JPH0218325B2 - - Google Patents

Info

Publication number
JPH0218325B2
JPH0218325B2 JP13440781A JP13440781A JPH0218325B2 JP H0218325 B2 JPH0218325 B2 JP H0218325B2 JP 13440781 A JP13440781 A JP 13440781A JP 13440781 A JP13440781 A JP 13440781A JP H0218325 B2 JPH0218325 B2 JP H0218325B2
Authority
JP
Japan
Prior art keywords
resin
parts
hours
polyphenylene ether
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13440781A
Other languages
Japanese (ja)
Other versions
JPS5837043A (en
Inventor
Akitoshi Sugio
Masanobu Sho
Masatsugu Matsunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP13440781A priority Critical patent/JPS5837043A/en
Publication of JPS5837043A publication Critical patent/JPS5837043A/en
Publication of JPH0218325B2 publication Critical patent/JPH0218325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、硬化可能な変性ポリフエニレンエー
テル樹脂系の樹脂組成物の製造法に関し、詳しく
は、 () ポリフエニレンエーテル樹脂(a)に分子中に
オレフイン性不飽和二重結合を一個もしくは二
個以上含有する化合物(b)をグラフト重合せしめ
たグラフトポリフエニレンエーテル樹脂と () 多官能性マレイミド類(c)、多官能性シアン
酸エステル類(d)、および前記(c)と(d)との予備反
応物からなる群から選ばれた少なくとも一種 とを混合または予備反応させてなる硬化性の樹脂
組成物の製造法である。 近年、通信用、民生用、産業用等の電子・電気
機器の発展に伴つて実装方法の小型化および簡略
化の要望が強く、それに対応して軽量で且つ高性
能の電子材料の開発が望まれており、高分子材料
分野では、此の要求を満たすべく種々の研究が進
められている。特に、プリント配線基板では、回
路の高密度化の為に耐熱性、寸法安定性あるいは
電気的特性のより優れた材料が要求されて来てい
る。此のプリント配線基板は、通常、フエノール
樹脂やエポキシ樹脂などの熱硬化性樹脂を基材と
した銅張り積層板が用いられている。しかし乍
ら、従来汎用されている熱硬化性樹脂は、一般に
電気特性、特に高周波領域での電気的特性が悪い
という欠点がある。 一方、熱可塑性樹脂は、電気的特性の面で優れ
たものが多く、特に耐熱性の熱可塑性樹脂を電子
機器材料に応用する試みがなされて来ている。し
かし乍ら、熱可塑性樹脂は、熱硬化性樹脂に比較
すると、耐熱性、耐溶剤性、寸法安定性等に於て
劣つており、しかも、機械的性質の温度依存性が
大きく、応用分野や用途が著しく限定されてい
る。 ポリフエニレンエーテル系樹脂は熱的、機械的
並びに電気的性質に優れた特性を示す、工業材料
として、また一般的成形用素材として広汎な応用
を可能とする樹脂であることは公知であり、製造
法も米国特許3306874号、特公昭52−17880号公
報、特公昭52−30991号公報等種々の公知文献に
開示されている。 しかし、これらのポリフエニレンエーテル系樹
脂は本質的に熱可塑性樹脂であり、熱硬化性樹脂
と比較すると耐熱性、耐溶剤性等が劣つている。
そこで、有機溶媒に対する抵抗性を高める方法も
いくつか提案されており、例えば、ポリフエニレ
ンエーテル系樹脂を金属アルコラートを触媒とし
て硬化させる方法(特公昭44−29752号公報)、ポ
リフエニレンエーテル系樹脂に架橋剤を加えて三
次元網状構造を形成せしめる方法(米国特許第
3396146号明細書)あるいはポリフエニレンエー
テル系樹脂に熱硬化性樹脂を配合し、これを硬化
せしめる方法(特公昭50−15519号公報)などが
ある。これらの方法ではポリフエニレンエーテル
系樹脂の融点に近い高温(成形時に要求される温
度)においては、触媒や架橋剤、あるいは熱硬化
性樹脂が分解し、変色や変質がおこる上に、成形
品中に気泡が発生するなど種々の不都合が生じ実
用化には至つていない。 また、ポリフエニレンエーテル樹脂に分子中に
オレフイン性不飽和二重結合を一個もしくは二個
以上含有する化合物をグラフト重合せしめたグラ
フトポリフエニレンエーテル樹脂の硬化性樹脂組
成物は現在までのところ開示されていない。 本発明者らは、高性能の電子材料を、ポリフエ
ニレンエーテル樹脂に分子中にオレフイン性不飽
和二重結合を一個もしくは二個以上含有する化合
物をグラフト重合せしめた共重合体を用いて提供
することを目標に鋭意検討を進め該グラフト共重
合体を従来の方法で改質した樹脂では満されなか
つたすぐれた性能を発揮する硬化可能なグラフト
共重合体樹脂組成物を見出したのであり、この組
成物から得られる成形品は、該グラフト共重合体
が本来有する種々の諸特性を可能な限りそのまま
保持しつつ、特にすぐれた耐溶剤性、耐熱性、電
気的特性および成形性を発揮して該グラフト共重
合体の欠点を改善しているものである。 以下、本発明の構成について説明する。 まず、本発明のa成分であるポリフエニレンエ
ーテル樹脂は、それ自体公知のものであり、下記
一般式(1)で表わされる繰り返し構造単位を骨格に
もつ重合体を総称し、前記構造単位の一 式 (式中、R1およびR2は炭素数1〜3の低級アル
キル基であり、R3は水素原子又は炭素数1〜3
の低級アルキル基を表わす。) 種のみからなる単独重合体であつても、二種以上
が組合わされた共重合体であつてもよく、例え
ば、ポリ(2,6−ジメチル−1,4−フエニレ
ン)エーテル、ポリ(2−メチル−6−エチル−
1,4−フエニレン)エーテル、ポリ(2,5−
ジメチル−1,4−フエニレン)エーテルで代表
される単独重合体;2,6−ジメチルフエノール
と2,3,6−トリメチルフエノールとから誘導
される共重合体や2−メチル−6−エチル−1,
4−フエニレンエーテルと2,3,6−トリメチ
ルフエノールとから誘導される共重合体で代表さ
れる共重合体を挙げることが出来る。なかでも、
ポリ(2,6−ジメチル−1,4−フエニレン)
エーテルおよび2,6−ジメチルフエノールと
2,3,6−トリメチルフエノールとから誘導さ
れる共重合体は、実用的なポリフエニレンエーテ
ル系樹脂として有用である。これらのポリフエニ
レンエーテル系樹脂は、数平均で1000〜30000の
分子量を持つことが望まれる。低分子量の樹脂を
用いると溶解性が良いし、作業性も良好であり、
他方、高分子量の樹脂を用いると機械的性質が向
上するところから、使用目的に応じて適宜選択す
ればよい。 本発明のb成分の分子中にオレフイン性不飽和
二重結合を一個もしくは二個以上含有する炭素原
子数が2〜18個の不飽和化合物を1種もしくは2
種以上の混合物であり、化合物としてはスチレ
ン、ビニルトルエン、ジメチルスチレン、クロル
スチレン、α−メチルスチレン、tert−ブチルス
チレン、ビニルフエノール、ビニルピリジンなど
の芳香族ビニル化合物;アクリロニトリル、メタ
クリロニトリル、エタクリロニトリルなど不飽和
ニトリル化合物類;アクリル酸メチル、アクリル
酸ブチル、メタクリル酸メチル、酢酸ビニルなど
不飽和エステル化合物類;ブタジエン、イソプレ
ン、1,3−ペンタジエンなど共役ジエン化合物
類;塩化ビニル、塩化ビニリデンなどハロゲン化
ビニル化合物;エチレン、プロピレンなどオレフ
イン類等が例示され、これらの化合物のうち、芳
香族ビニル化合物、不飽和ニトリル化合物、不飽
和エステル化合物が特に好ましい。 上記のa成分にb成分をラジカル重合開始剤、
例えばジ−tert−ブチルパーオキサイド、ベンゾ
イルパーオキサイド、ラウロイルパーオキサイ
ド、ジクミルパーオキサイド、過硫酸カリウム、
過硫酸アンモニウム、過ホウ酸ナトリウム等で例
示される過酸化物類の1種又は2種以上をa成分
のポリフエニレンエーテル樹脂100重量部に対し
て0.3〜15重量部の範囲で用いて、グラフト重合
せしめることにより本発明の成分()を製造す
る。反応の条件は70〜300℃の範囲であり、通常
は適当量の有機溶媒を使用して反応さす方法によ
る。有機溶剤を用いる場合には、a成分のポリフ
エニレンエーテル樹脂の反応液から、重合触媒を
除去した反応液にb成分およびラジカル重合開始
剤を添加してそのまま反応をする方法が特に製造
プロセスの合理化の面より好ましい。むろんその
他の方法も用いうることは否定されるものではな
い。 又、a成分とb成分の使用量は(a)成分1〜
98wt%、(b)成分1〜40wt%の範囲から用いる用
途などを考慮して選択する。 本発明の成分の1つである多官能性マレイミ
ド類(c)とは、分子中に2個以上のマレイミド基を
有する次の一般式(2)で表わされるポリマレイミド
化合物、 式 (式中、R4は後述する芳香族性または脂肪族性
の多価の有機基であり、X1およびX2は水素原子、
ハロゲン原子または低級アルキル基であり、kは
2以上の整数、通常10以下の整数を表わす。) およびこのポリマレイミド化合物から誘導される
プレポリマーを包含する。上式で表わされるマレ
イミド類は無水マレイン酸類とアミノ基を2〜5
個有するポリアミン類とを反応させてマレアミド
酸を調製し、次いでマレアミド酸を脱水環化させ
るそれ自体公知の方法で製造することができる。
用いるポリアミン類は芳香族アミンであることが
最終樹脂の耐熱性等の点で好ましいが、樹脂の可
撓性や柔軟性が望ましい場合には、脂環族アミン
を単独或いは組合せて使用してもよい。また、多
価アミン類は第1級アミンであることが反応性の
点で特に望ましいが、第2級アミンも使用でき
る。好適なアミン類としてはメタまたはパラフエ
ニレンジアミン、メタまたはパラキシリレンジア
ミン、1,4−または1,3−シクロヘキサンジ
アミン、ヘキサヒドロキシリレンジアミン、4,
4′−ジアミノビフエニル、ビス(4−アミノフエ
ニル)メタン、ビス(4−アミノフエニル)エー
テル、ビス(4−アミノフエニル)スルホン、ビ
ス(4−アミノ−3−メチルフエニル)メタン、
ビス(4−アミノ−3,5−ジメチルフエニル)
メタン、ビス(4−アミノフエニル)シクロヘキ
サン、2,2−ビス(4−アミノフエニル)プロ
パン、2,2−ビス(4−アミノ−3−メチルフ
エニル)プロパン、ビス(4−アミノ−3−クロ
ロフエニル)メタン、2,2−ビス(3,5−ジ
ブロモ−4−アミノフエニル)プロパン、ビス
(4−アミノフエニル)フエニルメタン、3,4
−ジアミノフエニル−4′−アミノフエニルメタ
ン、1,1−ビス(4−アミノフエニル)−1−
フエニルエタン、s−トリアジン環をもつたメラ
ミン類、アニリンとホルマリンとを反応させてベ
ンゼン環をメチレン結合で結んだポリアミン類等
である。 本発明においては、上述した多官能性マレイミ
ドは、所謂モノマーの形で使用する代りに例えば
上に例示したアミンとのプレポリマーの形で用い
ることもできる。 本発明の成分の他の1つである多官能性シア
ン酸エステル(d)とは2個以上のシアン酸エステル
基を有する有機化合体及びそのプレポリマーであ
り、好適なシアン酸エステルは下記一般式 R5−(O−C≡N)m …(3) (式中のmは2以上、通常5以下の整数であり、
R5は芳香族性の有機基であつて、上記シアン酸
エステル基は該有機基Rの芳香環に結合している
もの) で表わされる化合物である。具体的に例示すれば
1,3−または1,4−ジシアナートベンゼン、
1,3,5−トリシアナートベンゼン、1,3
−、1,4−、1,6−、1,8−、2,6−ま
たは2,7−ジシアナートナフタレン、1,3,
6−トリシアナートナフタレン、4,4−ジシア
ナートビフエニル、ビス(4−シアナートフエニ
ル)メタン、2,2−ビス(4−シアナートフエ
ニル)プロパン、2,2−ビス(3,5−ジクロ
ロ−4−シアナートフエニル)プロパン、2,2
−ビス(3,5−ジブロモ−4−シアナートフエ
ニル)プロパン、ビス(4−シアナートフエニ
ル)エーテル、ビス(4−シアナートフエニル)
チオエーテル、ビス(4−シアナートフエニル)
スルホン、トリス(4−シアナートフエニル)ホ
スフアイト、トリス(4−シアナートフエニル)
ホスフエート、およびノボラツクとハロゲン化シ
アンとの反応により得られるシアン酸エステルな
どである。これらの他の特公昭41−1928、特公昭
43−18468、特公昭44−4791、特公昭45−11712、
特公昭46−41112、特公昭47−26853および特開昭
51−63149などに記載のシアン酸エステルも用い
うる。 又、上述した多官能性シアン酸エステルを、鉱
酸、ルイス酸、炭酸ナトリウム或いは塩化リチウ
ム等の塩類、トリブチルホスフイン等のリン酸エ
ステル類、又はエポキシ化合物等の触媒の存在下
又は不存在下に重合させて得られるプレポリマー
として用いる事ができる。これらのプレポリマー
は、前記シアン酸エステル中のシアン基が三量化
する事によつて形成されるsym−トリアジン環
を、一般に分子中に有している。本発明において
は、平均分子量400〜6000の前記プレポリマーを
用いるのが好ましい。 更に、上記した多官能性シアン酸エステルはア
ミンとのプレポリマーの形でも使用できる。好適
に用いうるアミンを例示すれば、前記した多官能
性マレイミドの合成及び変性に用いられるものが
例示される。むろん、上述した多官能性シアン酸
エステル、そのプレポリマー、およびアミンとの
プレポリマーは混合物の形で使用できる。 又、成分()としては、上記(c)及び(d)成分を
無触媒、もしくは触媒存在下に予備反応して得ら
れる予備反応物も好適に用いうるものである。 以上の成分()と()との組成比は、広い
範囲から適宜選択できるものであるが、成分
()のグラフトポリフエニレンエーテル樹脂を
2〜99wt%、成分()を98〜1wt%として、c
成分0〜80wt%、d成分0〜98wt%の範囲から、
用途などを考慮して選択する。 又、組成物の調整は、成分()の溶液に成分
()を混合する方法や、成分()を分離し粉
体として得、これと成分()を例えばヘンシエ
ルミキサーなどの混合器中に添加し、加熱撹拌す
ることにより製造する。 本発明の樹脂組成物を硬化させる方法は任意で
あるが、通常は加熱する方法が行なわれ、一般に
50乃至400℃の範囲の温度が選ばれ、特に100乃至
330℃の範囲の温度が好ましい。硬化に要する時
間は、本発明の樹脂組成物の使用態様、すなわ
ち、薄い塗膜であるか、或いは比較的肉厚の成形
品または積層物であるかによつても異なるが、通
常、30秒乃至10時間の内から樹脂組成物が硬化す
るのに十分な時間を選択すれば良い。本発明の樹
脂組成物を成形品、積層品或いは接着構造物など
に用いる場合には、前述の加熱硬化の際に圧力を
加えることが望ましい。 この他の硬化方法としては、各種加速機からの
電子線、コバルト60などのアイソトープからのガ
ンマ線などのイオン化放射線;太陽光線;タング
ステン灯、低圧または高圧の水銀灯等の光源から
放射される光などの活性エネルギー線を用いる方
法も採用することが出来る。特に光硬化の場合に
は、それ自体公知の光増感剤、例えばベンゾイ
ン、ベンゾインメチルエーテル、ベンザスロン、
アントラキノン、ベンゾフエノンなどの有機カル
ボニル化合物や、エオシン、エリスロシン、アク
リジンなどの増感色素と各種アミンとの組合せな
どを本発明の樹脂組成物に、樹脂固形分当り5重
量%までの範囲の量で添加することが出来、この
光硬化性の樹脂組成物は塗装の分野に応用する場
合に有効である。 本発明の樹脂組成物には、樹脂の熱硬化性を調
整したり、樹脂自身の性質を変質したり、あるい
は最終樹脂製品に所望の性質を与える目的で、
種々の配合例を配合することができる。例えば、
本発明の樹脂組成物は加熱あるいは加圧下に反応
して網状構造を形成し、耐熱性樹脂となるが、上
記網状構造を促進する目的で、組成物中に触媒を
含有させることができる。このような触媒として
は、ナフテン酸鉛、ステアリン酸鉛、オクチル酸
亜鉛、ナフテン酸亜鉛、オレイン酸スズ、ジブチ
ル錫マレエート、ナフテン酸マンガン、ナフテン
酸コバルト、樹脂酸鉛などで例示される有機酸金
属塩;SnCl4、ZnCl2、AlCl3等の金属塩化物;ト
リエチレンジアミンなどの有機塩基、等が適当で
ある。これらの触媒の使用量は、触媒の種類や、
用途や硬化条件によつても著しく相違し、一概に
規定し得ないが、一般的な意味での触媒量、すな
わち全樹脂固形分に対して5重量%以下の量で使
用するのがよい。 本発明の樹脂組成物には、その用途に応じて所
望の性能を付与する目的で、組成物本来の性質を
害さない範囲の量の天然、半合成あるいは合成の
樹脂類を配合することが出来る。このような樹脂
としては、乾性油、不乾性油などのオレオジン、
ロジン、シエラツク、コーパル、油変性ロジン、
フエノール樹脂、アルキド樹脂、エポキシ樹脂、
尿素樹脂、メラミン樹脂、ポリエステル樹脂、ビ
ニルブチラール樹脂、酢酸ビニル樹脂、塩化ビニ
ル樹脂、アクリル樹脂、シリコーン樹脂、ゴムな
どを挙げることができ、これらは一種または二種
以上の組合せで用いられる。 さらには、所望に応じて、繊維質あるいは粉末
の形の補強材や充填材を含有させることもでき
る。粉末状補強材あるいは充填材としてはカーボ
ンブラツク、微粉末シリカ、焼成クレイ、塩基性
ケイ酸マグネシウム、ケイソウ土粉末、アルミ
ナ、炭酸カルシウム、炭酸マグネシウム、酸化マ
グネシウム、カオリン、セリサイトおよび窒化ほ
う素などを挙げることができる。 繊維質補強材としては、セラミツク繊維、アス
ベスト、ロツクウール、ガラス繊維、スラグ・ウ
ール、カーボンフアイバー等の無機質繊維や紙、
パルプ、木粉、木綿、リンター、ポリイミド繊維
などの天然繊維あるいは合成繊維が挙げられる。
上記繊維質補強材は、小繊維、ステーブル、ト
ウ、ウエブ、織布、不織布あるいは抄造物などの
形態で用いることができる。これらの補強材ある
いは充填材は、用途によつても相違するが積層材
料や成形材料の用途には、樹脂固形分100重量部
に対して400重量部までの量で使用することが出
来る。また、本発明の樹脂組成物を難燃化する目
的で、ポリフエニレンエーテル樹脂には公知の難
燃剤、例えばリン酸エステル類、ハロゲン化有機
化合物、あるいはハロゲン化物とアンチモン化合
物との組合せ等を配合することもできる。 さらには、該樹脂組成物を着色する目的で、酸
化チタンなどの白色顔料や黄鉛、カーボンブラツ
ク、鉄黒、モリブデン赤、コンジヨウ、グンジヨ
ウ、カドミウム黄、カドミウム赤などの着色顔
料、あるいは各種有機染顔料を含有させることも
できる。 本発明の樹脂組成物を塗料の用途に使用する場
合には、上記着色顔料の外にジンククロメート、
鉛丹、ベンガラ、亜鉛、ストロンチユウムクロメ
ートなどの防錆顔料;ステアリング酸アルミニウ
ムなどの垂れ止め剤;分散剤;増粘剤;塗膜改質
剤、体質顔料;難燃剤などのそれ自身公知の塗料
用配合剤を適宜配合すればよい。 本発明の樹脂組成物は、先に述べたごとく種々
の用途に適用できるが、その用途に応じた種々の
加工方法が応用され得るのであつて、塗料や接着
剤として基本に塗布したり、粉末基材に含浸させ
た成形材料としてシエルモールド加工を施した
り、繊維補強材に含浸させた成形材料として積層
成形するなど種々の方法が適用できる。 以下、実施例および比較例によつて本発明を具
体的に説明する。ここで特に断りがない限り部お
よび%は重量基準である。 実施例1〜2および比較例1 25℃のクロロホルムで測定した固有粘度0.45
dl/gのポリ(2,6−ジメチル−1,4−フエ
ニレンエーテル)100部、スチレン60部、エチル
ベンゼン110部およびジ−tert−ブチルパーオキ
サイド6部を100℃で撹拌しながら均一に溶解し
た後、窒素ガスを吹き込んで反応系内の酸素ガス
をパージした。反応器内温が145〜150℃の間に保
たれるようにコントロールしながら2.5時間重合
した後、内容物を取り出し減圧乾燥機を用いて
180℃で14時間乾燥してエチルベンゼンおよび未
反応のスチレンを除去しグラフトポリフエニレン
エーテル樹脂を得た。 このグラフトポリフエニレンエーテル樹脂のポ
リスチレンの含有量は赤外線吸収スペクトル分析
から9wt%であつた。 このグラフトポリフエニレンエーテル樹脂とビ
ス(4−マレイミドフエニル)メタンとを第1表
に示す割合でそれぞれヘンシエルミキサーで混合
し得られた混合組成物を250℃、150Kg/cm2の条件
下に2時間圧縮成形した。得られた成形品を3mm
角に切り出しクロロホルムで20時間連続ソツクス
レー抽出を行ない、クロロホルムに溶出しない残
留物を%で表示した。結果を第1表に示した。
又、第1表にはビス(4−マレイミドフエニル)
メタンを除いたグラフトポリフエニレンエーテル
樹脂のみの圧縮成形品についての結果を比較のた
めに示した。 実施例 3 実施例1で得たグラフトポリフエニレンエーテ
ル樹脂30部と2,2−ビス(4−シアナトフエニ
ル)プロパン70部とをヘンシエルミキサーで十分
混合した。得られた混合組成物を250℃の温度で
2時間、150Kg/cm2の圧力で圧縮成形した。得ら
れた成形品を3mm角に切り出しクロロホルムで20
時間連続ソツクスレー抽出を行ないクロロホルム
に溶出しない残留物を%で表示した。結果を第1
表に示した。
The present invention relates to a method for producing a resin composition based on a curable modified polyphenylene ether resin, and more specifically, () the polyphenylene ether resin (a) has one or more olefinic unsaturated double bonds in the molecule. A grafted polyphenylene ether resin obtained by graft polymerizing two or more compounds (b), () a polyfunctional maleimide (c), a polyfunctional cyanate ester (d), and the above (c) and ( This is a method for producing a curable resin composition by mixing or pre-reacting d) with at least one selected from the group consisting of pre-reactants. In recent years, with the development of electronic and electrical equipment for communications, consumer use, industrial use, etc., there has been a strong demand for miniaturization and simplification of mounting methods, and in response to this demand, the development of lightweight and high-performance electronic materials is desired. In the field of polymer materials, various research efforts are underway to meet this demand. In particular, for printed wiring boards, materials with better heat resistance, dimensional stability, or electrical properties are required to increase the density of circuits. This printed wiring board usually uses a copper-clad laminate made of thermosetting resin such as phenolic resin or epoxy resin as a base material. However, conventionally used thermosetting resins have a drawback in that they generally have poor electrical properties, particularly in the high frequency range. On the other hand, many thermoplastic resins have excellent electrical properties, and attempts have been made to apply particularly heat-resistant thermoplastic resins to materials for electronic devices. However, compared to thermosetting resins, thermoplastic resins are inferior in heat resistance, solvent resistance, dimensional stability, etc., and their mechanical properties are highly temperature dependent, making them difficult to apply in various fields of application. Its uses are extremely limited. It is well known that polyphenylene ether resin is a resin that exhibits excellent thermal, mechanical, and electrical properties and can be widely used as an industrial material and as a general molding material. The manufacturing method is also disclosed in various known documents such as US Pat. However, these polyphenylene ether resins are essentially thermoplastic resins, and are inferior in heat resistance, solvent resistance, etc. when compared with thermosetting resins.
Therefore, several methods have been proposed to increase the resistance to organic solvents. A method of adding a crosslinking agent to a resin to form a three-dimensional network structure (U.S. Patent No.
3396146) or a method of blending a thermosetting resin with a polyphenylene ether resin and curing it (Japanese Patent Publication No. 15519/1983). In these methods, at high temperatures close to the melting point of the polyphenylene ether resin (the temperature required during molding), the catalyst, crosslinking agent, or thermosetting resin decomposes, causing discoloration and deterioration, and the molded product deteriorates. It has not been put into practical use due to various problems such as the generation of air bubbles. In addition, curable resin compositions of grafted polyphenylene ether resins in which a compound containing one or more olefinic unsaturated double bonds in the molecule is graft-polymerized to polyphenylene ether resins have not been disclosed to date. It has not been. The present inventors provide a high-performance electronic material using a copolymer obtained by graft-polymerizing a compound containing one or more olefinic unsaturated double bonds in the molecule to a polyphenylene ether resin. With the goal of achieving this goal, we conducted extensive research and discovered a curable graft copolymer resin composition that exhibits excellent performance that cannot be met by resins obtained by modifying the graft copolymer using conventional methods. The molded article obtained from this composition exhibits particularly excellent solvent resistance, heat resistance, electrical properties, and moldability while retaining as much of the various properties inherent to the graft copolymer as possible. This method improves the drawbacks of the graft copolymer. The configuration of the present invention will be explained below. First, polyphenylene ether resin, which is component a of the present invention, is known per se, and is a general term for polymers having a repeating structural unit represented by the following general formula (1) as a skeleton. One set (In the formula, R 1 and R 2 are lower alkyl groups having 1 to 3 carbon atoms, and R 3 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms.
represents a lower alkyl group. ) It may be a homopolymer consisting only of the species or a copolymer consisting of two or more species; for example, poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-dimethyl-1,4-phenylene) ether, -Methyl-6-ethyl-
1,4-phenylene)ether, poly(2,5-
Homopolymers represented by dimethyl-1,4-phenylene) ether; copolymers derived from 2,6-dimethylphenol and 2,3,6-trimethylphenol, and 2-methyl-6-ethyl-1 ,
Examples include copolymers typified by copolymers derived from 4-phenylene ether and 2,3,6-trimethylphenol. Among them,
Poly(2,6-dimethyl-1,4-phenylene)
Ethers and copolymers derived from 2,6-dimethylphenol and 2,3,6-trimethylphenol are useful as practical polyphenylene ether resins. These polyphenylene ether resins are desired to have a number average molecular weight of 1,000 to 30,000. Using a low molecular weight resin has good solubility and workability.
On the other hand, since the use of a high molecular weight resin improves mechanical properties, it may be selected as appropriate depending on the purpose of use. One or two unsaturated compounds having 2 to 18 carbon atoms containing one or more olefinic unsaturated double bonds in the molecule of component b of the present invention.
It is a mixture of more than one species, and the compounds include aromatic vinyl compounds such as styrene, vinyltoluene, dimethylstyrene, chlorostyrene, α-methylstyrene, tert-butylstyrene, vinylphenol, and vinylpyridine; acrylonitrile, methacrylonitrile, and ethane. Unsaturated nitrile compounds such as crylonitrile; unsaturated ester compounds such as methyl acrylate, butyl acrylate, methyl methacrylate, and vinyl acetate; conjugated diene compounds such as butadiene, isoprene, and 1,3-pentadiene; vinyl chloride, vinylidene chloride Examples include halogenated vinyl compounds such as olefins such as ethylene and propylene, and among these compounds, aromatic vinyl compounds, unsaturated nitrile compounds, and unsaturated ester compounds are particularly preferred. Adding component b to the above component a as a radical polymerization initiator,
For example, di-tert-butyl peroxide, benzoyl peroxide, lauroyl peroxide, dicumyl peroxide, potassium persulfate,
Grafting is carried out by using one or more peroxides such as ammonium persulfate and sodium perborate in an amount of 0.3 to 15 parts by weight based on 100 parts by weight of the polyphenylene ether resin as component a. The component () of the present invention is produced by polymerization. The reaction conditions are in the range of 70 to 300°C, and the reaction is usually carried out using an appropriate amount of an organic solvent. When using an organic solvent, a method in which component b and a radical polymerization initiator are added to the reaction solution of polyphenylene ether resin (component a) from which the polymerization catalyst has been removed and the reaction is carried out as is is particularly effective in the production process. This is preferable in terms of rationalization. Of course, it is not denied that other methods can also be used. In addition, the usage amounts of component a and component b are (a) component 1 to
98wt%, component (b) is selected from the range of 1 to 40wt% in consideration of the intended use. The polyfunctional maleimide (c), which is one of the components of the present invention, is a polymaleimide compound represented by the following general formula (2) having two or more maleimide groups in the molecule. (In the formula, R 4 is an aromatic or aliphatic polyvalent organic group described below, X 1 and X 2 are hydrogen atoms,
It is a halogen atom or a lower alkyl group, and k represents an integer of 2 or more, usually 10 or less. ) and prepolymers derived from this polymaleimide compound. The maleimides represented by the above formula contain maleic anhydride and 2 to 5 amino groups.
It can be produced by a method known per se, in which maleamic acid is prepared by reacting it with a polyamine contained therein, and then the maleamic acid is cyclized by dehydration.
It is preferable that the polyamines used are aromatic amines in terms of the heat resistance of the final resin, but if flexibility and flexibility of the resin are desired, alicyclic amines may be used alone or in combination. good. Furthermore, it is particularly desirable that the polyvalent amines be primary amines in terms of reactivity, but secondary amines can also be used. Suitable amines include meta or paraphenylene diamine, meta or para xylylene diamine, 1,4- or 1,3-cyclohexane diamine, hexahydroxylylene diamine, 4,
4'-diaminobiphenyl, bis(4-aminophenyl)methane, bis(4-aminophenyl)ether, bis(4-aminophenyl)sulfone, bis(4-amino-3-methylphenyl)methane,
Bis(4-amino-3,5-dimethylphenyl)
Methane, bis(4-aminophenyl)cyclohexane, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-amino-3-methylphenyl)propane, bis(4-amino-3-chlorophenyl)methane, 2,2-bis(3,5-dibromo-4-aminophenyl)propane, bis(4-aminophenyl)phenylmethane, 3,4
-diaminophenyl-4'-aminophenylmethane, 1,1-bis(4-aminophenyl)-1-
These include phenylethane, melamines having an s-triazine ring, and polyamines made by reacting aniline with formalin and linking benzene rings with methylene bonds. In the present invention, the above-mentioned polyfunctional maleimide can also be used in the form of a prepolymer with the amine exemplified above, for example, instead of being used in the form of a so-called monomer. The polyfunctional cyanate ester (d), which is another component of the present invention, is an organic compound having two or more cyanate ester groups and its prepolymer. Formula R 5 -(O-C≡N)m...(3) (m in the formula is an integer of 2 or more and usually 5 or less,
R 5 is an aromatic organic group, and the cyanate ester group is bonded to the aromatic ring of the organic group R. Specific examples include 1,3- or 1,4-dicyanatobenzene,
1,3,5-tricyanatobenzene, 1,3
-, 1,4-, 1,6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene, 1,3,
6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis(4-cyanatophenyl)methane, 2,2-bis(4-cyanatophenyl)propane, 2,2-bis(3, 5-dichloro-4-cyanatophenyl)propane, 2,2
-Bis(3,5-dibromo-4-cyanatophenyl)propane, bis(4-cyanatophenyl)ether, bis(4-cyanatophenyl)
Thioether, bis(4-cyanatophenyl)
Sulfone, tris(4-cyanatophenyl) phosphite, tris(4-cyanatophenyl)
These include phosphates and cyanate esters obtained by the reaction of novolacs with cyanogen halides. These other Tokko Sho 41-1928, Tokko Sho
43-18468, Special Publication 44-4791, Special Publication 45-11712,
Special Publication No. 46-41112, Special Publication No. 47-26853, and Special Publication No. 1989
Cyanic acid esters described in 51-63149 and the like can also be used. Alternatively, the above-mentioned polyfunctional cyanate ester may be treated in the presence or absence of a mineral acid, a Lewis acid, a salt such as sodium carbonate or lithium chloride, a phosphate ester such as tributylphosphine, or a catalyst such as an epoxy compound. It can be used as a prepolymer obtained by polymerizing. These prepolymers generally have a sym-triazine ring in the molecule, which is formed by trimerization of the cyanide group in the cyanate ester. In the present invention, it is preferable to use the prepolymer having an average molecular weight of 400 to 6,000. Furthermore, the polyfunctional cyanate esters described above can also be used in the form of prepolymers with amines. Examples of amines that can be suitably used include those used in the synthesis and modification of the polyfunctional maleimide described above. Of course, the polyfunctional cyanate esters mentioned above, their prepolymers and prepolymers with amines can be used in the form of mixtures. Further, as component (), a pre-reacted product obtained by pre-reacting the above-mentioned components (c) and (d) without a catalyst or in the presence of a catalyst can also be suitably used. The composition ratio of the above components () and () can be appropriately selected from a wide range, but the grafted polyphenylene ether resin of component () is 2 to 99 wt%, and the component () is 98 to 1 wt%. ,c
From the range of component 0 to 80 wt%, d component 0 to 98 wt%,
Select by considering usage etc. In addition, the composition can be prepared by mixing the component () into a solution of the component (), or by separating the component () to obtain a powder and mixing this and the component () in a mixer such as a Henschel mixer. It is manufactured by adding and heating and stirring. Although the method for curing the resin composition of the present invention is arbitrary, a heating method is usually used, and generally
Temperatures in the range 50 to 400°C are chosen, especially 100 to 400°C.
Temperatures in the range of 330°C are preferred. The time required for curing varies depending on how the resin composition of the present invention is used, that is, whether it is a thin coating film or a relatively thick molded product or laminate, but is usually 30 seconds. A time sufficient for the resin composition to harden may be selected from a range of 10 to 10 hours. When the resin composition of the present invention is used for molded products, laminate products, adhesive structures, etc., it is desirable to apply pressure during the heat curing described above. Other curing methods include electron beams from various accelerators, ionizing radiation such as gamma rays from isotopes such as cobalt-60; sunlight; light emitted from light sources such as tungsten lamps, low-pressure or high-pressure mercury lamps, etc. A method using active energy rays can also be adopted. Particularly in the case of photocuring, photosensitizers known per se, such as benzoin, benzoin methyl ether, benzathurone,
Organic carbonyl compounds such as anthraquinone and benzophenone, combinations of sensitizing dyes such as eosin, erythrosine, and acridine, and various amines are added to the resin composition of the present invention in amounts ranging up to 5% by weight based on the resin solid content. This photocurable resin composition is effective when applied to the field of painting. In the resin composition of the present invention, for the purpose of adjusting the thermosetting properties of the resin, changing the properties of the resin itself, or imparting desired properties to the final resin product,
Various formulation examples can be blended. for example,
The resin composition of the present invention reacts under heating or pressure to form a network structure and becomes a heat-resistant resin, and a catalyst may be included in the composition for the purpose of promoting the network structure. Examples of such catalysts include organic acid metals such as lead naphthenate, lead stearate, zinc octylate, zinc naphthenate, tin oleate, dibutyltin maleate, manganese naphthenate, cobalt naphthenate, lead resinate, etc. Salts; metal chlorides such as SnCl 4 , ZnCl 2 , AlCl 3 and the like; organic bases such as triethylenediamine, etc. are suitable. The amount of these catalysts used depends on the type of catalyst and
Although the amount of the catalyst varies considerably depending on the application and the curing conditions and cannot be specified unconditionally, it is preferable to use the amount of the catalyst in a general sense, that is, an amount of 5% by weight or less based on the total resin solid content. The resin composition of the present invention may contain natural, semi-synthetic or synthetic resins in an amount within a range that does not impair the original properties of the composition, in order to impart desired performance depending on the intended use. . Such resins include oleosin such as drying oil and non-drying oil;
Rosin, Sierra Tsuk, Copal, Oil Modified Rosin,
Phenol resin, alkyd resin, epoxy resin,
Examples include urea resin, melamine resin, polyester resin, vinyl butyral resin, vinyl acetate resin, vinyl chloride resin, acrylic resin, silicone resin, rubber, etc., and these may be used alone or in combination of two or more. Furthermore, if desired, reinforcing materials or fillers in the form of fibers or powder can also be included. Powdered reinforcements or fillers include carbon black, finely powdered silica, calcined clay, basic magnesium silicate, diatomaceous earth powder, alumina, calcium carbonate, magnesium carbonate, magnesium oxide, kaolin, sericite, and boron nitride. can be mentioned. Examples of fibrous reinforcing materials include inorganic fibers such as ceramic fiber, asbestos, rock wool, glass fiber, slag/wool, and carbon fiber, as well as paper,
Examples include natural fibers or synthetic fibers such as pulp, wood flour, cotton, linters, and polyimide fibers.
The above-mentioned fibrous reinforcing material can be used in the form of fibrils, stable, tow, web, woven fabric, non-woven fabric, or paper products. These reinforcing materials or fillers may be used in amounts of up to 400 parts by weight per 100 parts by weight of resin solid content for laminated materials and molding materials, although this will vary depending on the application. In addition, for the purpose of making the resin composition of the present invention flame retardant, known flame retardants such as phosphoric acid esters, halogenated organic compounds, or a combination of halides and antimony compounds may be added to the polyphenylene ether resin. It can also be blended. Furthermore, for the purpose of coloring the resin composition, white pigments such as titanium oxide, coloring pigments such as yellow lead, carbon black, iron black, molybdenum red, smelt, cadmium yellow, cadmium red, or various organic dyes may be used. Pigments can also be included. When the resin composition of the present invention is used as a paint, zinc chromate,
Anticorrosive pigments such as red lead, red iron, zinc, and strontium chromate; Anti-sagging agents such as aluminum stearate; Dispersants; Thickeners; Paint film modifiers, extender pigments; Flame retardants, etc. A paint compounding agent may be appropriately blended. The resin composition of the present invention can be applied to various uses as mentioned above, and various processing methods can be applied depending on the use. Various methods can be applied, such as shell molding using a molding material impregnated into a base material or lamination molding using a molding material impregnated into a fiber reinforcing material. Hereinafter, the present invention will be specifically explained using Examples and Comparative Examples. Parts and percentages are by weight unless otherwise specified. Examples 1-2 and Comparative Example 1 Intrinsic viscosity measured in chloroform at 25°C 0.45
dl/g of poly(2,6-dimethyl-1,4-phenylene ether), 60 parts of styrene, 110 parts of ethylbenzene, and 6 parts of di-tert-butyl peroxide were uniformly dissolved with stirring at 100°C. After that, nitrogen gas was blown into the reaction system to purge the oxygen gas in the reaction system. After polymerizing for 2.5 hours while controlling the reactor internal temperature to be maintained between 145 and 150℃, the contents were taken out and dried using a vacuum dryer.
Ethylbenzene and unreacted styrene were removed by drying at 180°C for 14 hours to obtain a grafted polyphenylene ether resin. The polystyrene content of this grafted polyphenylene ether resin was found to be 9 wt% by infrared absorption spectrum analysis. This grafted polyphenylene ether resin and bis(4-maleimidophenyl)methane were mixed in a Henschel mixer in the proportions shown in Table 1, and the resulting mixed composition was mixed at 250°C and 150 kg/cm 2 . It was compression molded for 2 hours. The obtained molded product is 3mm
It was cut into corners and subjected to continuous Soxhlet extraction with chloroform for 20 hours, and the residue that did not dissolve in chloroform was expressed as %. The results are shown in Table 1.
Also, in Table 1, bis(4-maleimidophenyl)
The results for compression molded products made only of grafted polyphenylene ether resin without methane are shown for comparison. Example 3 30 parts of the grafted polyphenylene ether resin obtained in Example 1 and 70 parts of 2,2-bis(4-cyanatophenyl)propane were thoroughly mixed in a Henschel mixer. The obtained mixed composition was compression molded at a temperature of 250° C. for 2 hours and a pressure of 150 kg/cm 2 . The obtained molded product was cut into 3 mm squares and diluted with chloroform.
Time-continuous Soxhlet extraction was performed, and the residue that could not be eluted in chloroform was expressed in %. Results first
Shown in the table.

【表】 実施例4〜5および比較例2 25℃のクロロホルムで測定した固有粘度が0.34
dl/grのフエニレンエーテルコポリマー(モノマ
ー基準で2,6−ジメチルフエノール0.5モル%
と2,3,6−トリメチルフエノール5モル%と
から誘導されたランダム共重合体)150部、メチ
ルメタアクリレート64部、エチルベンゼン180部
およびジ−tert−ブチルパーオキサイド6部を仕
込み100℃で撹拌しながら均一に溶解した後、窒
素ガスを吹き込んで反応系内の酸素ガスをパージ
し、反応器内温が150℃前後に保たれる様にコン
トロールしながら2.5時間重合せしめた。内容物
を取り出し減圧乾燥機を用いて180℃で21時間乾
燥してエチルベンゼンと未反応のメチルメタアク
リレートを除去しグラフトポリフエニレンエーテ
ル樹脂を得た。赤外線吸収スペクトル分析からポ
リメチルメタアクリレート含有量は5wt%であつ
た。 このグラフトポリフエニレンエーテル樹脂とビ
ス(4−マレイミドフエニル)メタンとを第2表
に示す割合でそれぞれヘンシエルミキサーで混合
し、得られた混合組成物を250℃、150Kg/cm2の条
件下に2時間圧縮成形した。得られた成形品を3
mm角に切り出しクロロホルムで20時間連続ソツク
スレー抽出を行ないクロロホルムに溶出しない残
留物を%で表示した。結果を第2表に示した。第
2表にはビス(4−マレイミドフエニル)メタン
を除いたグラフトポリフエニレンエーテル樹脂の
みの圧縮成形品についての結果を比較のために示
した。 実施例 6 実施例4で得たグラフトポリフエニレンエーテ
ル樹脂40部と2,2−ビス(4−シアナトフエニ
ル)プロパンを150℃で3時間予備反応して得た
プレポリマー60部とをヘンシエルミキサーで十分
混合した。得られた混合組成物を250℃の温度で
2時間、150Kg/cm2の圧力で圧縮成形した。得ら
れた成形品を3mm角に切り出し、クロロホルムで
20時間連続ソツクスレー抽出を行なつた結果を第
2表に示した。またガラス転位温度も同時に測定
した。
[Table] Examples 4 to 5 and Comparative Example 2 Intrinsic viscosity measured in chloroform at 25°C is 0.34
dl/gr phenylene ether copolymer (2,6-dimethylphenol 0.5 mol% based on monomers)
and 5 mol% of 2,3,6-trimethylphenol), 64 parts of methyl methacrylate, 180 parts of ethylbenzene, and 6 parts of di-tert-butyl peroxide were charged and stirred at 100°C. After uniformly dissolving the mixture, nitrogen gas was blown in to purge the reaction system of oxygen gas, and polymerization was carried out for 2.5 hours while controlling the reactor internal temperature to be maintained at around 150°C. The contents were taken out and dried at 180° C. for 21 hours using a vacuum dryer to remove ethylbenzene and unreacted methyl methacrylate to obtain a grafted polyphenylene ether resin. According to infrared absorption spectrum analysis, the polymethyl methacrylate content was 5 wt%. This grafted polyphenylene ether resin and bis(4-maleimidophenyl)methane were mixed in a Henschel mixer in the proportions shown in Table 2, and the resulting mixed composition was mixed at 250°C and 150 kg/ cm2. Compression molding was performed for 2 hours. The obtained molded product is
It was cut into mm squares and subjected to continuous Soxhlet extraction with chloroform for 20 hours, and the residue that did not dissolve in chloroform was expressed as a percentage. The results are shown in Table 2. For comparison, Table 2 shows the results for compression molded products made only of grafted polyphenylene ether resin without bis(4-maleimidophenyl)methane. Example 6 40 parts of the grafted polyphenylene ether resin obtained in Example 4 and 60 parts of a prepolymer obtained by pre-reacting 2,2-bis(4-cyanatophenyl)propane at 150°C for 3 hours were mixed in a Henschel mixer. Mix thoroughly. The obtained mixed composition was compression molded at a temperature of 250° C. for 2 hours and a pressure of 150 kg/cm 2 . The obtained molded product was cut into 3 mm squares and soaked in chloroform.
Table 2 shows the results of continuous Soxhlet extraction for 20 hours. The glass transition temperature was also measured at the same time.

【表】 実施例7および比較例3 25℃のクロロホルムで測定した固有粘度が0.34
dl/grのフエニレンエーテルコポリマー(モノマ
ー基準で2,6−ジメチルフエノール95モル%と
2,3,6−トリメチルフエノール5モル%とか
ら誘導されたランダム共重合体)100部、スチレ
ン200部、エチルベンゼン100部およびジ−t−ブ
チルパーオキサイド2部を仕込み、100℃で撹拌
しながら均一に溶解した後、窒素ガスを吹き込ん
で反応系内の酸素ガスをパージした。反応器内温
が145〜150℃の間に保たれる様にコントロールし
ながら2時間重合し、内容物を取り出し減圧乾燥
機を用いて180℃で14時間乾燥し、エチルベンゼ
ンおよび未反応のスチレンを除去しグラフトポリ
フエニレンエーテル樹脂を得た。赤外線吸収スペ
クトル分析からポリスチレンの含有量は34%であ
つた。 アニリンとホルムアルデヒドとの反応により得
られるポリ(フエニルメチレン)ポリアミン類を
無水マレイン酸と反応させて製造したポリ(フエ
ニルメチレン)ポリマレイミド(分子中にN−フ
エニルマレイミド残基を平均3個有する)30部と
2,2−ビス(4−シアナトフエニル)プロパン
70部とを110℃で2時間予備反応させて得たマレ
イミド−シアン酸エステルプレポリマー5部と、
上記で得たグラフトポリフエニレンエーテル樹脂
95部とをヘンシエルミキサーで十分混合した。得
られた混合組成物を銅箔の間に所定の厚さ(1.5
mm〜1.6mm)になるように入れ、250℃の温度で2
時間、150Kg/cm2の圧力で圧縮成形し両面銅張り
試験片を作成した。 この試験片の銅箔を引き剥し約3mm角のサイの
目状に切断しクロロホルムで20時間連続ソツクス
レー抽出を行なつた結果、クロロホルムに溶出し
ない残留物は45%であつた。比較例として該グラ
フトポリフエニレンエーテル樹脂のみの試験片に
ついても同じようなソツクスレー抽出を行なつた
結果、クロロホルムに溶出しない残留物は1%以
下であつた。 試験片を用いて種々の試験を行ない、その結果
を第3表に示した。 実施例8および比較例4 25℃クロロホルムで測定した固有粘度が0.50
dl/grのフエニレンエーテルコポリマー(モノマ
ー基準で2,6−ジメチルフエノール95モル%と
2,3,6−トリメチルフエノール5モル%とか
ら誘導されたランダム共重合体)200部、スチレ
ン150部、アクリロニトリル70部、エチルベンゼ
ン200部およびジクミルパーオキサイド5部を100
℃で撹拌しながら均一に溶解した後、窒素ガスを
吹き込んで反応系内の酸素ガスをパージした。反
応器内温が145〜150℃の間に保たれる様にコント
ロールしながら2時間重合せしめた。内容物を取
り出し減圧乾燥機を用いて180℃で14時間乾燥し
てエチルベンゼンおよび未反応のスチレン、アク
リロニトリルを除去してグラフトポリフエニレン
エーテル樹脂を得た。赤外線吸収スペクトル分析
からスチレン−アクリロニトリル共重合体含有量
は28wt%であり、またスチレン−アクリロニト
リル共重合体中のアクリロニトリル含有量は
25wt%であつた。 ビス(4−マレイミドフエニル)メタン9.8部、
2,2−ビス(4−シアナトフエニル)プロパン
87.8部、およびエポキシ樹脂(商品名;エピコー
ト152、シエル化学製)2.4部を130℃で4時間撹
拌しながら反応させマレイミド類、シアン酸エス
テル類およびエポキシ化合物よりなるプレポリマ
ーを製造し該プレポリマー40部と上記で得たグラ
フトポリフエニレンエーテル樹脂60部とをヘンシ
エルミキサーで十分混合した。 得られた混合組成物を銅箔の間に所定の厚さ
(1.5mm〜1.6mm)になるように入れ、250℃の温度
で2時間、100Kg/cm2の圧力で圧縮成形し両面銅
張り試験片を作成した。この試験片の銅箔を引き
剥し約3mm角に切断しクロロホルムで20時間連続
ソツクスレー抽出を行なつた結果、クロロホルム
に溶出しない残留物は97%であつた。比較例とし
て該グラフトポリフエニレンエーテル樹脂のみの
試験片についても同じようなソツクスレー抽出を
行なつた結果、クロロホルムに溶出しない残留物
は1%以下であつた。 試験片を用いて種々の試験を行ない、その結果
を第3表に示した。 実施例 9 実施例1で得たグラフトポリフエニレンエーテ
ル樹脂20部と実施例8で得たマレイミド類、シア
ン酸エステル類およびエポキシ化合物よりなるプ
レポリマー80部とをトルエンに溶解し、樹脂固形
分25wt%溶液としガラス織布に含浸させた後、
110℃で5分間、その後140℃に温度をあげ15分間
乾燥しプリプレグを得た。 かくして得られたプリプレグを4枚重ね、さら
に銅箔を両面にかさね、温度200℃で2時間、圧
力100Kg/cm2で積層成形した後、240℃で4時間圧
力100Kg/cm2の条件で硬化させ、厚さ0.4mmの銅張
り積層板を得た。 この積層板の試験結果を第3表に示した。 実施例10および比較例5 25℃のクロロホルムで測定した固有粘度が0.45
dl/grのポリ(2,6−ジメチル−1,4−フエ
ニレンエーテル)150部をトルエン250部に100℃
に加熱、撹拌し溶解した。次に120部のメチルメ
タクリレートとジクミルパーオキサイド5部を加
え窒素ガスを吹き込んで反応系内の酸素ガスをパ
ージした後、反応器内温が150℃前後に保たれる
ようにコントロールしながら2.5時間重合せしめ
た。内容物を取り出し減圧乾燥機を用いて180℃
で21時間乾燥してトルエンと未反応のメチルメタ
アクリレートを除去してグラフトポリフエニレン
エーテル樹脂を得た。赤外線吸収スペクトル分析
からポリメチルメタアクリレートの含有量は30%
であつた。 アニリンとホルムアルデヒドとの反応により得
られるポリ(フエニルメチレン)ポリアミン類を
無水マレイン酸と反応させて製造したポリ(フエ
ニルメチレン)ポリマレイミド(分子中にN−フ
エニルマレイミド残基を平均3個有する)30部と
2,2−ビス(4−シアナトフエニル)プロパン
70部とを110℃で2時間撹拌しながら反応させ、
マレイミド類とシアン酸エステル類のプレポリマ
ーとし、これを20部と上記で得たグラフトポリフ
エニレンエーテル樹脂80部とをヘンシエルミキサ
ーで十分混合した。 得られた混合組成物を銅箔の間に所定の厚さ
(1.5mm〜1.6mm)になるように入れ250℃の温度で
2時間、100Kg/cm2の圧力で圧縮成形し両面銅張
り試験片を作成した。この試験片の銅箔を引き剥
し約3mm角に切断し、クロロホルムで20時間連続
ソツクスレー抽出を行なつた結果、クロロホルム
に溶出しない残留物は73%であつた。 比較として該グラフトポリフエニレンエーテル
樹脂のみの試験片についても同じようなソツクス
レー抽出を行なつた結果、クロロホルムに溶出し
ない残留物は1%以下であつた。 試験片を用いて種々の試験を行ない、その結果
を第3表に示した。 実施例11および比較例6 25℃のクロロホルムで測定した0.30dl/grのフ
エニレンエーテルコポリマー(モノマー基準で
2,6−ジメチルフエノール95モル%と2,3,
6−トリメチルフエノール5モル%とから誘導さ
れたランダム共重合体)100部、ブチルアクリレ
ート50部、エチルベンゼン120部およびジ−tert
−ブチルパーオキサイド2部を仕込み100℃で撹
拌しながら均一に溶解した後、窒素ガスを吹き込
んで反応系内の酸素ガスをパージした後、反応器
内温が145℃前後に保たれるようにコントロール
しながら2時間重合させた。内容物を取り出し減
圧乾燥機を用いて180℃で21時間乾燥してエチル
ベンゼンと未反応のチルアクリレートを除去しグ
ラフト共重合体を得た。ポリブチルアクリレート
の含有量は20wt%であつた。 ビス(4−マレイミドフエニル)メタン10部と
2,2−ビス(4−シアナトフエニル)プロパン
90部とを150℃で4時間予備反応させプレポリマ
ーとし、このプレポリマー50部と上記で得たグラ
フトポリフエニレンエーテル樹脂50部とをヘンシ
エルミキサーで十分混合した。 得られた混合組成物をシリンダー温度の最高温
度が250℃に設定されたAS−30二軸押出機(中谷
機械製作所製)にて押出してペレツト化し、ペレ
ツト化した混合組成物を銅箔の間に所定の厚み
(1.5〜1.6mm)になるように入れ250℃、100Kg/
cm2の条件下で2時間圧縮し両面銅張りの試験片を
作成した。 この試験片の銅箔を引き剥し約3mm角に切断し
クロロホルムで20時間連続ソツクスレー抽出を行
なつた結果、クロロホルムに溶出しない残留物は
97%であつた。比較例としてマレイミド類とシア
ン酸エステルのプレポリマーを除いた該グラフト
共重合体のみの試験片について同じようなソツク
スレー抽出を行なつた結果、クロロホルムに溶出
しない残留物は1%以下であつた。 試験片を用いて種々の試験を行ない、その結果
を第3表に示した。 実施例 12 ビス(4−マレイミドフエニル)メタン9.8部、
2,2−ビス(4−シアナトフエニル)プロパン
87.8部およびエポキシ樹脂(商品名;エピコート
152、シエル化学製)2.4部を130℃で4時間予備
反応させてマレイミド類、シアン酸エステル類お
よびエポキシ化合物よりなるプレポリマーを製造
し、そのプレポリマー85部と実施例4で得たと同
じグラフトポリフエニレンエーテル樹脂15部とを
トルエンに溶解し、樹脂固形分25wt%溶液とし、
これをガラス織布に含浸させた後、110℃で5分
間、その後140℃に温度をあげ15分間乾燥しプリ
プレグを得た。かくして得られたプリプレグを4
枚重ね、さらに銅箔を両面にかさね140℃で0.5時
間、150℃で0.5時間、さらに180℃で1時間、100
Kg/cm2の圧力で積層成形し、更に240℃で4時間
後硬化して厚さ0.4mmの銅張り積層板を得た。 この積層板の試験結果を第3表に示した。
[Table] Example 7 and Comparative Example 3 Intrinsic viscosity measured in chloroform at 25°C is 0.34
100 parts of dl/gr phenylene ether copolymer (a random copolymer derived from 95 mol% of 2,6-dimethylphenol and 5 mol% of 2,3,6-trimethylphenol on a monomer basis), 200 parts of styrene, After 100 parts of ethylbenzene and 2 parts of di-t-butyl peroxide were charged and uniformly dissolved while stirring at 100°C, nitrogen gas was blown in to purge the reaction system of oxygen gas. Polymerization was carried out for 2 hours while controlling the internal temperature of the reactor to be maintained between 145 and 150℃, and the contents were taken out and dried at 180℃ for 14 hours using a vacuum dryer to remove ethylbenzene and unreacted styrene. This was removed to obtain a grafted polyphenylene ether resin. Infrared absorption spectrum analysis revealed that the polystyrene content was 34%. Poly(phenylmethylene) polymaleimide produced by reacting poly(phenylmethylene) polyamines obtained by the reaction of aniline and formaldehyde with maleic anhydride (average of 3 N-phenylmaleimide residues in the molecule) ) and 30 parts of 2,2-bis(4-cyanatophenyl)propane
5 parts of maleimide-cyanate ester prepolymer obtained by pre-reacting 70 parts of maleimide-cyanate ester prepolymer at 110°C for 2 hours,
Grafted polyphenylene ether resin obtained above
95 parts were thoroughly mixed with a Henschel mixer. The resulting mixed composition is placed between copper foils to a predetermined thickness (1.5
mm to 1.6 mm), and heated to 250℃ for 2 hours.
A double-sided copper-clad test piece was prepared by compression molding at a pressure of 150 kg/cm 2 for an hour. The copper foil of this test piece was peeled off and cut into dice of about 3 mm square and subjected to continuous Soxhlet extraction with chloroform for 20 hours. As a result, the amount of residue that could not be eluted into chloroform was 45%. As a comparative example, a similar Soxhlet extraction was performed on a test piece made only of the grafted polyphenylene ether resin, and as a result, the amount of residue that could not be eluted in chloroform was less than 1%. Various tests were conducted using the test pieces, and the results are shown in Table 3. Example 8 and Comparative Example 4 Intrinsic viscosity measured in chloroform at 25°C is 0.50
200 parts of dl/gr phenylene ether copolymer (a random copolymer derived from 95 mol% of 2,6-dimethylphenol and 5 mol% of 2,3,6-trimethylphenol on a monomer basis), 150 parts of styrene, 100 parts of acrylonitrile, 200 parts of ethylbenzene and 5 parts of dicumyl peroxide
After uniformly dissolving the mixture while stirring at °C, nitrogen gas was blown in to purge the reaction system of oxygen gas. Polymerization was carried out for 2 hours while controlling the reactor internal temperature to be maintained between 145 and 150°C. The contents were taken out and dried at 180° C. for 14 hours using a vacuum dryer to remove ethylbenzene and unreacted styrene and acrylonitrile to obtain a grafted polyphenylene ether resin. According to infrared absorption spectrum analysis, the content of styrene-acrylonitrile copolymer is 28wt%, and the content of acrylonitrile in styrene-acrylonitrile copolymer is
It was 25wt%. 9.8 parts of bis(4-maleimidophenyl)methane,
2,2-bis(4-cyanatophenyl)propane
87.8 parts and 2.4 parts of an epoxy resin (trade name: Epicote 152, manufactured by Ciel Chemical) were reacted at 130°C with stirring for 4 hours to produce a prepolymer consisting of maleimide, cyanate ester and epoxy compound. 40 parts and 60 parts of the grafted polyphenylene ether resin obtained above were thoroughly mixed in a Henschel mixer. The obtained mixed composition was placed between copper foils to a predetermined thickness (1.5 mm to 1.6 mm), and compression molded at a temperature of 250°C for 2 hours at a pressure of 100 kg/cm 2 and coated with copper on both sides. A test piece was prepared. The copper foil of this test piece was peeled off, cut into approximately 3 mm squares, and subjected to continuous Soxhlet extraction with chloroform for 20 hours. As a result, the amount of residue that could not be eluted in chloroform was 97%. As a comparative example, a similar Soxhlet extraction was performed on a test piece made only of the grafted polyphenylene ether resin, and as a result, the amount of residue that could not be eluted in chloroform was less than 1%. Various tests were conducted using the test pieces, and the results are shown in Table 3. Example 9 20 parts of the grafted polyphenylene ether resin obtained in Example 1 and 80 parts of the prepolymer consisting of maleimides, cyanate esters and epoxy compounds obtained in Example 8 were dissolved in toluene to reduce the resin solid content. After impregnating a glass woven fabric with a 25wt% solution,
The prepreg was dried at 110°C for 5 minutes, then raised to 140°C for 15 minutes. Four sheets of the thus obtained prepreg were stacked, copper foil was further placed on both sides, and the layers were laminated at a temperature of 200℃ for 2 hours and a pressure of 100Kg/ cm2 , and then cured at a pressure of 100Kg/ cm2 at 240℃ for 4 hours. A copper-clad laminate with a thickness of 0.4 mm was obtained. The test results for this laminate are shown in Table 3. Example 10 and Comparative Example 5 Intrinsic viscosity measured in chloroform at 25°C is 0.45
150 parts of dl/gr poly(2,6-dimethyl-1,4-phenylene ether) was added to 250 parts of toluene at 100°C.
The mixture was heated and stirred to dissolve. Next, 120 parts of methyl methacrylate and 5 parts of dicumyl peroxide were added, nitrogen gas was blown in to purge the reaction system of oxygen gas, and the temperature inside the reactor was controlled to be maintained at around 150°C. Time overlapped. Remove the contents and dry at 180℃ using a vacuum dryer.
The mixture was dried for 21 hours to remove toluene and unreacted methyl methacrylate to obtain a grafted polyphenylene ether resin. Based on infrared absorption spectrum analysis, the content of polymethyl methacrylate is 30%.
It was hot. Poly(phenylmethylene) polymaleimide produced by reacting poly(phenylmethylene) polyamines obtained by the reaction of aniline and formaldehyde with maleic anhydride (average of 3 N-phenylmaleimide residues in the molecule) ) and 30 parts of 2,2-bis(4-cyanatophenyl)propane
70 parts at 110℃ for 2 hours with stirring,
A prepolymer of maleimides and cyanate esters was prepared, and 20 parts of this prepolymer and 80 parts of the grafted polyphenylene ether resin obtained above were thoroughly mixed using a Henschel mixer. The obtained mixed composition was placed between copper foils to a predetermined thickness (1.5 mm to 1.6 mm) and compression molded at a temperature of 250°C for 2 hours at a pressure of 100 kg/cm 2 and then subjected to a double-sided copper cladding test. I created a piece. The copper foil of this test piece was peeled off, cut into approximately 3 mm square pieces, and subjected to continuous Soxhlet extraction with chloroform for 20 hours. As a result, the amount of residue that could not be eluted into chloroform was 73%. For comparison, a similar Soxhlet extraction was performed on a test piece made only of the grafted polyphenylene ether resin, and as a result, the amount of residue that could not be eluted in chloroform was less than 1%. Various tests were conducted using the test pieces, and the results are shown in Table 3. Example 11 and Comparative Example 6 Phenylene ether copolymer (95 mol% of 2,6-dimethylphenol and 2,3,
100 parts of a random copolymer derived from 5 mol% of 6-trimethylphenol, 50 parts of butyl acrylate, 120 parts of ethylbenzene, and di-tert.
- After charging 2 parts of butyl peroxide and dissolving it uniformly while stirring at 100°C, blow nitrogen gas to purge the oxygen gas in the reaction system, and then maintain the internal temperature of the reactor at around 145°C. Polymerization was allowed to proceed for 2 hours under controlled conditions. The contents were taken out and dried at 180° C. for 21 hours using a vacuum dryer to remove ethylbenzene and unreacted tylacrylate to obtain a graft copolymer. The content of polybutyl acrylate was 20 wt%. 10 parts of bis(4-maleimidophenyl)methane and 2,2-bis(4-cyanatophenyl)propane
A prepolymer was obtained by preliminarily reacting with 90 parts at 150° C. for 4 hours, and 50 parts of this prepolymer and 50 parts of the grafted polyphenylene ether resin obtained above were thoroughly mixed in a Henschel mixer. The obtained mixed composition was extruded into pellets using an AS-30 twin-screw extruder (manufactured by Nakatani Kikai Seisakusho) with a maximum cylinder temperature of 250°C, and the pelletized mixed composition was passed between copper foils. 250℃, 100Kg/
A test piece with copper cladding on both sides was prepared by compressing it for 2 hours under the condition of cm 2 . The copper foil of this test piece was peeled off, cut into approximately 3 mm squares, and subjected to continuous Soxhlet extraction with chloroform for 20 hours.
It was 97%. As a comparative example, a similar Soxhlet extraction was performed on a test piece containing only the graft copolymer, excluding the prepolymer of maleimide and cyanate ester, and as a result, the amount of residue that could not be eluted in chloroform was less than 1%. Various tests were conducted using the test pieces, and the results are shown in Table 3. Example 12 9.8 parts of bis(4-maleimidophenyl)methane,
2,2-bis(4-cyanatophenyl)propane
87.8 parts and epoxy resin (product name: Epicote
152 (manufactured by Ciel Chemical) were pre-reacted at 130°C for 4 hours to produce a prepolymer consisting of maleimides, cyanate esters and epoxy compounds, and 85 parts of the prepolymer and the same graft as obtained in Example 4 were prepared. Dissolve 15 parts of polyphenylene ether resin in toluene to make a solution with a resin solid content of 25 wt%,
A glass woven fabric was impregnated with this, and then heated to 110°C for 5 minutes, then raised to 140°C and dried for 15 minutes to obtain a prepreg. The prepreg thus obtained was
Stack the sheets, then cover both sides with copper foil. 140℃ for 0.5 hours, 150℃ for 0.5 hours, and 180℃ for 1 hour.
Laminate molding was carried out under a pressure of Kg/cm 2 and the product was further cured at 240° C. for 4 hours to obtain a copper-clad laminate having a thickness of 0.4 mm. The test results for this laminate are shown in Table 3.

【表】 表中における諸性能の試験方法は次の通りであ
る。 (1) クロロホルム抽出残留物:銅箔を引き剥し、
約3mm角のサイの目状に切断し、20時間連続ソ
ツクスレー抽出を行ない、抽出されない残留物
を抽出試験する前の重さに対する百分率で示し
た。 (2) ガラス転移温度:銅箔を引き剥し、巾0.7〜
1.2mm、長さ約70mmの細長い棒状の試験片を切
り出し、「よじれ自由減衰型粘弾性測定装置
(RHESCA社製)」によつて測定した。 (3) 銅箔引き剥し強度:銅箔面に巾10mmの平行な
切り込みを入れた後、面に対して直角になる方
向に銅箔を引き剥し、その時の応力をテンシロ
ンにて測定した。 (4) 誘電率および誘電正接:銅箔を引き剥した
後、50mm角に切断し、誘電体損測定装置により
IMHZで測定した。 (5) ハンダ耐熱性:試験片を25mm角に切断し、両
面銅張りの場合は片面を引き剥し、測定試料を
作成する。260℃のハンダ浴に銅箔面を下にし
て試料を浮かべ、ふくれやはがれの発生するま
での時間を測定する。
[Table] The test methods for various performances in the table are as follows. (1) Chloroform extraction residue: Peel off the copper foil,
The pieces were cut into dice of about 3 mm square, subjected to continuous Soxhlet extraction for 20 hours, and the unextracted residue was expressed as a percentage of the weight before the extraction test. (2) Glass transition temperature: peel off copper foil, width 0.7~
A slender rod-shaped test piece of 1.2 mm and approximately 70 mm in length was cut out and measured using a "twist free damping type viscoelasticity measuring device (manufactured by RHESCA)". (3) Copper foil peeling strength: After making parallel cuts with a width of 10 mm on the copper foil surface, the copper foil was peeled off in a direction perpendicular to the surface, and the stress at that time was measured using a Tensilon. (4) Dielectric constant and dielectric loss tangent: After peeling off the copper foil, cut it into 50 mm squares and measure with a dielectric loss measuring device.
Measured at IMHZ. (5) Solder heat resistance: Cut the test piece into 25 mm squares, and if both sides are copper-plated, peel off one side to create a measurement sample. Float the sample with the copper foil side down in a solder bath at 260℃ and measure the time until blistering or peeling occurs.

Claims (1)

【特許請求の範囲】 1 () ポリフエニレンエーテル樹脂(a)に分子
中にオレフイン性不飽和二重結合を一個もしく
は二個以上含有する化合物(b)をグラフト重合せ
しめたグラフトしたグラフトポリフエニレンエ
ーテル樹脂と () 多官能性マレイミド類(c)、多官能性シアン
酸エステル類(d)、および前記(c)と(d)との予備反
応物からなる群から選ばれた少なくとも一種 とを混合または予備反応させてなる硬化性の樹脂
組成物の製造法。
[Scope of Claims] 1 () A grafted polyphenylene ether resin (a) grafted with a compound (b) containing one or more olefinically unsaturated double bonds in the molecule. Nylene ether resin and () at least one member selected from the group consisting of a polyfunctional maleimide (c), a polyfunctional cyanate ester (d), and a preliminary reaction product of the above (c) and (d). A method for producing a curable resin composition by mixing or pre-reacting.
JP13440781A 1981-08-27 1981-08-27 Curable resin composition Granted JPS5837043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13440781A JPS5837043A (en) 1981-08-27 1981-08-27 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13440781A JPS5837043A (en) 1981-08-27 1981-08-27 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS5837043A JPS5837043A (en) 1983-03-04
JPH0218325B2 true JPH0218325B2 (en) 1990-04-25

Family

ID=15127656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13440781A Granted JPS5837043A (en) 1981-08-27 1981-08-27 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS5837043A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994531A (en) * 1986-09-29 1991-02-19 General Electric Company Functionalized polyphenylene ethers, method of preparation, and polyphenylene ether-polyamide compositions prepared therefrom
EP2970550B1 (en) * 2013-03-15 2017-08-30 Akzo Nobel Coatings International B.V. Acrylic grafted polyether resins based on phenol stearic acid and coating compositions formed therefrom

Also Published As

Publication number Publication date
JPS5837043A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
CN112204105B (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
US4496695A (en) Curable resin composition
US4389516A (en) Curable polyphenylene ether resin composition
JP2674080B2 (en) Curable resin composition
JPWO2003087230A1 (en) Thermosetting resin composition and prepreg and laminate using the same
US4503186A (en) Curable resin composition
JPH0153298B2 (en)
JPS6121491B2 (en)
JPH01121356A (en) Thermosetting resin composition and prepreg and laminated board produced by using same
JPS58164638A (en) Curable resin composition
CN112236464A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JPS6118937B2 (en)
CN112912445B (en) Thermosetting resin composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
JP2002317085A (en) Thermosetting resin composition and use thereof
JPS58164639A (en) Curable resin composition
US4946928A (en) Curable resin from cyanate aromatic ester and propargyl aromatic ether
JP6977241B2 (en) Thermosetting resin composition, prepreg, laminated board and printed wiring board
CN112266572A (en) Resin composition, prepreg, laminate, and circuit board
JP2017210545A (en) Thermosetting resin composition, and prepreg, copper-clad laminate and printed wiring board using the same
JPH0218325B2 (en)
JP4255759B2 (en) Polyphenylene ether resin composition, prepreg containing the same, laminate, copper-clad laminate and printed wiring board
JP2004307761A (en) Thermosetting resin composition, and prepreg, metal-clad laminate and printed wiring board all using the same
JPH0218324B2 (en)
JPS6349694B2 (en)
JP2822565B2 (en) Curable resin composition