JPH0218332B2 - - Google Patents

Info

Publication number
JPH0218332B2
JPH0218332B2 JP12259782A JP12259782A JPH0218332B2 JP H0218332 B2 JPH0218332 B2 JP H0218332B2 JP 12259782 A JP12259782 A JP 12259782A JP 12259782 A JP12259782 A JP 12259782A JP H0218332 B2 JPH0218332 B2 JP H0218332B2
Authority
JP
Japan
Prior art keywords
polycarbonate resin
phosphite
test
phosphorous acid
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12259782A
Other languages
Japanese (ja)
Other versions
JPS5912961A (en
Inventor
Susumu Tanyama
Michihiro Kishimoto
Yutaka Kojima
Kimihisa Iwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP12259782A priority Critical patent/JPS5912961A/en
Publication of JPS5912961A publication Critical patent/JPS5912961A/en
Publication of JPH0218332B2 publication Critical patent/JPH0218332B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高温での成形に際しての着色劣化が
極めて効果的に抑制される熱安定化ポリカーボネ
ート樹脂組成物に関する。更に詳しくは、芳香族
ポリカーボネート樹脂に2〜20ppmの亜りん酸と
50〜300ppmのトリ−(2,6−ジ−t−ブチルフ
エニル)ホスフアイトとを添加してなる高温成形
時の着色劣化が極めて効果的に抑制される熱に安
定なポリカーボネート樹脂組成物に関し、当該組
成物を用いて得られた成形品は耐熱水性にすぐ
れ、且つ機械的強度の低下が全くない。 芳香族ポリカーボネート樹脂は、透明で、耐熱
性および耐衝撃性に優れているため、種々の用途
に幅広く使用されている有用な樹脂であるが、溶
融時の粘度が高いため、大型の成形品や、厚みの
薄い成形品を成形することが困難である。このた
め、芳香族ポリカーボネート樹脂では300℃以上
というより高い温度での成形が最近では行なわれ
ており、このような高い温度での成形、特に、長
時間の連続成形において、芳香族ポリカーボネー
ト樹脂は、成形機シリンダー内部の滞留部での熱
分解による着色劣化をしばしば起し、実用上問題
となる。滞留部での熱分解は、単に熱による分解
ではなくて、溶融樹脂が接触する金属による何ら
かの作用が熱分解を助長すると考えられるが、い
ずれにしても、かかる現象は、製品の歩留りの低
下や商品価値の著しい低下を惹起する。 ポリカーボネート樹脂の成形に際してのかかる
着色劣化を防ぐ方法は、従来から種々提唱されて
おり、例えば特公昭36−3596号公報に開示されて
いる亜りん酸又はトリフエニルホスフアイトのよ
うなりん系化合物を安定化剤とし用いることがよ
く行なわれる。しかしながら、亜りん酸あるいは
有機の亜りん酸エステルは確かにポリカーボネー
ト樹脂の着色劣化を防止する効果があるが、所望
の充分な効果を発揮させるためには、亜りん酸の
場合には、少くとも200ppm以上の量を添加する
必要があり、成形時に成形品の内部に気泡が発生
したり、成形品を水蒸気に曝露すると成形品が著
しく白濁し、分子量低下並びに機械的強度の低下
といつた欠陥は避け難い。特公昭56−25950号公
報には、かかる亜りん酸あるいは有機の亜りん酸
エステルの使用に伴う欠点をアルカリ金属ハロゲ
ン化物とともに配合することにより解消する試み
が提案されている。しかし、アルカリ金属ハロゲ
ン化物のごとき無機の塩を相当量ポリカーボネー
ト樹脂に混入した場合、ポリカーボネート樹脂の
透明性が損なわれ、光学的用途に対してはその商
品価値が著しく低下する。 本発明者らは、かかる亜りん酸または有機の亜
りん酸エステルを配合した場合の欠点を解消すべ
く鋭意研究の結果、極く微量の亜りん酸と少量の
トリ−(2,6−ジ−t−ブチルフエニル)ホス
フアイトを併用することによつて、相剰効果によ
る予想外の卓越した安定化効果が発揮されること
を見出した。ここで得られる熱安定化されるポリ
カーボネート樹脂組成物から成形される成形品の
透明性および機械的強度は全く損なわれず、且つ
成形品中には気泡の発明もなく、さらには、例え
ば120℃の水蒸気に長時間曝露しても、成形品に
は白濁が全く見られず、極めてすぐれた熱安定化
効果が奏されることが判つた。 本発明でいうポリカーボネート樹脂とは、一般
式()で表わされる二価のフエノール化合物と
カーボネート前駆体、たとえばホスゲンとの反応
によつて得られる芳香族ポリカーボネートの単独
重合体および共重合体を言う。 一般式 (式中、R1、R2、R3およびR4は、水素原子、低
級アルキル基またはハロゲン原子であつて、全て
が同一であつても、それぞれが異なつていてもよ
く、またYは、アルキレン、エーテル(−O−)、
チオエーテル(−S−)またはスルホン
The present invention relates to a heat-stabilized polycarbonate resin composition in which color deterioration during molding at high temperatures is extremely effectively suppressed. More specifically, aromatic polycarbonate resin is mixed with 2 to 20 ppm of phosphorous acid.
50 to 300 ppm of tri-(2,6-di-t-butylphenyl) phosphite is added to a heat-stable polycarbonate resin composition in which color deterioration during high-temperature molding is extremely effectively suppressed. The molded articles obtained using this product have excellent hot water resistance and have no decrease in mechanical strength. Aromatic polycarbonate resin is transparent and has excellent heat resistance and impact resistance, so it is a useful resin that is widely used in a variety of applications. , it is difficult to mold thin molded products. For this reason, aromatic polycarbonate resins have recently been molded at temperatures as high as 300°C or higher. Coloring often deteriorates due to thermal decomposition in the retention area inside the cylinder of the molding machine, which poses a practical problem. Thermal decomposition in the retention zone is not simply caused by heat, but is thought to be promoted by some kind of action by the metal that the molten resin comes into contact with. This causes a significant decrease in product value. Various methods have been proposed to prevent such color deterioration during molding of polycarbonate resins. It is often used as a stabilizer. However, although phosphorous acid or organic phosphite esters are certainly effective in preventing color deterioration of polycarbonate resin, in the case of phosphorous acid, at least It is necessary to add an amount of 200 ppm or more, and defects such as air bubbles occurring inside the molded product during molding, and the molded product becoming extremely cloudy when exposed to water vapor, resulting in a decrease in molecular weight and mechanical strength. is difficult to avoid. Japanese Patent Publication No. 56-25950 proposes an attempt to overcome the drawbacks associated with the use of phosphorous acid or organic phosphorous esters by blending them with alkali metal halides. However, when a considerable amount of an inorganic salt such as an alkali metal halide is mixed into a polycarbonate resin, the transparency of the polycarbonate resin is impaired, and its commercial value for optical applications is significantly reduced. The present inventors have conducted extensive research to resolve the drawbacks of blending such phosphorous acid or organic phosphite esters, and have found that a very small amount of phosphorous acid and a small amount of tri-(2,6-di- It has been found that by using -t-butylphenyl) phosphite in combination, an unexpectedly excellent stabilizing effect is exhibited due to a mutual effect. The transparency and mechanical strength of the molded product molded from the heat-stabilized polycarbonate resin composition obtained here are not impaired at all, and there are no bubbles in the molded product. Even when exposed to water vapor for a long period of time, the molded product showed no clouding at all, indicating that it had an extremely excellent thermal stabilizing effect. The polycarbonate resin as used in the present invention refers to aromatic polycarbonate homopolymers and copolymers obtained by reacting a divalent phenol compound represented by the general formula () with a carbonate precursor, such as phosgene. general formula (In the formula, R 1 , R 2 , R 3 and R 4 are hydrogen atoms, lower alkyl groups or halogen atoms, and may be all the same or different, and Y is , alkylene, ether (-O-),
thioether (-S-) or sulfone

【式】である橋架け部を意味する。) この二価のフエノール化合物としては、具体的
には、2,2−ビス(4−ハイドロキシフエニ
ル)プロパン、2,2−(4−ハイドロシキフエ
ニル)メタン、4,4′−ジヒドロキシジフエニル
チオエーテル、4,4′−ジヒドロキシジフエニル
スルホン、4,4′−ジヒドロキシジフエニルエー
テル、2,2−ビス(3,5−ジブロム−4−ハ
イドロキシフエニル)プロパン、2,2−ビス
(3,5−ジクロル−4−ハイドロキシフエニル)
プロパン、2,2−ビス(3,5−ジメチル−4
−ハイドロキシフエニル)プロパン等を挙げるこ
とができる。 本発明の熱に安定なポリカーボネート樹脂組成
物は、前述のごとく、特定の二種の化合物を特定
された範囲の量でポリカーボネート樹脂に配合す
ることによつて得られるのであるが、これらの二
者の組合せとその配合量の規定は、極めて特異的
であつて、たとえばトリ−(ジ−t−ブチルフエ
ニル)ホスフアイトは有機の亜りん酸エステルの
範疇に属する化合物であるが、同じ範疇に属する
化合物であるトリフエニルホスフアイトを用いた
場合には本発明の組成物におけると同等の効果は
得られない。各化合物の配合量は、ポリカーボネ
ート樹脂に亜りん酸については2〜20ppmそして
トリ−(ジ−t−ブチルフエニル)ホスフアイト
については50〜300ppmの範囲で定められる(い
ずれも重量基準)が、それぞれ下限以下の量を用
いた場合には所望の安定化効果が達成されず、上
限以上の量を用いた場合、亜りん酸とホスフアイ
トについては過熱水蒸気との接触による白濁化現
象が、安定化剤を添加しないポリカーボネート樹
脂の場合より大きく現われる傾向にあり、実用上
好ましくない。本発明における組合わされた安定
剤と配合量規定については後に実施例で具体的に
説明する。 本発明のポリカーボネート樹脂組成物を調製す
る方法については特に制限はなく、例えば、ポリ
カーボネート樹脂を溶融状態から粒状もしくは粉
体状にする際に樹脂溶液に上記組合わされた安定
剤を混入、混練せしめるか、ポリカーボネート樹
脂の粒状体または粉状体にドライブレンド法で混
合してもよく、ドライブレンドの際微量で用いる
亜りん酸を予め少量の水に溶解して用いてもよ
い。 本発明のポリカーボネート樹脂組成物には、所
望に応じて充填剤、染顔料、繊維補強材、酸化防
止剤、紫外線吸収剤、離型剤等各種添加剤を選択
して配合することができる。 以下に実施例および比較例によつて、本発明を
具体的に説明するが、後掲表1の結果に見られる
ごとく、本発明で使用するトリ−(ジ−t−ブチ
ルフエニル)ホスフアイトは、トリフエニルホス
フアイトの場合と異なり、それ単独では安定化効
果は乏しいが、水蒸気曝露での白濁現象とか成形
時の成形品中の気泡発生に対しては、極めて高い
抵抗性をもつことが判る。このことは、この亜り
ん酸エステルがその構造上、加水分解や熱に対し
て強いことが寄与しているものと考えられる。本
発明は、加水分解や熱に対して高い抵抗性を持つ
が、ポリカーボネート樹脂に対して安定化効果の
乏しいトリ−(ジ−t−ブチルフエニル)ホスフ
アイトと、極微量の、すなわち、充分な安定化効
果を発揮するには不足であるがポリカーボネート
樹脂の水蒸気曝露での白濁は生じない程度の量の
亜りん酸とを併用することにより、性能上の均衡
がとれ、かつ、極めて高い安定化効果を発揮する
安定化剤を見い出したものである。 実施例1および比較例1〜5 2,2−ビス(4−ヒドロキシフエニル)ペロ
パンとホスゲンとから界面重縮合法によつて得た
ポリカーボネート樹脂〔三菱瓦斯化学(株)製、商品
味「ユーピロンS2000」〕の粉末に、樹脂の重量
に対して10ppmとなる量の亜りん酸を少量の水に
溶解した水溶液と、樹脂に対して重量で300ppm
となる量のトリ−(ジ−t−ブチルフエニル)ホ
スフアイトを加え、混合機により十分に混合し
た。得られた粉末を40φスクリユー押出し機を用
いて溶融押出しし、2mm角の立方体ペレツトとし
た。 このペレツト4gを、試験管に入れ、120℃の
雰囲気で窒素を送り込みながら1時間をかけて乾
燥した後、窒素気流中で340℃の温度で1時間の
溶融試験を実施した。別に、成形機中での金属面
との接触を想定して、樹脂容融体と接触するよう
にSUS316製も200メツシユの金網の小片を試験
管に入れ、上記と同じ手法で340℃での溶融試験
を実施した。溶融試験終了後、試験管内の樹脂を
25c.c.の塩化メチレンに溶解し、溶液の色相を白金
コバルト色度標準液の目視により比較し、
APHA値として測定した。 次いで、上記ペレツトを用い、射出成形により
厚さ3.2mmの板状の成形品を得た。これをオート
クレーブ中で120℃の水蒸気に100時間曝らした。
試験後、ベーズメーターにより霞度を測定した。 これらの測定結果は表1に示す。 さらに、上記水蒸気処理試験後の試料につき粘
度平均分子量を測定したところ、安定化剤を添加
していないもの(ブランク)は試験前2.2×104
試験後2.1×104であるのに対して、本発明の安定
化剤を添加したものは試験前2.2×104、試験後2.1
×104であつた。因みに、トリフエニルホスフア
イト300ppm添加した場合(比較例4)には、同
様の試験を行なつたところ、試験前の粘度平均分
子量が2.2×104であつたのが、試験後1.3×104
低下していることが判つた。 参考のために、ブランク試験(比較例1)並び
に亜りん酸単独(比較例2)および亜りん酸エス
テル単独(比較例3〜5)を配合して、上記と同
様に処理して測定した結果を表1に併記する。 表1から明らかなごとく、比較例2、3および
5ではブランク試験相当の著しい着色劣化が見ら
れ、いずれも安定化効果が達成されていないこと
が判る。また、比較例4では着色劣化は抑制され
ているものの水蒸気処理による白濁が著しいこと
が判る。これに対して、本願発明の安定剤系で
は、着色劣化に対してはトリフエニルフオスフア
イトと同等の効果を示すが、水蒸気処理による白
濁現象が顕著に防止されていることは驚くべき結
果と言える。 尚、表1には、上記ペレツトから樹脂温度300
℃で射出成形して1/4″×1/3″×6″の大きさの成形
品15本を得、当該成形品中に気泡が1個でも形成
されている成形品の数を分子に示して気泡発生率
を表わした結果を併記する。比較例3および4に
比べて、本願発明の組成物では気泡の発生が全く
見られない。
[Formula] means a bridging part. ) Specifically, examples of the divalent phenol compound include 2,2-bis(4-hydroxyphenyl)propane, 2,2-(4-hydroxyphenyl)methane, and 4,4'-dihydroxydiphenyl. enylthioether, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl ether, 2,2-bis(3,5-dibrom-4-hydroxyphenyl)propane, 2,2-bis(3 ,5-dichloro-4-hydroxyphenyl)
Propane, 2,2-bis(3,5-dimethyl-4
-hydroxyphenyl)propane and the like. As mentioned above, the heat-stable polycarbonate resin composition of the present invention can be obtained by blending two specific compounds in amounts within a specified range with a polycarbonate resin. The combination of these and their blending amounts are extremely specific; for example, tri-(di-t-butylphenyl) phosphite is a compound that belongs to the category of organic phosphite esters, but there are When certain triphenyl phosphites are used, the same effect as in the composition of the present invention cannot be obtained. The amount of each compound added to the polycarbonate resin is determined in the range of 2 to 20 ppm for phosphorous acid and 50 to 300 ppm for tri-(di-t-butylphenyl) phosphite (all based on weight), but each is below the lower limit. If the amount of phosphorous acid and phosphite is used, the desired stabilizing effect will not be achieved, and if the amount exceeds the upper limit, clouding phenomenon due to contact with superheated steam may occur for phosphorous acid and phosphite. This tends to be larger than in the case of polycarbonate resins that do not contain polycarbonate resins, which is not preferred in practice. The stabilizers used in combination in the present invention and the prescribed amounts will be specifically explained later in Examples. There are no particular limitations on the method for preparing the polycarbonate resin composition of the present invention. For example, when the polycarbonate resin is turned into granules or powder from a molten state, the above-mentioned combined stabilizer may be mixed into the resin solution and kneaded. It may be mixed into granular or powdered polycarbonate resin by a dry blending method, or the phosphorous acid used in a trace amount during dry blending may be dissolved in a small amount of water in advance. Various additives such as fillers, dyes and pigments, fiber reinforcing materials, antioxidants, ultraviolet absorbers, and mold release agents can be selected and blended into the polycarbonate resin composition of the present invention as desired. The present invention will be specifically explained below with reference to Examples and Comparative Examples. As seen in the results in Table 1 below, the tri-(di-t-butylphenyl) phosphite used in the present invention Unlike the case of phosphite, it has a poor stabilizing effect when used alone, but it is found to have extremely high resistance to clouding phenomena caused by exposure to water vapor and the generation of bubbles in molded products during molding. This is thought to be due to the fact that this phosphorous ester is resistant to hydrolysis and heat due to its structure. The present invention uses tri-(di-t-butylphenyl) phosphite, which has high resistance to hydrolysis and heat but has a poor stabilizing effect on polycarbonate resin, and a very small amount of tri-(di-t-butylphenyl) phosphite which has a sufficient stabilizing effect. By using phosphorous acid in an amount that is insufficient to be effective but does not cause clouding when exposed to water vapor, a balance in performance can be achieved and an extremely high stabilizing effect can be achieved. We have discovered a stabilizer that exhibits this effect. Example 1 and Comparative Examples 1 to 5 Polycarbonate resin obtained from 2,2-bis(4-hydroxyphenyl)peropane and phosgene by interfacial polycondensation method [manufactured by Mitsubishi Gas Chemical Co., Ltd., product flavor "Iupilon"] S2000] powder, an aqueous solution of phosphorous acid dissolved in a small amount of water in an amount of 10 ppm based on the weight of the resin, and 300 ppm based on the weight of the resin.
An amount of tri-(di-t-butylphenyl) phosphite was added and thoroughly mixed using a mixer. The obtained powder was melt-extruded using a 40φ screw extruder to form cubic pellets of 2 mm square. 4 g of the pellets were placed in a test tube and dried in an atmosphere of 120°C for 1 hour while supplying nitrogen, and then a melting test was conducted at 340°C for 1 hour in a nitrogen stream. Separately, assuming contact with the metal surface in the molding machine, a small piece of 200 mesh wire mesh made of SUS316 was placed in a test tube so that it would come into contact with the resin melt, and it was heated at 340℃ using the same method as above. A melting test was conducted. After completing the melting test, remove the resin in the test tube.
Dissolved in 25 c.c. of methylene chloride, and compared the hue of the solution by visual inspection with a platinum cobalt color standard solution.
It was measured as APHA value. Next, using the above pellets, a plate-shaped molded product with a thickness of 3.2 mm was obtained by injection molding. This was exposed to steam at 120°C for 100 hours in an autoclave.
After the test, the degree of haze was measured using a baize meter. The results of these measurements are shown in Table 1. Furthermore, when we measured the viscosity average molecular weight of the sample after the above steam treatment test, the one without the stabilizer (blank) was 2.2 × 10 4 before the test,
The concentration was 2.1×10 4 after the test, whereas the stabilizer of the present invention had a concentration of 2.2×10 4 before the test and 2.1 after the test.
It was ×10 4 . Incidentally, when 300 ppm of triphenyl phosphite was added (Comparative Example 4), a similar test was conducted, and the viscosity average molecular weight before the test was 2.2 x 10 4 but after the test it was 1.3 x 10 4 It was found that there was a decline in For reference, the results of a blank test (Comparative Example 1), phosphorous acid alone (Comparative Example 2), and phosphorous ester alone (Comparative Examples 3 to 5) were mixed and treated in the same manner as above. are also listed in Table 1. As is clear from Table 1, in Comparative Examples 2, 3, and 5, significant coloring deterioration equivalent to the blank test was observed, indicating that the stabilizing effect was not achieved in any of them. Furthermore, in Comparative Example 4, although coloring deterioration was suppressed, clouding due to steam treatment was significant. On the other hand, the stabilizer system of the present invention shows the same effect as triphenyl phosphite in terms of color deterioration, but it can be said to be a surprising result that the clouding phenomenon caused by steam treatment is significantly prevented. . In addition, Table 1 shows the resin temperature of 300°C from the above pellets.
15 molded products with a size of 1/4″ x 1/3″ x 6″ were obtained by injection molding at °C, and the number of molded products with at least one air bubble formed in the molded product was calculated as a numerator. The results showing the bubble generation rate are also shown.Compared to Comparative Examples 3 and 4, no bubble generation is observed in the composition of the present invention.

【表】 実施例 2〜4 表1に示される割合で二種の安定剤を用いる以
外は、実施例1と同じ操作で各種性質を測定し
た。 結果は表1に併記する。
[Table] Examples 2 to 4 Various properties were measured in the same manner as in Example 1, except that two types of stabilizers were used in the proportions shown in Table 1. The results are also listed in Table 1.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリカーボネート樹脂に2〜20ppm(重量)
の亜リン酸および50〜300ppm(重量)のトリ−
(2,6−ジ−t−ブチルフエニル)ホスフアイ
トを添加してなる高度に着色劣化が防止される熱
に安定なポリカーボネート樹脂組成物。
1 2 to 20 ppm (weight) to polycarbonate resin
of phosphorous acid and 50-300 ppm (by weight) of tri-
A heat-stable polycarbonate resin composition which is highly prevented from coloring and deterioration and is prepared by adding (2,6-di-t-butylphenyl) phosphite.
JP12259782A 1982-07-14 1982-07-14 Polycarbonate resin composition stable to heat Granted JPS5912961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12259782A JPS5912961A (en) 1982-07-14 1982-07-14 Polycarbonate resin composition stable to heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12259782A JPS5912961A (en) 1982-07-14 1982-07-14 Polycarbonate resin composition stable to heat

Publications (2)

Publication Number Publication Date
JPS5912961A JPS5912961A (en) 1984-01-23
JPH0218332B2 true JPH0218332B2 (en) 1990-04-25

Family

ID=14839865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12259782A Granted JPS5912961A (en) 1982-07-14 1982-07-14 Polycarbonate resin composition stable to heat

Country Status (1)

Country Link
JP (1) JPS5912961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017055416A1 (en) 2015-10-02 2017-04-06 Covestro Deutschland Ag Polycarbonate compositions with improved stabilisation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235357A (en) * 1986-04-07 1987-10-15 Teijin Chem Ltd Molded polycarbonate article
SG46264A1 (en) * 1989-08-17 1998-02-20 Asahi Chemical Ind Stabilized aromatic polycarbonate composition and process for producing same
EP0683200B1 (en) * 1994-05-19 2001-09-26 General Electric Company Stabilizer composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017055416A1 (en) 2015-10-02 2017-04-06 Covestro Deutschland Ag Polycarbonate compositions with improved stabilisation
US10899909B2 (en) 2015-10-02 2021-01-26 Covestro Deutschland Ag Polycarbonate compositions with improved stabilisation

Also Published As

Publication number Publication date
JPS5912961A (en) 1984-01-23

Similar Documents

Publication Publication Date Title
CA1061036A (en) Polycarbonate and polyphenylene sulphide molding materials
US4352907A (en) Polyethyleneterephthalate ternary blends
JP3503095B2 (en) Flame retardant polycarbonate composition
KR20180078908A (en) Polycarbonate resin composition and article produced therefrom
US5556908A (en) Toughened thermoplastic molding composition
US5326799A (en) Composition
JPH0218332B2 (en)
JPS60173043A (en) Resin composition and production of molding therefrom
JPH01311165A (en) Polycarbonate molding composition
US4405731A (en) Polycarbonate-starch compositions
US5594059A (en) Impact modified thermoplastic molding composition containing polycarbonate and polyester
JPH02242850A (en) Composition
KR20200012185A (en) Thermoplastic resin composition and article produced therefrom
JPH0218333B2 (en)
EP0088947B1 (en) Polycarbonate-calcite compositions and their use to prepare films
JPS5853665B2 (en) Stabilized polycarbonate composition
US5728765A (en) Glass fiber-reinforced polycarbonate molding compositions having improved impact strenght
JPH03292358A (en) Polycarbonate resin composition
JPH02209920A (en) Polycarbonate of polysubstituted cyclohexylidene bisphenol
JPS6369858A (en) Polycarbonate resin composition
JPS59166555A (en) Copolyester carbonate mixture with improved workability
JP2000109668A (en) Flame-retardant polycarbonate composition
KR100509222B1 (en) Flame Retardant Thermoplastic Resin Composition With Good Transparency
JPH0275654A (en) Polycarbonate composition stable to hydrolysis
JPH04270754A (en) Composition