JPH02183452A - Magneto-optical disk device - Google Patents

Magneto-optical disk device

Info

Publication number
JPH02183452A
JPH02183452A JP183489A JP183489A JPH02183452A JP H02183452 A JPH02183452 A JP H02183452A JP 183489 A JP183489 A JP 183489A JP 183489 A JP183489 A JP 183489A JP H02183452 A JPH02183452 A JP H02183452A
Authority
JP
Japan
Prior art keywords
light
magneto
recording
signal
wedge prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP183489A
Other languages
Japanese (ja)
Other versions
JP2551129B2 (en
Inventor
Toshiaki Iwanaga
敏明 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1001834A priority Critical patent/JP2551129B2/en
Publication of JPH02183452A publication Critical patent/JPH02183452A/en
Application granted granted Critical
Publication of JP2551129B2 publication Critical patent/JP2551129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize a reproducing signal even if recording density is made high by receiving four luminous fluxes separated by a wedge prism and a multiple image element by means of a four-division detector and fetching the difference signal and the sum signal of the output signal of the detector by means of a differential amplifier. CONSTITUTION:A laser light beam for recording and reproducing is emitted from a semiconductor laser 1 and made incident on a magneto-optical medium 7 after arranging the polarized light of a luminous flux in one direction by beam splitters 4 and 5. Then, the luminous flux from the medium 7, which is rotated with kerr is divided in two directions perpendicular to a jitter direction by the wedge prism 10 through the splitter 5, a wavelength plate 8 such as a 1/4 wavelength plate and a condensing lens 9. Then, the luminous fluxes are polarized and separated to two directions by a Wollaston prism 11, etc. Next, the separated four luminous fluxes are received by the four-division photodetector 12 and the change of the intensity of light in the jitter direction of P and S polarized component, for example, is detected by the differential amplifiers 17 and 18 of a signal processing system 13 and the edge information of a recording bit obtained from the output of the amplifiers 17 and 18 is outputted by the differential amplifier 19.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気光学情報を光学微分に依って再生する光磁
気ディスク装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magneto-optical disk device that reproduces magneto-optical information using optical differentiation.

(従来の技術) 光磁気ディスク装置の情報の記録方法は、磁気薄膜から
、なる記録媒体にレーザ光を集光照射し、媒体上の磁化
の変化として情報を記録する熱磁気記録により行われる
。すなわち、あらかじめ記録層の膜面全体に垂直に外部
磁界をかけ、上向き磁化によなるように記録層を磁化さ
せて+1011を書き込んだ後、61″を書き込む部分
にレーザビームをスポット的に照射して加熱する。加熱
された微小部分は保磁力Heが小さくなり、レーザビー
ム照射の際微弱な外部バイアス磁界を下向き磁化となる
方向に与えておくこと、磁化反転して”1″が記録され
る。レーザビームを照射するかしないか、すなわち記録
層に照射された微小スポットの温度を上昇させるかさせ
ないかにより、磁気記録パターンを形成する方法がとら
れる。一方、情報の読み出しの方法としては、例えば直
線偏光したレーザビームを前記磁気記録パターンに照射
した場合、その反射光または透過光の偏光面を回転させ
る効果(それぞれ磁気カー効果、磁気ファラデー効果と
呼ばれる)を記録層は有しているので、例えば磁気カー
効果を利用する場合には、反射光の偏光面の回転角θ、
が記録磁化の方向に依って異なることを利用して、反射
光が光検出器に入る前に検光子を通し、磁化の向きに対
応した情報を光量変化として読み出す。この種の光磁気
ディスク装置は、追記型光ディスクとは異なり情報の書
換えができる利用価値の高いファイル装置として注目さ
れている。
(Prior Art) A method for recording information in a magneto-optical disk device is performed by thermomagnetic recording, in which a recording medium made of a magnetic thin film is irradiated with focused laser light, and information is recorded as changes in magnetization on the medium. That is, an external magnetic field is applied perpendicularly to the entire film surface of the recording layer in advance to magnetize the recording layer so as to cause upward magnetization to write +1011, and then a laser beam is irradiated spot-on to the part where 61'' is to be written. The coercive force He of the heated minute part becomes small, so when irradiating the laser beam, apply a weak external bias magnetic field in the direction of downward magnetization, and the magnetization will be reversed and "1" will be recorded. A method is used to form a magnetic recording pattern depending on whether or not to irradiate a laser beam, that is, whether to raise the temperature of a minute spot irradiated on the recording layer.On the other hand, as a method for reading information, For example, when the magnetic recording pattern is irradiated with a linearly polarized laser beam, the recording layer has the effect of rotating the plane of polarization of the reflected or transmitted light (called the magnetic Kerr effect and magnetic Faraday effect, respectively). , for example, when using the magnetic Kerr effect, the rotation angle θ of the polarization plane of the reflected light,
Taking advantage of the fact that the amount of light differs depending on the direction of recorded magnetization, the reflected light is passed through an analyzer before entering the photodetector, and information corresponding to the direction of magnetization is read out as a change in the amount of light. This type of magneto-optical disk device is attracting attention as a highly useful file device that can rewrite information, unlike write-once optical disks.

従来、このような光磁気ディスク装置における情報の読
み出しは、媒体面上に記録された磁化情報により回転す
る偏光面を、検光子により光の強度変化に変換する方法
により行われていた。この様な信号の読み出し方法では
、媒体面上の磁化の変化した部分が明または暗となり、
反射率変化型の光デイスク装置と同様に反射光全体の光
量変化を検出することで再生信号が読み出されることに
なる。この様な検出方法には、単一の光検出器を用いた
ものや、偏光ビームスプリッタにより2つに偏光分割さ
れた光束をそれぞれ2つの光検出器で受光し、その出力
の差をとる差動検出法等がある。
Conventionally, reading information in such a magneto-optical disk device has been carried out by a method in which a plane of polarization rotated by magnetization information recorded on the medium surface is converted into a change in light intensity using an analyzer. In this signal reading method, the part of the medium surface where the magnetization has changed becomes bright or dark.
Similar to the reflectance change type optical disk device, a reproduced signal is read out by detecting a change in the amount of reflected light as a whole. Such detection methods include those that use a single photodetector, and those that use two photodetectors to receive a beam split into two polarized beams by a polarizing beam splitter, and then calculate the difference between the outputs. There are motion detection methods, etc.

これらの方法は、検光子を透過した光束の全光量の変化
を検出するもので、明暗変化の検出方法と本質的に同じ
ものである。
These methods detect changes in the total amount of light transmitted through the analyzer, and are essentially the same as methods for detecting changes in brightness and darkness.

(発明が解決しようとする課題) しかしながら、上述した従来の光磁気ディスク装置にお
ける読み出し方法では、媒体面上に集光される読み出し
用の光スポットの強度分布が広がり(ガウシアン分布)
を持つため、反射光の強度変化は急峻なものとはならな
い。従って、再生信号のタイミング情報が不正確で、か
つ照射する光スポットの強度変動や媒体の反射率変動、
再生回路の特性変動等の影響を受けやすく、信号再生に
おける読み出し誤りが起こりやすいといった欠点を有し
ていた。また更に磁化情報が記録された領域(以下、記
録ピットと称する)の長さの変化を利用して情報を記録
(パルス幅変調)し、再生しようとすると、直流成分あ
るいはそれに近い低周波成分まで正確に増幅しないと、
信号の乱れが大きくなり、正確な情報再生ができないと
いった欠点があった。そのため、記録密度を高くして行
うと安定に再生することができず、ピット誤り率が増大
するコトになり、ディスクの記録容量が制限されるとい
った欠点となる。
(Problem to be Solved by the Invention) However, in the reading method in the conventional magneto-optical disk device described above, the intensity distribution of the reading light spot focused on the medium surface is broadened (Gaussian distribution).
Therefore, the intensity change of the reflected light will not be steep. Therefore, the timing information of the reproduced signal is inaccurate, and the intensity fluctuation of the irradiated light spot and the reflectance fluctuation of the medium,
This method has disadvantages in that it is easily affected by variations in the characteristics of the reproducing circuit, and reading errors are likely to occur during signal reproduction. Furthermore, when attempting to record (pulse width modulation) and reproduce information using changes in the length of the area where magnetization information is recorded (hereinafter referred to as a recording pit), even direct current components or low frequency components close to them If it is not amplified accurately,
This had the disadvantage that the signal became more disturbed and accurate information could not be reproduced. Therefore, if the recording density is increased, stable reproduction is not possible, the pit error rate increases, and the recording capacity of the disc is limited.

これら従来の光磁気ディスク装置の読み出し方法の欠点
を解決するため、特願昭62−151809号明細書に
おいて、第7図に示すように媒体の磁化の変化を4分の
1波長板によって光の位相遅れ(または進み)に変換し
、その位相差によって生じるファーフィールドパターン
の変化を捕らえられることにより信号の読み出しを行う
方法が提案されている。この方法により、上述した問題
の多くは解決されるが、ファーフィールドで信号検出を
行うため集光光学系に比べて光ヘッドのディスク面に対
する傾きなどのトレランスに弱いことや再生SN比が劣
化するといった欠点を有している。
In order to solve these shortcomings of the conventional reading methods of magneto-optical disk devices, Japanese Patent Application No. 151809/1983 proposes that changes in the magnetization of the medium can be detected using a quarter-wave plate using a quarter-wave plate, as shown in FIG. A method has been proposed in which the signal is read out by converting the signal into a phase lag (or phase lead) and capturing a change in the far field pattern caused by the phase difference. This method solves many of the problems mentioned above, but since signal detection is performed in the far field, it is less sensitive to tolerances such as the tilt of the optical head with respect to the disk surface than a condensing optical system, and the reproduction S/N ratio deteriorates. It has drawbacks such as:

本発明の目的は上記のごとき欠点を改善して、記録密度
を高くしても再生信号の安定性が良く、かつ再生信号の
品質が良好で、従って再生SN比の高い読み出しができ
るため誤り率の少ない光磁気ディスク装置を提供するこ
とにある。
The purpose of the present invention is to improve the above-mentioned drawbacks, and to improve the stability of the reproduced signal even when the recording density is increased, and the quality of the reproduced signal is also good. Therefore, it is possible to perform readout with a high reproduction S/N ratio, thereby reducing the error rate. The object of the present invention is to provide a magneto-optical disk device with a small amount of noise.

(課題を解決するための手段) その目的を達成するため、本発明の光磁気ディスク装置
はレーザを光源とし、磁気光学的なピット列を用いて情
報の記録再生を行う光磁気ディスク装置であって、前記
ピット列がらの反射光または透過光の一部を反射するビ
ームスプリッタと、前記ビームスプリッタがら反射され
た光束の光路に配置した波長板と、前記波長板を通過し
た偏光光束を集光する集光レンズと、前記集光レンズに
より集光される光路中に前記記録ピットのジッタ方向に
対応して2方向に振幅分割するウェッジプリズムと、該
ウェッジプリズムにより2分割された光束の各々を前記
ジッタ方向と垂直な方向に微小な開き角もしくは平行な
開きで偏光分割する複像素子からなる検光子とを配し、
前記ウェッジプリズムと前記複像素子とにより分離され
た四つの光束のそれぞれを前記集光レンズの集光位置で
受光する四つの受光部からなる4分割光検出器と、前記
4分割光検出器の各々の受光部からの出力信号の差と和
信号を取り出す回路手段とを有することを特徴とする光
磁気ディスク装置である。特に、波長板に4分の1波長
板または2分の1波長板または2分の1波長板と4分の
1波長板との組合せを用いることが有効である。
(Means for Solving the Problems) In order to achieve the object, the magneto-optical disk device of the present invention is a magneto-optical disk device that uses a laser as a light source and uses a magneto-optical pit train to record and reproduce information. a beam splitter that reflects part of the reflected light or transmitted light from the pit row; a wavelength plate disposed in the optical path of the light beam reflected from the beam splitter; and a wavelength plate that condenses the polarized light beam that has passed through the wavelength plate. a wedge prism that divides the amplitude into two directions corresponding to the jitter direction of the recording pit in the optical path condensed by the condenser lens; an analyzer consisting of a double image element that splits polarized light with a minute aperture angle or a parallel aperture in a direction perpendicular to the jitter direction;
a 4-split photodetector comprising four light-receiving sections that receive each of the four light beams separated by the wedge prism and the double-image element at a condensing position of the condensing lens; This is a magneto-optical disk device characterized by having circuit means for extracting a difference and a sum signal of output signals from each light receiving section. In particular, it is effective to use a quarter-wave plate, a half-wave plate, or a combination of a half-wave plate and a quarter-wave plate.

(作用) 本発明によれば、媒体の磁化(記録ピット列)の変化を
波長板によって光の位相遅れ(または進み)に変換し、
その位相差によって生じるファーフィールドパターンの
強度変化をファーフィールド上での検出ではなく集光し
た形で捕らえられることができるため、信号効率の良い
検出が達成される。
(Function) According to the present invention, a change in the magnetization (recording pit array) of the medium is converted into a phase delay (or advance) of light by a wavelength plate,
Since the intensity change of the far field pattern caused by the phase difference can be captured in a condensed form rather than being detected on the far field, detection with high signal efficiency is achieved.

また、媒体面の微小な凹凸などによる雑音は2つの光検
出器の出力の差(あるいは和)をとることにより互いに
キャンセルし合って極めて小さくなるため、雑音の少な
い読み出し信号が得られ、したがって高密度、高信頼性
の情報の記録再生を行うことができる。
In addition, noise caused by minute irregularities on the medium surface cancels out and becomes extremely small by taking the difference (or sum) of the outputs of the two photodetectors, so a readout signal with less noise can be obtained, resulting in a high It is possible to record and reproduce information with high density and high reliability.

(実施例) 以下に、本発明について図面を参照して詳しく説明する
。第1図は本発明の一実施例を示す模式図である。半導
体レーザ1は図には示していないレーザ駆動回路から電
流を供給されて、記録再生用のレーザ光を出射する。コ
リメートレンズ2とビーム整形プリズム3は半導体レー
ザ1から出射された発散性のレーザ光を円形で平行なレ
ーザ光束に変える。該光束は、アクチュエータ上に搭載
された対物レンズ6により光磁気媒体7の進行方向(ジ
ッタ方向)に沿って集光照射される。このときビームス
プリッタ4.5は媒体に照射する光束の偏光を一方向(
直線偏光)に揃える働きをする。すなわち、半導体レー
ザ1から出射される光束の偏光をP偏光とすればビーム
スプリッタの特性としては例えばP偏光を60%透過さ
せ、S偏光をすべて反射させる特性を持つものである。
(Example) The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing an embodiment of the present invention. The semiconductor laser 1 is supplied with current from a laser drive circuit (not shown) and emits laser light for recording and reproduction. The collimating lens 2 and the beam shaping prism 3 convert the diverging laser beam emitted from the semiconductor laser 1 into a circular, parallel laser beam. The light beam is focused and irradiated along the traveling direction (jitter direction) of the magneto-optical medium 7 by an objective lens 6 mounted on the actuator. At this time, the beam splitter 4.5 polarizes the light beam irradiating the medium in one direction (
It works to align the light to linearly polarized light. That is, if the polarization of the light beam emitted from the semiconductor laser 1 is P-polarized, the beam splitter has a characteristic of transmitting, for example, 60% of P-polarized light and reflecting all S-polarized light.

対物レンズ6は例えば2軸アクチユエータ上に搭載され
ており、ビームスプリッタ5からの光束を集束させ記録
媒体面上に微小な光スポットを照射する。記録媒体に照
射された光スポットは媒体の磁化状態(記録状態)に応
じて、その偏光方向がわずかにカー回転されて反転(ま
たは透過)される。媒体から反射された光束は対物レン
ズ6によって再び平行光束に戻される。この媒体からの
反射光はビームスプリッタ5により上述したP偏光成分
の一部とS偏光成分の全成分が反射され光路を直角に曲
げられて波長板8に向かう。ここで、波長板としては例
えば4分の1波長板を用い、この4分の1波長板8を出
た光は集光レンズ9で収束されウェッジプリズム10で
2方向に分割される。このとき4分の1波長板を出た光
束は記録ピット列の磁化情報に応じて位相差を有した概
略円偏光となっている。このウェッジプリズム10で分
割する軸線は光ビームの走査するトラック方向(ジッタ
方向)に垂直な方向であり、光束の中心位置に設置する
。次にこの2方向に分割され集束に向かう光束は各々例
えばウオーラストンプリズム11により開き角をもって
2方向に偏光分離される。なお、ウオーラストンプリズ
ム11で分離される光束は、偏光の主軸が各々互いに直
交した偏光方向でかつ強度が等しい特性を有し、ウェッ
ジプリズムでの分割方向と空間的に垂直方向に分離する
ように配置される。このとき偏光分割された後の光束は
4本となる。ウオーラストンプリズム10により分離さ
れた4つの光束はそれぞれの光束を受光する4分割検出
器12に入射する。
The objective lens 6 is mounted, for example, on a two-axis actuator, and focuses the light beam from the beam splitter 5 to irradiate a minute light spot onto the surface of the recording medium. The polarization direction of the light spot irradiated onto the recording medium is reversed (or transmitted) with a slight Kerr rotation depending on the magnetization state (recording state) of the medium. The light beam reflected from the medium is returned to a parallel light beam by the objective lens 6. The light reflected from this medium is reflected by the beam splitter 5 as a part of the P-polarized light component and all of the S-polarized light component, and its optical path is bent at right angles to the wavelength plate 8 . Here, a quarter-wave plate, for example, is used as the wavelength plate, and the light exiting the quarter-wave plate 8 is converged by a condenser lens 9 and split into two directions by a wedge prism 10. At this time, the light beam exiting the quarter-wave plate becomes approximately circularly polarized light having a phase difference according to the magnetization information of the recording pit array. The axis of division by this wedge prism 10 is perpendicular to the track direction (jitter direction) scanned by the light beam, and is located at the center of the light beam. Next, the light beams that are divided into two directions and directed to convergence are each polarized and separated into two directions with an aperture angle by a Wollaston prism 11, for example. Note that the light beams separated by the Wallaston prism 11 have a characteristic that the main axes of polarization are in polarization directions perpendicular to each other and have equal intensities, and are separated in a direction spatially perpendicular to the dividing direction by the wedge prism. will be placed in At this time, the number of light beams after polarization division becomes four. The four beams separated by the Wallaston prism 10 enter a four-part detector 12 that receives each beam.

第4図には本発明に係る4分割光検出器の例を示す。そ
れぞれの受光部分A、 B、 C,Dにはウェッジプリ
ズム、ウオーラストンプリズムによって分割された平均
光量分布が示されている。4分割光検出器12の軸線1
.2は媒体進行方向(ジッタ方向)とトラック方向に垂
直な方向(軸線2)に対して設置されており、それぞれ
の入射光強度に比例した電流を出力する構成である。
FIG. 4 shows an example of a four-split photodetector according to the present invention. In each of the light receiving portions A, B, C, and D, the average light amount distribution divided by the wedge prism and the Wollaston prism is shown. Axis 1 of 4-split photodetector 12
.. 2 is installed in a direction (axis 2) perpendicular to the medium traveling direction (jitter direction) and the track direction, and is configured to output a current proportional to the intensity of each incident light.

第3図は本発明に係る再生の原理を説明するための図で
ある。ここで媒体は情報記録部P(記録ピット)では媒
体表面に垂直で一方向に磁化されており、非記録部Nは
その逆方向に磁化されている。記録ピット前縁に読み出
し用のビーム15が照射された場合、照射部が記録ピッ
)P側と非記録部N側とで検光子を通過した後の、空間
的な光量分布が異なることになる。すなわち、記録ピッ
トPと非記録Nとでは磁化方向が180度異むつ、カー
回転各±θ、を有しているため反射光は4分の1波長板
を通過した後、位相差がカー回転角分具なった概略円偏
光となる。数式で説明すると、非記録部Nでの反射光の
振幅Φは φ=exp[−j(ωt−a)]/v′r、、、、、、
、、、 (1)で表される。ここで、ωは光の角周波数
、αは4分の1波長板の常光偏光方向に対する相対方位
である。
FIG. 3 is a diagram for explaining the principle of reproduction according to the present invention. Here, the medium is magnetized in one direction perpendicular to the medium surface in the information recording part P (recording pit), and the non-recording part N is magnetized in the opposite direction. When the leading edge of the recording pit is irradiated with the readout beam 15, the spatial light intensity distribution after passing through the analyzer will be different between the irradiated part (the recording pit) P side and the non-recorded part N side. . In other words, the magnetization directions of the recording pit P and the non-recording pit N are different by 180 degrees, and the Kerr rotation is ±θ, so after the reflected light passes through the quarter-wave plate, the phase difference is caused by the Kerr rotation. The light becomes roughly circularly polarized. To explain it mathematically, the amplitude Φ of the reflected light at the non-recording area N is φ=exp[-j(ωt-a)]/v'r, , , ,
,,, It is expressed as (1). Here, ω is the angular frequency of light, and α is the relative orientation of the quarter-wave plate with respect to the ordinary light polarization direction.

一方、記録ピッ)Pでの反射光の振幅φはφ= exp
(ja)[(cos(a−θ)−sin(a−θ))e
xp(jωt)+(cos(a−θ) −5in(a−
θ))exp(−jωを月72  、、、、  (2)
となる。ここでθはカー回転角θ、である。
On the other hand, the amplitude φ of the reflected light at recording pitch P is φ=exp
(ja) [(cos(a-θ)-sin(a-θ))e
xp(jωt)+(cos(a-θ)-5in(a-
θ)) exp(-jω to month 72, ,,, (2)
becomes. Here, θ is the Kerr rotation angle θ.

式(1)、(2)とも左回りの円偏光になることが分か
る。したがって、記録ピッ)Pと非記録部Nとの境界(
ピットエツジ)に再生ビームが照射されたとき、反射光
の偏光状態は媒体進行方向(ジッタ方向)に対して空間
的に2分された状態となる。もちろんこのとき、記録ピ
ット列が見かけ上、位相回折格子と同様に考えられるた
め、回折現象が生ずるが微小であるため無視できる。
It can be seen that both equations (1) and (2) result in counterclockwise circularly polarized light. Therefore, the boundary (
When a reproduction beam is irradiated onto the pit edge, the polarization state of the reflected light is spatially divided into two with respect to the medium traveling direction (jitter direction). Of course, at this time, since the recording pit array is apparently considered similar to a phase diffraction grating, a diffraction phenomenon occurs, but it is minute and can be ignored.

この位相差の異なるそれぞれの円偏光がウオーラストン
プリズムを通過すると偏光成分の主軸が90度度異る2
方向に偏光分離される。このとき、偏光分離の方向はジ
ッタ方向と垂直な方向に設定しておく。
When circularly polarized light with different phase differences passes through the Wollaston prism, the principal axes of the polarized light components differ by 90 degrees2.
The polarization is separated in the direction. At this time, the direction of polarization separation is set perpendicular to the jitter direction.

この2方向に偏光分離された振幅成分のうちS偏光成分
に対する振幅成分は、非記録部NでE =exp[j(
a−n/4)lcos(ωt−a)/v’r 、、、、
、、、、、 (3)S と表される。一方、記録ピットPでは E =exp[j(a−n/4)lcos(ωt−a+
θ)lゾr、、、、、、 (4)同様に、P偏光成分に
対しては非記録部NでE  =expi(a+n/4)
lcos(ωt+a)/V’2’  、、、、、、、、
  (5)p となる。一方、記録ピットPでは E=exp[j(a+n/4)lcos(ωt+a−θ
)/v’;’ 、、、、、 (6)p となる。
Among the amplitude components polarized in these two directions, the amplitude component for the S-polarized component is E = exp[j(
a-n/4) l cos(ωt-a)/v'r ,,,
, , , (3) It is expressed as S. On the other hand, in the recording pit P, E =exp[j(a-n/4)lcos(ωt-a+
(4) Similarly, for the P-polarized component, E = expi (a+n/4) in the non-recording area N.
lcos(ωt+a)/V'2' , , , , , ,
(5) It becomes p. On the other hand, in the recording pit P, E=exp[j(a+n/4)lcos(ωt+a−θ
)/v';' ,,,, (6) p.

これらのことより、S偏光に対しては記録ピットPから
の反射光成分Eは非記録部Nからの反射光酸s 分Eより位相がθだけ進むことが分かる。一方、P偏光
に対しては記録ピッ)Pからの反射光成分Eppは非記
録部Nからの反射光成分E より位相がθだけp 遅れることが分かる。
From these facts, it can be seen that for S-polarized light, the reflected light component E from the recording pit P leads the phase of the reflected light component E from the non-recorded portion N by θ by θ. On the other hand, for P-polarized light, it can be seen that the reflected light component Epp from the recording area P is delayed in phase by θ from the reflected light component E from the non-recording area N.

このように、記録ピットPと非記録部Nでの反射光には
カー回転角02分だけ位相差が生ずることになり、ピッ
トエツジでは反射光ファーフィールドにおいてジッタ方
向の前後方向に光強度の変化を生ずることになる。よっ
て、前述したようにウェッジプリズムによってファーフ
ィールド上でジッタ方向に分割してS偏光成分、P偏光
成分のそれぞれに対して光強度の変化を捕らえることで
、記録された情報を検出することが可能となる。
In this way, a phase difference occurs between the reflected light at the recorded pit P and the non-recorded area N by the Kerr rotation angle 02, and at the pit edge, the change in light intensity in the front and back direction of the jitter direction is caused in the far field of the reflected light. will occur. Therefore, as mentioned above, recorded information can be detected by dividing the light in the jitter direction in the far field using a wedge prism and capturing changes in the light intensity for each of the S-polarized light component and the P-polarized light component. becomes.

第5図には本発明に係る信号処理系13の構成例を示す
。同図(a)では4分割光検出器の受光部AとBが例え
ばP偏光成分のジッタ方向の光強度変化を検出するよう
に差動増幅器17を設け、S偏光成分のジッタ方向の光
強度変化を検出するように差動増幅器18を設ける。そ
こで、各差動増幅器の出力A−B、C−Dから差動増幅
器19を用いて記録ピットのエツジ情報を出力すること
ができる。このことは結果的に(A+D)−(B+C)
と等価であるため同図(b)に示すように光検出器出力
の段階でAとり、 BとCの和算を行い差動増幅器20
により記録ピットのエツジ情報を出力する構成でも実現
できる。また、更にプリフォーマット信号を検出するた
め加算回路21を付加してもよい。
FIG. 5 shows an example of the configuration of the signal processing system 13 according to the present invention. In the same figure (a), a differential amplifier 17 is installed so that the light receiving parts A and B of the 4-split photodetector detect a change in light intensity in the jitter direction of the P polarization component, and the light intensity in the jitter direction of the S polarization component is A differential amplifier 18 is provided to detect the change. Therefore, the edge information of the recording pit can be output using the differential amplifier 19 from the outputs A-B and CD of each differential amplifier. This results in (A+D)-(B+C)
Since it is equivalent to
This can also be realized with a configuration that outputs edge information of recording pits. Furthermore, an adder circuit 21 may be added to further detect the preformat signal.

一方ここで、従来の差動型検出と同様な信号を得るには
(A+B)−(C+D)の演算をすれば良いことが容易
に分かる。
On the other hand, it is easy to see that in order to obtain a signal similar to that of conventional differential detection, it is sufficient to perform the calculation of (A+B)-(C+D).

第6図には本発明に係る動作説明の図を示す。前述した
強度差信号(A −B)は再生ビーム15が記録ピット
の前縁を走査するとき正のピークを生じ記録ピットの後
縁では負のピークを生じる。一方、強度差信号(C−D
)は前記強度差信号(A−B)とは位相が180度異む
つ、記録ピットの前縁で負のピークを生じ記録ピットの
後縁では正のピークを生じる。差動増幅器19はこれら
2つの強度差信号の差動増幅を行い情報信号を算出し読
み出し信号(A+D)−(B十〇)として出力する。
FIG. 6 shows a diagram for explaining the operation according to the present invention. The above-mentioned intensity difference signal (A-B) has a positive peak when the reproduction beam 15 scans the leading edge of the recording pit, and a negative peak at the trailing edge of the recording pit. On the other hand, the intensity difference signal (C-D
) has a phase difference of 180 degrees from the intensity difference signal (A-B), and has a negative peak at the leading edge of the recorded pit and a positive peak at the trailing edge of the recorded pit. The differential amplifier 19 differentially amplifies these two intensity difference signals, calculates an information signal, and outputs it as a read signal (A+D)-(B10).

上記のように、記録ピットの光学的な微分検出が可能で
あるため記録ピットの前線、後縁において強度差信号が
逆の極性を有するから基本的に直流成分が含まれず、し
たがって低周波までの正確な増幅を行う必要が無い。ま
た、記録ピット以外の媒体面の微小な凹凸、反射率変動
、レーザ光の強度分布変動などによる反射光のジッタ方
向の強度変化は、光検出部A、 BとC,Dに入射する
光束の両方に同様に現れるため、強度差信号(A−B)
と(C−D)に対しては同相ノイズとして現れる。読み
出し信号(A+D)−(B+C)は強度差信号の差動増
幅を行うため互いに消し合うことになりノイズが除去さ
れる。従って、読み出し信号には記録ピットの情報のみ
が正確に再生され、他の要因による影響(雑音)は極め
て小さく抑えられる。このように、差動増幅器20によ
り出力された読み出し信号(A 十D)−(B+C)に
より、例えば再生クロックとのタイミング関係から記録
ピットのエツジ情報検出を正確にしかも容易に行なうこ
とが可能である。
As mentioned above, optical differential detection of recorded pits is possible, and since the intensity difference signal has opposite polarity at the front and trailing edges of recorded pits, it basically does not contain a DC component, and therefore detects up to low frequencies. There is no need to perform accurate amplification. In addition, changes in the intensity of the reflected light in the jitter direction due to minute irregularities on the medium surface other than the recording pits, changes in reflectance, changes in the intensity distribution of the laser beam, etc., cause changes in the light flux incident on the photodetectors A, B, C, and D. Since it appears similarly in both, the intensity difference signal (A-B)
and (CD) appear as in-mode noise. Since the readout signals (A+D)-(B+C) perform differential amplification of the intensity difference signal, they cancel each other out and noise is removed. Therefore, only the information of the recorded pits is accurately reproduced in the read signal, and the influence (noise) caused by other factors is suppressed to an extremely low level. In this way, by using the read signal (A + D) - (B + C) outputted by the differential amplifier 20, it is possible to accurately and easily detect the edge information of the recorded pit from the timing relationship with the reproduction clock, for example. be.

第2図には本発明の第2の実施例を示す。第1の実施例
ではウェッジプリズムとウオーラストンプリズムの組合
せで光束を4分割していた。そこで、例えばウェッジプ
リズム自体にウオーラストンプリズムのような複像素子
の効果をもたせて、部品点数を削減したものである。
FIG. 2 shows a second embodiment of the invention. In the first embodiment, the light beam is divided into four parts by a combination of a wedge prism and a Wollaston prism. Therefore, for example, the number of parts is reduced by giving the wedge prism itself the effect of a double-image element such as a Wallaston prism.

以上本発明例では、振幅分割の後に偏光分割を行う構成
であるが偏光分割後に振幅分割する構成にしても同様な
効果を得ることができる。また、本発明例では基本的な
光学系例を示したが光学素子や光磁気記録媒体で生じる
リターデーションの影響を位相補償の効果を有する位相
補償板を4分の1波長板の前に挿入する構成にしてもよ
い。位相補償板の例としては2分の1波長板などが考え
られる。また、本発明では4分の1波長板によってカー
回転角分の位相差を有する概略円偏光化してプッシュプ
ル差動検出を行っているが、2分の1波長板によって概
略直線偏光のままプッシュプル差動検出を行ってもよい
。この場合にも位相補償板として例えば4分の1波長板
などを2分の1波長板の前に挿入する構成にしてもよい
。また本発明では光磁気記録媒体からの反射光を用いて
情報信号を検出する構成であるが光磁気記録媒体の透過
光を用いる構成にしてもよい。また、本発明では検光子
としてウオーラストンプリズムを用いているが、他の複
像素子、例えばサバール板やローションプリズムなどを
用いても同様な効果を得ることができる。
In the above example of the present invention, the polarization division is performed after the amplitude division, but the same effect can be obtained even if the amplitude division is performed after the polarization division. In addition, in the example of the present invention, a basic optical system example is shown, but a phase compensating plate that has the effect of phase compensating for the effects of retardation occurring in optical elements and magneto-optical recording media is inserted in front of the quarter-wave plate. It may be configured to do so. As an example of the phase compensation plate, a 1/2 wavelength plate can be considered. In addition, in the present invention, push-pull differential detection is performed by converting the light into approximately circularly polarized light with a phase difference equivalent to the Kerr rotation angle using the quarter-wave plate, but with the half-wave plate, the polarized light is pushed while remaining approximately linearly polarized. Pull differential detection may also be performed. In this case as well, a configuration may be adopted in which, for example, a quarter-wave plate or the like is inserted in front of the half-wave plate as a phase compensation plate. Further, in the present invention, the information signal is detected using the reflected light from the magneto-optical recording medium, but it may be configured to use the transmitted light of the magneto-optical recording medium. Further, in the present invention, a Wollaston prism is used as an analyzer, but similar effects can be obtained by using other double-image elements such as a Savart plate or a Rochon prism.

(発明の効果) 以上説明したように本発明の光磁気ディスク装置は、記
録ピット列以外の媒体面の微小な凹凸、反射率変動、レ
ーザ光の強度分布変動などによる反射光の前後方向の強
度変化などの同相ノイズは、互いに消し合い除去される
効果がある。さらに、読み出し信号には記録ピットの情
報のみが正確に再生され、他の要因による影響(雑音)
はきわめて小さく抑えられる。また、記録ピットの前縁
、後縁において強度差信号か逆の極性を有するから基本
的に直流成分が含まれず、したがって低周波までの正確
な増幅を行う信号増幅が不要となる効果もある。
(Effects of the Invention) As explained above, the magneto-optical disk device of the present invention has an advantage in that the strength of the reflected light in the front and back direction is caused by minute irregularities on the medium surface other than the recording pit array, reflectance fluctuations, laser beam intensity distribution fluctuations, etc. Common mode noises such as changes have the effect of canceling each other out. Furthermore, only the information of the recorded pits is accurately reproduced in the readout signal, and there is no influence (noise) caused by other factors.
can be kept extremely small. Furthermore, since the intensity difference signal has opposite polarity at the leading edge and trailing edge of the recording pit, basically no direct current component is included, so there is an effect that signal amplification for accurate amplification up to low frequencies is not required.

そのため、記録ピットのエツジ情報が検出できるため記
録密度を従来の2倍以上に高く設定できるといった効果
がある。
Therefore, since edge information of recording pits can be detected, there is an effect that the recording density can be set more than twice as high as that of the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光デイスク装置の第一の実施例を示す
図、第2図は、本発明の光磁気ディスク装置の第二の実
施例を示す図、第3図は本発明に係る光磁気検出の原理
を説明するための図、第4図は本発明に係る光検出器の
構成例を説明するための図、第5図は本発明に係る信号
処理系の構成例を説明する図、第6図は本発明に係る動
作説明をするための図、第7図は従来装置例を説明する
ための図である。 1・・・半導体レーザ、2・・・コリメータレンズ、3
・・・官−ム整形プリズム、4,5・・・ビームスプリ
ッタ、6・・・対物レンズ、7・・・光磁気ディスク、
8・・・4分の1波長板、9・・・集光レンズ、10・
・・ウェッジプリズム、11・・・複像素子、12・・
・4分割光検出器、13・・・信号処理系、16・・・
複合素子。
FIG. 1 is a diagram showing a first embodiment of the optical disk device of the present invention, FIG. 2 is a diagram showing a second embodiment of the magneto-optical disk device of the present invention, and FIG. 3 is a diagram showing a second embodiment of the optical disk device of the present invention. FIG. 4 is a diagram for explaining the principle of magneto-optical detection, FIG. 4 is a diagram for explaining a configuration example of a photodetector according to the present invention, and FIG. 5 is a diagram for explaining a configuration example of a signal processing system according to the present invention. 6 are diagrams for explaining the operation according to the present invention, and FIG. 7 is a diagram for explaining an example of a conventional device. 1... Semiconductor laser, 2... Collimator lens, 3
...Gun-shaping prism, 4, 5... Beam splitter, 6... Objective lens, 7... Magneto-optical disk,
8... Quarter wavelength plate, 9... Condensing lens, 10...
...Wedge prism, 11...Double image element, 12...
・4-split photodetector, 13...signal processing system, 16...
Composite element.

Claims (1)

【特許請求の範囲】[Claims] レーザを光源とし磁気光学的なピット列を用いて情報の
記録再生を行う光磁気ディスク装置であって、前記ピッ
ト列からの反射光または透過光の一部を反射するビーム
スプリッタと、前記ビームスプリッタから反射された光
束の光路に配置した波長板と、前記波長板を通過した偏
光光束を集光する集光レンズと、前記集光レンズにより
集光される光路中に前記記録ピットのジッタ方向に対応
して2方向に振幅分割するウェッジプリズムと、該ウェ
ッジプリズムにより2分割された光束の各々を前記ジッ
タ方向と垂直な方向に微小な開き角もしくは平行な開き
で偏光分割する複像素子からなる検光子とを配し、前記
ウェッジプリズムと前記複像素子とにより分離された四
つの光束のそれぞれを前記集光レンズの集光位置で受光
する四つの受光部からなる4分割検出器と、前記4分割
光検出器の各々の受光部からの出力信号の差と和信号を
取り出す回路手段とを有することを特徴とする光磁気デ
ィスク装置。
A magneto-optical disk device that uses a laser as a light source to record and reproduce information using a magneto-optical pit string, the device comprising: a beam splitter that reflects part of the reflected light or transmitted light from the pit string; and the beam splitter. a wavelength plate disposed in the optical path of the light beam reflected from the wave plate; a condenser lens that condenses the polarized light beam that has passed through the wave plate; It consists of a wedge prism that splits the amplitude in two directions correspondingly, and a double image element that splits the polarization of each of the light beams split into two by the wedge prism at a minute aperture angle or a parallel aperture in a direction perpendicular to the jitter direction. a 4-split detector comprising four light receiving sections each receiving the four light beams separated by the wedge prism and the double image element at the focusing position of the focusing lens; 1. A magneto-optical disk device comprising circuit means for extracting a difference and a sum signal of output signals from each light receiving section of a four-part photodetector.
JP1001834A 1989-01-06 1989-01-06 Magneto-optical disk device Expired - Fee Related JP2551129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1001834A JP2551129B2 (en) 1989-01-06 1989-01-06 Magneto-optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1001834A JP2551129B2 (en) 1989-01-06 1989-01-06 Magneto-optical disk device

Publications (2)

Publication Number Publication Date
JPH02183452A true JPH02183452A (en) 1990-07-18
JP2551129B2 JP2551129B2 (en) 1996-11-06

Family

ID=11512587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1001834A Expired - Fee Related JP2551129B2 (en) 1989-01-06 1989-01-06 Magneto-optical disk device

Country Status (1)

Country Link
JP (1) JP2551129B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539128A2 (en) * 1991-10-22 1993-04-28 Canon Kabushiki Kaisha Plural-beam optical head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292147A (en) * 1985-10-17 1987-04-27 Nec Corp Photomagnetic recording and reproducing device
JPS6350942A (en) * 1986-08-19 1988-03-03 Mitsubishi Electric Corp Magneto-optical recording and reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6292147A (en) * 1985-10-17 1987-04-27 Nec Corp Photomagnetic recording and reproducing device
JPS6350942A (en) * 1986-08-19 1988-03-03 Mitsubishi Electric Corp Magneto-optical recording and reproducing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0539128A2 (en) * 1991-10-22 1993-04-28 Canon Kabushiki Kaisha Plural-beam optical head

Also Published As

Publication number Publication date
JP2551129B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
US5105399A (en) Magneto-optical means for reading disks by comparing signals at leading and trailing edges of laser beam
JPH0778916B2 (en) Magneto-optical information reproducing device
JP3594594B2 (en) Optical scanning device
JP3626003B2 (en) Optical information storage device
US4682316A (en) Optical information processing apparatus for light beam focus detection and control
JPH034976B2 (en)
JPH11176019A (en) Optical information storage device
US5777974A (en) Optical head and magneto-optical reproducing apparatus using the same
JPH08306091A (en) Optical head
JP2551129B2 (en) Magneto-optical disk device
JPH03104041A (en) Magneto-optical disk device
JPH02192053A (en) Magneto-optical disk device
JPS62188047A (en) Photomagnetic disk device
JP2574915B2 (en) Optical device for reproducing magneto-optical recording media
JPS63247938A (en) Magneto-optical recording and reproducing head
JP3211483B2 (en) Optical pickup device
JP2862024B2 (en) Magneto-optical signal reproducing device
JP3095194B2 (en) Magneto-optical information reproducing device
JPS63200346A (en) Magneto-optical recording and reproducing head
JPH02192042A (en) Optical disk device
JPS60157745A (en) Photomagnetic recorder
JPS63157341A (en) Magneto-optical recording/reproducing head
JPS63187442A (en) Magneto-optical disk device
JPH05274684A (en) Optical information recording and reproducing device
JPS6292246A (en) Optical pickup

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees