball
JPS60171220A (en) Manufacture of porous alumina body