JPH0218301A - Evaporator in methanol reformer - Google Patents
Evaporator in methanol reformerInfo
- Publication number
- JPH0218301A JPH0218301A JP63165905A JP16590588A JPH0218301A JP H0218301 A JPH0218301 A JP H0218301A JP 63165905 A JP63165905 A JP 63165905A JP 16590588 A JP16590588 A JP 16590588A JP H0218301 A JPH0218301 A JP H0218301A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- assembly
- cylindrical
- methanol
- annular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 239000000446 fuel Substances 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 238000002407 reforming Methods 0.000 abstract description 8
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 230000035515 penetration Effects 0.000 abstract 1
- 238000006057 reforming reaction Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 239000004243 E-number Substances 0.000 description 1
- 235000019227 E-number Nutrition 0.000 description 1
- 102000010029 Homer Scaffolding Proteins Human genes 0.000 description 1
- 108010077223 Homer Scaffolding Proteins Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01B—BOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
- B01B1/00—Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
- B01B1/005—Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Industrial Gases (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はメタノールリホーマ−の蒸発器、特に燃料電池
に燃料ガスを供給するためのりホーマーの構成要素であ
る蒸発器に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an evaporator for a methanol reformer, and particularly to an evaporator that is a component of a reformer for supplying fuel gas to a fuel cell.
メタノールリホーマ−は、バーナーの燃焼ガスにより夫
々加熱される蒸発器、過熱器及び改質反応部より構成さ
れ、メタノールと水の混合液が蒸発器を流れる間に除々
に蒸発し、これが過熱器で約300℃の気化燃料となっ
て改質反応部に送られ、水素リッチガスに変換される。A methanol reformer consists of an evaporator, a superheater, and a reforming reaction section that are each heated by combustion gas from a burner.While the methanol and water mixture flows through the evaporator, it gradually evaporates, and this evaporates into the superheater. The fuel becomes vaporized at about 300°C and is sent to the reforming reaction section where it is converted into hydrogen-rich gas.
この水素リッチガスは燃料電池の燃料ガスとして燃料極
に供給され、酸化剤として空気極に供給される空気との
間で電池反応が行はれ電力を発生する。This hydrogen-rich gas is supplied to the fuel electrode as the fuel gas of the fuel cell, and a cell reaction occurs between it and air, which is supplied as an oxidant to the air electrode, to generate electric power.
このようなりホーマーを用いてメタノールを改質する場
合、改質反応部に供給される燃料気化状態の良否が改質
効率向上のため重要である。When reforming methanol using such a homer, the quality of the vaporized state of the fuel supplied to the reforming reaction section is important for improving the reforming efficiency.
従来の蒸発器(イ)は第6図に模式的に示すようチュー
ブをスパイラル状に巻回する方式が主体となっていた。The conventional evaporator (a) mainly uses a method in which a tube is wound in a spiral shape, as schematically shown in FIG.
しかし燃料電池の負荷応答性また起動時間の短縮等の点
で上記方式では対応できない場合が多く、また伝熱面積
を大きくする上で小型軽量化からはづれるなどの問題点
があった。However, in many cases, the above-mentioned method cannot meet the load responsiveness of the fuel cell and shorten the start-up time, and there are also problems in that it is difficult to reduce the size and weight of the fuel cell in order to increase the heat transfer area.
本発明は熱伝導性に富む多孔板の組立体を用いることに
より、小型で伝熱面積が大きく気化効率良好な蒸発器を
提供し、改質反応の効率を向上させることを目的とする
。An object of the present invention is to provide a compact evaporator with a large heat transfer area and good vaporization efficiency by using an assembly of perforated plates with high thermal conductivity, thereby improving the efficiency of the reforming reaction.
前記目的を達成するための本発明による蒸発器は、
1) 間隔を存した内外壁により形成された環状室内を
、熱伝導性良好な金属円筒状組立体で同心的な内外環状
空間に区隔し、
2)前記組立体が多数の透孔を有する内外同心筒状板と
その間に密接介在する筒状金網で構成され、
3)前記内外環状空間を、内外で段差をもつ多数の水平
リブにより内外環状小室に区分し、この内外環状小室間
を、前記組立体の透孔を介して内外交互に連通させ、
4) 上下最端の各前記環状小室に夫々燃料混合液の入
口管と気化燃料の出口管とを設けたことを特徴とする。To achieve the above object, the evaporator according to the present invention has the following features: 1) An annular chamber formed by spaced inner and outer walls is divided into concentric inner and outer annular spaces by a metal cylindrical assembly with good thermal conductivity. 2) The assembly is composed of inner and outer concentric cylindrical plates having a large number of through holes and a cylindrical wire mesh closely interposed therebetween, and 3) The inner and outer annular spaces are formed by a large number of horizontal ribs having steps inside and outside. The inner and outer annular chambers are divided into inner and outer annular chambers, and the inner and outer annular chambers are alternately communicated with the inner and outer chambers through the through holes of the assembly, and 4) the upper and lowermost annular chambers are provided with an inlet pipe for the fuel mixture and vaporized fuel, respectively. It is characterized by being provided with an outlet pipe.
本発明の実施例を以下図につい℃説明する。メタノール
リホーマ−は断熱外装缶(1)の上部にバーナー(2〉
を有し、外装缶(1)の内部には、環状の改質部(3)
とこの改質部(3)と同心的に過熱器(4)と蒸発器く
5)が上下に配rI!、きれている。Examples of the present invention will be described below with reference to the figures. The methanol reformer has a burner (2) on the top of the insulated exterior can (1).
Inside the outer can (1), there is an annular reforming section (3).
A superheater (4) and an evaporator (5) are arranged above and below concentrically with this reforming section (3)! , it's broken.
蒸発器(5)は第2図に示すよう間隔を存した内外’I
(6)(7)によりその間に環状室(8)を形成してお
り、この環状室〈8〉内は熱伝導性良好な金属の円筒状
組立体(9)により長手方向に区隔され、内外環状空間
(10)(11)を構成している。The evaporator (5) has an inner and outer space with a gap as shown in Figure 2.
(6) and (7) form an annular chamber (8) therebetween, and the inside of this annular chamber (8) is separated in the longitudinal direction by a cylindrical assembly (9) made of metal with good thermal conductivity. It constitutes inner and outer annular spaces (10) and (11).
前記筒状組立体(9)は、内外同心の銅製筒状板(12
)(13)とその間に密接介在する銅もしくはステンレ
ス鋼製の筒状金網(14)により構成きれる。内外筒状
板(12)(13)はいづれも厚み1mmで、全面に亘
り孔径11mでピッチ2+m+の多数の透孔(15)が
形成され、組立体く9〉の外径〈即ち外筒状板(13)
の外径)は86m、長さは2501ffllである。組
立体(9)の全透孔数は約7500個あり、その全表面
積は02m2、蒸発器全体として0.3m3の表面積を
有する。The cylindrical assembly (9) has inner and outer concentric copper cylindrical plates (12
) (13) and a cylindrical wire mesh (14) made of copper or stainless steel closely interposed therebetween. The inner and outer cylindrical plates (12) and (13) each have a thickness of 1 mm, and a large number of through holes (15) with a hole diameter of 11 m and a pitch of 2+m+ are formed over the entire surface. Board (13)
Its outer diameter is 86 m, and its length is 2501 ffll. The total number of holes in the assembly (9) is approximately 7500, the total surface area thereof is 02 m2, and the surface area of the evaporator as a whole is 0.3 m3.
尚従来の蒸発器で本発明蒸発器と等価な表面積を得るた
めには、径1/2インチのチューブに置き換えるとその
長きは約7.5mにも相当し、これを径9Qsのスパイ
ラル状にした場合巻数が30で巻高さは380mにもな
る。また逆に本発明蒸発器と同一外形寸法にすれば従来
の蒸発器の表面積は0.18m2となる。In order to obtain a surface area equivalent to that of the evaporator of the present invention using a conventional evaporator, if the tube is replaced with a 1/2 inch diameter tube, the length of the tube would be approximately 7.5 m, and this would be connected in a spiral shape with a diameter of 9Qs. In this case, the number of turns is 30 and the winding height is 380 m. Conversely, if the outer dimensions of the evaporator of the present invention are the same as those of the evaporator of the present invention, the surface area of the conventional evaporator will be 0.18 m2.
内外環状空間(10)(11)は、内外夫々で段差をも
った多数の水平リプ(16)及び〈17)で区分され、
夫々上下に配列する内外環状小室(18)及び〈19)
を形成している。これら各内外小室(18)及び(19
)は、組立体の透孔(15)を介して内外交互に連通し
、第2図矢印の経路で燃料混合液の入口管(20)を有
する最上部外環状小室(19)より気化燃料の出口管(
21)を有する最下部内環状小室(18)に至っている
。The inner and outer annular spaces (10) and (11) are divided by a number of horizontal lips (16) and (17) with steps on the inner and outer sides, respectively.
Inner and outer annular chambers (18) and (19) arranged vertically, respectively
is formed. These inner and outer chambers (18) and (19)
) communicates with the inside and outside alternately through the through holes (15) of the assembly, and the vaporized fuel is supplied from the uppermost outer annular chamber (19) having an inlet pipe (20) for the fuel mixture in the path indicated by the arrow in FIG. Outlet pipe (
21) leading to a lowermost inner annular chamber (18).
タンク〈図示せず)内のメタノール−水混合液(メタノ
ール:水−1モル%=1.3%)は入口管(20)を経
て内外環状小室(18)(19>を矢印の経路で流下す
る間に除々に蒸発し、蒸発燃料は出口管(21)を経て
過熱器(4)に送られる。The methanol-water mixture (methanol:water-1 mol% = 1.3%) in the tank (not shown) passes through the inlet pipe (20) and flows down the inner and outer annular chambers (18) (19) in the path indicated by the arrow. During this time, the fuel vapor gradually evaporates, and the evaporated fuel is sent to the superheater (4) through the outlet pipe (21).
この場合筒状組立体(9)は環状室(8〉の内外壁面(
6)(7)から多数のリブ(16)(17)を介して熱
伝導を受けており、内外筒状板〈12)及び(13〉の
各内外面及び多数の透孔(15)が伝熱面を構成する。In this case, the cylindrical assembly (9) is connected to the inner and outer walls (
6) Heat is conducted from (7) through a large number of ribs (16) and (17), and the inner and outer surfaces of the inner and outer cylindrical plates (12) and (13) and the large number of through holes (15) receive heat transfer. Constitutes a thermal surface.
内外環状小室(18)(19)内はほぼ均圧状態で、燃
料混合液が液相−気液混合相−気相になるに従い順次こ
の圧力も高くなる。液相での透孔(15)内流速は約4
.2X10−’m/sec、 Re(レイノルズ)数
は約5で層流域にあり、透孔(15)を有する円筒状組
立体(9)は内外全周に亘って有効な伝熱面となる。The pressure inside the inner and outer annular small chambers (18) and (19) is approximately equal, and as the fuel mixture changes from liquid phase to gas-liquid mixed phase to gas phase, this pressure gradually increases. The flow velocity in the through hole (15) in the liquid phase is approximately 4
.. 2.times.10-'m/sec, Re (Reynolds) number is about 5, which is in the laminar region, and the cylindrical assembly (9) having the through holes (15) becomes an effective heat transfer surface over the entire inner and outer circumferences.
気相での透孔(15)内流速は約4 m/sec、 R
e数は約250で非常に大きく乱流域となり、円筒状組
立体(9)は前記伝熱面として働く他に、透孔からのノ
ズル吹出し効果が加はり円筒状組立体の熱交換能が向上
する。The flow velocity in the through hole (15) in the gas phase is approximately 4 m/sec, R
When the e number is about 250, it becomes a very large turbulent region, and in addition to the cylindrical assembly (9) acting as the heat transfer surface, the nozzle blowing effect from the through hole is added, improving the heat exchange ability of the cylindrical assembly. do.
このような機能により伝熱面積については、従来の蒸発
器に比較し1.5倍となり、熱通過率も大きくとること
ができると共に熱抵抗が小きくなる。また熱通過率が一
定であるなら伝熱面積の増大により出口側の燃料蒸気温
度は高くなる0例えばリホーマ−が燃焼ガス温度600
℃で作動中20°Cの液体燃料入口温度が従来品では約
260°C1本発明品では約290℃の気化燃料温度に
夫々上昇し、気化燃料には約30℃の温度差が見られる
。Due to these functions, the heat transfer area is 1.5 times larger than that of a conventional evaporator, and the heat transmission rate can be increased as well as the thermal resistance is reduced. Also, if the heat transfer rate is constant, the fuel vapor temperature on the outlet side will increase due to the increase in heat transfer area.For example, if the reformer has a combustion gas temperature of 600
During operation at 0.degree. C., the liquid fuel inlet temperature of 20.degree. C. in the conventional product increases to about 290.degree. C. in the product of the present invention, and a temperature difference of about 30.degree. C. is observed in the vaporized fuel.
L述の如く本発明によれば、熱伝導性に富む円筒状多孔
板組立体を用いることにより小型で伝熱面積が大きく気
化効率の良好な蒸発器が得られ、メタノールリホーマ−
の改質性能の向−Fが達成される。As mentioned above, according to the present invention, by using a cylindrical perforated plate assembly with high thermal conductivity, a compact evaporator with a large heat transfer area and good vaporization efficiency can be obtained, and a methanol reformer.
The improvement performance of -F is achieved.
第1図は本発明蒸発器を備λるメタノールリホーマ−の
模式図、第2図は同上蒸発器の縦断面図、第3図は第2
図のX−X線による断面図、第4図は要部を破断して示
す斜面図、第5図は第3図A内の拡大図であり、第6図
は従来の蒸発器を備えるリホーマ−の模式図である。
2:バーナー 3:改質反応部、4:過熱器、5:蒸発
器、8:環状室、9:円筒状組立体、10.11:内外
環状空間、12.13:内外筒状板、14:筒状金網、
15:透孔、16.17:内外水平リブ、19:
内外環状小室、20:燃料混合液の入口21:気化燃料
の出口管。Fig. 1 is a schematic diagram of a methanol reformer equipped with the evaporator of the present invention, Fig. 2 is a longitudinal sectional view of the same evaporator, and Fig. 3 is a schematic diagram of a methanol reformer equipped with the evaporator of the present invention.
4 is a cross-sectional view taken along the line X-X in the figure, FIG. 4 is a perspective view showing the main part broken away, FIG. 5 is an enlarged view of FIG. 3A, and FIG. 6 is a reformer equipped with a conventional evaporator. - is a schematic diagram. 2: Burner 3: Reforming reaction section, 4: Superheater, 5: Evaporator, 8: Annular chamber, 9: Cylindrical assembly, 10.11: Inner and outer annular spaces, 12.13: Inner and outer cylindrical plates, 14 : Cylindrical wire mesh,
15: Through hole, 16.17: Inner and outer horizontal ribs, 19: Inner and outer annular chambers, 20: Fuel mixture inlet 21: Vaporized fuel outlet pipe.
Claims (2)
、熱伝導性良好な金属円筒状組立体で同心的な内外環状
空間に区隔し、前記組立体が多数の透孔を有する内外筒
状板とその間に密接介在する筒状金網で構成され、前記
内外環状空間を内外で段差をもつ多数の水平リブにより
内外環状小室に区分し、前記内外環状小室間を前記組立
体の透孔を介して内外交互に連通させ、上下最端の各前
記環状小室に夫々燃料混合液の入口管と気化燃料の出口
管とを設けたことを特徴とするメタノールホーマーの蒸
発器(1) An annular chamber formed by spaced inner and outer walls is divided into concentric inner and outer annular spaces by a metal cylindrical assembly with good thermal conductivity, and the assembly has an inner and outer space with a large number of through holes. It is composed of a cylindrical plate and a cylindrical wire mesh closely interposed therebetween, and the inner and outer annular spaces are divided into inner and outer annular chambers by a number of horizontal ribs with steps inside and outside, and the inner and outer annular chambers are separated by a through hole of the assembly. An evaporator for a methanol former, characterized in that the upper and lowermost annular chambers are provided with an inlet pipe for a fuel mixture and an outlet pipe for vaporized fuel, respectively, with the annular chambers communicating alternately between the inside and the outside via the annular chambers.
は銅もしくはステンレス鋼で構成されていることを特徴
とする特許請求の範囲第1項記載のメタノールリホーマ
ーの蒸発器(2) The evaporator for the methanol reformer according to claim 1, wherein the inner and outer cylindrical plates are made of copper plates, and the cylindrical wire mesh is made of copper or stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63165905A JPH0218301A (en) | 1988-07-05 | 1988-07-05 | Evaporator in methanol reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63165905A JPH0218301A (en) | 1988-07-05 | 1988-07-05 | Evaporator in methanol reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0218301A true JPH0218301A (en) | 1990-01-22 |
JPH0515641B2 JPH0515641B2 (en) | 1993-03-02 |
Family
ID=15821226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63165905A Granted JPH0218301A (en) | 1988-07-05 | 1988-07-05 | Evaporator in methanol reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0218301A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994011076A1 (en) * | 1992-11-17 | 1994-05-26 | Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Load-following vaporizer apparatus and method |
JP2001064658A (en) * | 1999-08-24 | 2001-03-13 | Ishikawajima Harima Heavy Ind Co Ltd | Evaporator |
JPWO2009050799A1 (en) * | 2007-10-17 | 2011-02-24 | 向井 孝 | Hair iron |
-
1988
- 1988-07-05 JP JP63165905A patent/JPH0218301A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994011076A1 (en) * | 1992-11-17 | 1994-05-26 | Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Load-following vaporizer apparatus and method |
JP2001064658A (en) * | 1999-08-24 | 2001-03-13 | Ishikawajima Harima Heavy Ind Co Ltd | Evaporator |
JP4599635B2 (en) * | 1999-08-24 | 2010-12-15 | 株式会社Ihi | Evaporator |
JPWO2009050799A1 (en) * | 2007-10-17 | 2011-02-24 | 向井 孝 | Hair iron |
Also Published As
Publication number | Publication date |
---|---|
JPH0515641B2 (en) | 1993-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8557451B2 (en) | Fuel processor for fuel cell systems | |
US20030049184A1 (en) | Methanol reforming apparatus | |
US6998096B2 (en) | Fuel reformer for use in fuel cell | |
US7232471B2 (en) | Hydrogen generator and fuel cell system comprising the same | |
JPH0692875B2 (en) | Fuel evaporator | |
JP2003252604A (en) | Apparatus for generating hydrogen and fuel cell system equipped with it | |
JPH0326326A (en) | Modifying equipment for fuel cell | |
KR20030055151A (en) | Hydrogen generating apparatus and fuel cell system using the apparatus | |
JPS62260701A (en) | Raw material reforming apparatus | |
KR960034070A (en) | Methanol Reformer for High Purity Hydrogen Production | |
JPH0218301A (en) | Evaporator in methanol reformer | |
JP3968686B2 (en) | Methanol reformer | |
US4106891A (en) | Electrical heating device | |
JP3369846B2 (en) | Reactor for fuel cell | |
JPS61106401A (en) | Reforming apparatus | |
US7258081B2 (en) | Compact water vaporizer for dynamic steam generation and uniform temperature control | |
JP2016177880A (en) | Reforming water evaporator and power generator | |
JP2733846B2 (en) | Reformer for fuel cell | |
JPH0523541Y2 (en) | ||
JP2733845B2 (en) | Reformer for fuel cell | |
JP3899261B2 (en) | Evaporator for reformer | |
JPS6321204A (en) | Reforming device for fuel battery | |
JPH0329723B2 (en) | ||
JP2001135331A (en) | Fuel evaporator | |
US20120014864A1 (en) | Hybrid foam/low-pressure autothermal reformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |