JPH02182812A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH02182812A
JPH02182812A JP88789A JP88789A JPH02182812A JP H02182812 A JPH02182812 A JP H02182812A JP 88789 A JP88789 A JP 88789A JP 88789 A JP88789 A JP 88789A JP H02182812 A JPH02182812 A JP H02182812A
Authority
JP
Japan
Prior art keywords
action
inference
rule group
situation
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP88789A
Other languages
Japanese (ja)
Other versions
JPH0663005B2 (en
Inventor
Shigeru Amano
繁 天野
Takeshi Takarabe
財部 毅
Takashi Nakamori
中森 孝
Hiroshi Oda
博史 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP88789A priority Critical patent/JPH0663005B2/en
Priority to US07/450,390 priority patent/US4976780A/en
Priority to EP93100520A priority patent/EP0542717B1/en
Priority to EP94117502A priority patent/EP0641863B1/en
Priority to ES94117502T priority patent/ES2157233T3/en
Priority to EP89313087A priority patent/EP0375282B1/en
Priority to ES89313087T priority patent/ES2085285T3/en
Priority to ES93100520T priority patent/ES2097936T3/en
Priority to AU46884/89A priority patent/AU612531B2/en
Priority to CN89109414.8A priority patent/CN1021833C/en
Publication of JPH02182812A publication Critical patent/JPH02182812A/en
Publication of JPH0663005B2 publication Critical patent/JPH0663005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To quickly and accurately make the decision of the operation and to improve the operational level by making a knowledge base of hierarchical structure for executing inferences of rule group for protection, rule group for attack and rule group for improving distribution, in order. CONSTITUTION:At first, action 'yes' or 'no' 3 is decided with inference result of 'operational variation temporary inference' 2 in the rule group for protection, and in the case of the action 'yes', 'retreating action instruction' 4 is executed to make 'inference stop' 12. In the case of the action 'no' with the decision, action 'yes' or 'no' 6 is decided with inference result of 'operational margin temporary inference' 5 in the rule group for attack and in the case of the action 'yes', 'attack action instruction' 7 is executed to make 'inference stop' 12. Then, in the case of the action 'no', desirably, action 'yes' or 'no' 9 is decided with inference result of 'distribution- improving temporary inference' 8 in the rule group for improving distribution and in the case of the action 'yes', 'distribution-improving action instruction' 10 is executed to make 'inference stop' 12. In the case of the action 'no' with the decision, 'actual condition-keeping instruction' 11 is executed to make 'inference stop' 12. By this method, decision of the operation is quickly and accurately executed and the operational level is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、知識工学システムを用いた高炉の操業方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of operating a blast furnace using a knowledge engineering system.

〔従来の技術〕[Conventional technology]

高炉操業は、非常に多くの操業因子が相互に関連し合っ
て成立っているものであり、さらに設備条件等から直接
視覚で炉内を監視することが困難なため、操業レベルの
維持向上を図るためには高炉に取付けられたセンサー等
の情報を総合的に判断し、的確に制御する必要がある。
Blast furnace operation is made up of a large number of interrelated operating factors, and it is difficult to directly visually monitor the inside of the furnace due to equipment conditions, etc., so it is necessary to maintain and improve the operating level. In order to achieve this goal, it is necessary to comprehensively judge information from sensors installed in the blast furnace and control it accurately.

このため現在でも高炉の日常操業管理には操業者の経験
や知識が重要なものとなっている。
For this reason, the experience and knowledge of operators is still important for the daily operational management of blast furnaces.

知識工学システムは、このような人間のノウハウを計算
機に取込んで処理することができるため、特開昭62−
270708号公報及び特開昭62−270712号公
報に示されているような高炉操業管理への知識工学シス
テムの導入が進められている。操業管理のシステム化に
より、情報の見落としや判断ミス等の問題が無くなり操
業管理の適正化や標準化が図られる。
Knowledge engineering systems can incorporate such human know-how into computers and process it.
Knowledge engineering systems are being introduced into blast furnace operation management as shown in Japanese Patent Application Laid-open No. 270708 and Japanese Patent Application Laid-Open No. 62-270712. By systemizing operational management, problems such as oversight of information and mistakes in judgment will be eliminated, and operational management will be optimized and standardized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特開昭62−270708号公報や特開昭62−270
712号公報に開示さている知識工学システムでは、推
論で得られる結果として、吹抜は及びスリップの予測、
炉熱の制in+というような、高炉内現象の部分的な項
目についての知識ベースを設け、それぞれ独立して推論
を行っている。しかしながら、通気、荷降下、炉熱等の
炉内現象は、1つの高炉内プロセスとして相互に関連し
合って生じているものであり、高炉の操業管理システム
としてはこれら個々の現象を総合的に判断しアクション
に結びつける必要がある。さらに、実操業のアクション
としては、炉況異常の回避のための燃料比の増加や送風
量の減少等の後退アクション(逃げのアクション)、操
業の安定度により燃料比低減等の逃げアクション後の戻
しのアクションや操業レベルの向上のための操業レベル
向上アクション(攻めのアクション)等があるが、従来
のシステムでは、これら日常操業管理全般を網羅するこ
とができないという問題があった。
JP-A-62-270708 and JP-A-62-270
In the knowledge engineering system disclosed in Publication No. 712, the results obtained by inference include prediction of blowout and slippage,
A knowledge base has been established for partial items of phenomena inside the blast furnace, such as the control of furnace heat, and inferences are made independently for each item. However, in-furnace phenomena such as ventilation, loading unloading, and furnace heat occur in an interconnected manner as one in-blast furnace process, and a blast furnace operation management system should comprehensively handle these individual phenomena. It is necessary to make decisions and link them to action. Furthermore, actions in actual operation include retreat actions (escape actions) such as increasing the fuel ratio and decreasing air flow to avoid furnace condition abnormalities, and escape actions such as reducing the fuel ratio depending on the stability of the operation. There are reversal actions and operational level improvement actions (offensive actions) to improve the operational level, but conventional systems have a problem in that they cannot cover all of these daily operational management.

そこで、本発明はこのような問題点を解決するためにな
されたものであり、知識工学システムにより日常操業全
般を守備範囲とした日常操業管理に基づいた高炉の操業
方法を得ることを目的とする。
Therefore, the present invention has been made to solve these problems, and its purpose is to obtain a blast furnace operating method based on daily operation management that covers the entire daily operation using a knowledge engineering system. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る高炉の操業方法は、(1)知識工学を用い
て高炉の炉内状況を推論し、この結果に基づいて操業ア
クションを行う方法において、第1段階として各種の高
炉の操業変動を予測し、燃料比の増加や送風量の減少等
の後退アクションを導き出す防御用ルール群により炉内
状況判断を行い、該防御用ルール群でアクション必要の
事態が発生した場合アクション指示を行って推論を停止
し、該防御用ルール群でアクション発生に至らない場合
に、第2段階として操業の安定度により燃料比低減等の
操業レベルの向上アクションを導き出す攻撃用ルール群
により炉内状況判断を行い、該攻撃用ルール群でアクシ
ョン必要の事態が発生した場合アクション指示を行って
推論を停止し、該攻撃用ルール群でアクション発生に至
らない場合に現状維持とするような構成とした知識ベー
スにより炉内状況を推論し、この結果に基づいて操業ア
クションを行うことを特徴とする高炉の操業方法及び(
2)攻撃用ルール群でアクション発生に至らない場合に
、第3段階として反応効率の向上や炉体放散熱の低減等
の可能性を判断し適正な装入物分布アクションを導き出
す分布改善ルール群により炉内状況判断を行い、該分布
改善ルール群でアクション必要の事態が発生した場合ア
クション後示を行って推論を停止し、該分布改善ルール
群でアクション発生に至らない場合に現状維持とするよ
うな構成とした上記1項記載の方法である。
The blast furnace operating method according to the present invention includes (1) a method of inferring the internal situation of a blast furnace using knowledge engineering and taking operational actions based on the results; the first step is to analyze various blast furnace operating fluctuations; The situation inside the reactor is judged based on a set of defensive rules that predict and derive retreat actions such as increasing the fuel ratio or decreasing the amount of air flow, and if a situation that requires action occurs using the set of defensive rules, instructs the action and makes inferences. If the defensive rule group does not lead to the occurrence of an action, the second step is to judge the situation inside the reactor using an offensive rule group that derives actions to improve the operational level, such as reducing the fuel ratio, depending on the stability of the operation. , based on a knowledge base configured such that when a situation that requires an action occurs in the attack rule group, an action instruction is given and inference is stopped, and when the attack rule group does not lead to the occurrence of an action, the status quo is maintained. A blast furnace operating method and (
2) If the attack rules do not result in an action, the third step is a distribution improvement rule group that determines the possibility of improving reaction efficiency, reducing furnace body heat dissipation, etc., and derives an appropriate charge distribution action. The situation inside the reactor is judged based on the distribution improvement rule group, and if a situation that requires an action occurs, an action is indicated and the inference is stopped, and if the distribution improvement rule group does not lead to the occurrence of an action, the status quo is maintained. The method described in item 1 above is configured as follows.

〔作用〕[Effect]

本発明においては、防御用ルール群により炉況異常の回
避のための逃げのアクション判断を行った後、攻撃用ル
ール群により逃げアクションの戻し及び操業レベルの向
上のための攻めのアクション判断を行うものであり、望
ましくは、更に分布改善ルール群により攻めアクション
を行い得る操業状況とするための分布改善アクション判
断を行うことで、日常操業の全般を網羅することができ
る。
In the present invention, after a defensive rule group is used to determine an escape action to avoid reactor condition abnormalities, an offensive rule group is used to determine an offensive action to reverse the escape action and improve the operational level. Therefore, it is desirable to further cover the entire day-to-day operation by determining the distribution improvement action to make the operational situation suitable for taking aggressive action based on the distribution improvement rule group.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。第1
図は、本発明の知識ベースによる推論の概略フロー図で
ある。推論開始1すると、まず操業変動仮説推論2を実
行する。該推論結果でのアクション有無3を判定し、ア
クションが有れば後退アクション指示4を行い推論停止
12とする。
Embodiments of the present invention will be described below based on the drawings. 1st
The figure is a schematic flow diagram of inference based on the knowledge base of the present invention. When inference starts 1, operation fluctuation hypothesis inference 2 is first executed. It is determined whether there is an action or not (3) based on the inference result, and if there is an action, a backward action instruction (4) is issued and the inference is stopped (12).

該推論結果でのアクション有無3の判定により、アクシ
ョンが無い場合、操業余裕仮説推論5を実行する。該推
論結果でのアクション有無6を判定し、アクションが有
れば攻撃アクション指示7を行い、推論停止12とする
。該推論結果でのアクション有無6の判定により、アク
ションが無い場合は現状維持として元に戻ることも出来
るが、望ましくは更に分布改善仮説推論8を実行する。
As a result of the determination of the presence or absence of action 3 based on the inference result, if there is no action, operation margin hypothesis inference 5 is executed. It is determined whether there is an action or not (6) in the inference result, and if there is an action, an attack action instruction (7) is issued and the inference is stopped (12). If there is no action based on the determination of the presence or absence of an action 6 based on the inference result, it is possible to maintain the status quo and return to the previous state, but desirably, the distribution improvement hypothesis inference 8 is further executed.

該推論結果でのアクション有無9を判定し、アクション
が有れば分布改善アクション指示10を行い、推論停止
12とする。該推論結果でのアクション有無9の判定に
より、アクションが無い場合、現状維持指示11を行い
、推論停止12とする。上記後退アクション指示4、攻
撃アクション指示7、分布改善アクション指示10、及
び現状維持指示11は表示端末へのメツセージ出力でも
良いし、プロセスコンピュータへの制御データの送信で
も良い。
It is determined whether there is an action or not (9) in the inference result, and if there is an action, a distribution improvement action instruction (10) is issued and the inference is stopped (12). If there is no action as determined by the action presence/absence 9 based on the inference result, the status quo maintenance instruction 11 is issued and the inference is stopped 12. The retreat action instruction 4, attack action instruction 7, distribution improvement action instruction 10, and status quo maintenance instruction 11 may be output as messages to a display terminal, or may be sent as control data to a process computer.

各推論に関し、以下にさらに詳しい説明する。Each inference will be explained in more detail below.

第2図は、第1図の操業変動仮説推論2の内容の説明図
である。中心ガス流が弱く、炉内通気抵抗が上昇し、炉
体レンガ温度が上昇すると中心流不足操業変動15が生
じ、周辺ガス流が弱く、熱レベルが低下し、炉体レンガ
温度が低下した時に周辺流不足操業変動16が生じると
いった現象を知識表現した操業変動仮説14と検出端等
のデータ13に基づいて、現状の炉内状況が上記仮説に
該当するかどうかの推論17を実行し、後退最終判定1
8を行う。
FIG. 2 is an explanatory diagram of the contents of operation fluctuation hypothesis inference 2 in FIG. 1. When the central gas flow is weak, the ventilation resistance in the furnace increases, and the furnace brick temperature increases, the central flow insufficient operation fluctuation 15 occurs, and when the peripheral gas flow is weak, the heat level decreases, and the furnace brick temperature decreases. Based on the operational fluctuation hypothesis 14 that knowledgeably expresses the phenomenon that operational fluctuation 16 due to insufficient peripheral flow occurs, and data 13 such as the detection end, inference 17 is performed to determine whether the current situation inside the reactor corresponds to the above hypothesis, and retreat is performed. Final judgment 1
Do step 8.

第3図は、第1図の操業余裕仮説推論5の内容の説明図
である。ガス流分布が適正状態であり、熱レベルが高(
、通気抵抗が低目安定であり、炉体レンガ温度が高目で
あり、荷降下が安定している時、操業レベルに余裕が有
るという状態を知識表現した操業余裕仮説19と、検出
端等のデータ13に基づいて、現状推論17L、攻撃最
終判定20を行う。
FIG. 3 is an explanatory diagram of the contents of operation margin hypothesis inference 5 in FIG. 1. The gas flow distribution is in proper condition and the heat level is high (
, the operating margin hypothesis 19, which expresses the state that there is a margin in the operating level when the ventilation resistance is low and stable, the furnace brick temperature is high, and the loading is stable, and the detection end etc. Based on the data 13, a current state inference 17L and a final attack judgment 20 are made.

第4図は、第1図の分布改善仮説推論8の内容の説明図
である。中心ガス流が強目の時、中心部での反応効率改
善のため中心部への鉱石の装入量増等による中心ガス流
抑制可能22と判定し、同様に、中間ガス流が強、目の
時、中間ガス流抑制可能23、周辺ガス流が強目の時、
周辺ガス流抑制可能24と判定するように構成した分布
改善仮説21と、検出端等のデータ13に基づいて、推
論17を実行し、分布改善最終判定25を行う。
FIG. 4 is an explanatory diagram of the contents of distribution improvement hypothesis inference 8 in FIG. 1. When the center gas flow is strong, it is determined that the center gas flow can be suppressed by increasing the amount of ore charged to the center to improve the reaction efficiency in the center. When , the intermediate gas flow can be suppressed 23, and when the surrounding gas flow is strong,
Based on the distribution improvement hypothesis 21 configured to determine that the surrounding gas flow can be suppressed 24 and the data 13 of the detection end, etc., an inference 17 is executed and a distribution improvement final determination 25 is made.

上記のように構成したシステムによる高炉操業の実施例
を、第5図に示す、1日の9° (9時)より分布状況
が周辺流不足となっており、鉱石の装入位置を中心側ヘ
シフトする鉱石内域りによる周辺流化分布調整■の指示
に従い実炉アクションを実施した。以降13°よりガス
流分布状況を適正となっている。−時的な周辺流不足に
より炉腹レンガ温度が10°頃より低下しているが、周
辺流化分布調整を実施しているため、13°で低下をく
い止められ、以降上昇方向に転じている。13°頃には
防御用ルール群により炉熱低下が予測されており、燃料
比5kg/l−p上昇による増熱0の指示に従いアクシ
ョンを実行している。この結果、溶銑温度の低下は15
°で止まり以降回復している。炉熱状況の回復とその他
の操業状況の安定により23時攻撃用ルール群から、増
熱アクションの戻しとして燃料比5kg/l−p低減に
よる減熱0の指示がなされ、アクションを実施している
An example of blast furnace operation using the system configured as described above is shown in Figure 5. From 9 o'clock on the 1st, the distribution situation was insufficient in peripheral flow, and the ore charging position was shifted toward the center. Actual reactor action was carried out in accordance with the instructions for adjusting the peripheral flow distribution due to the internal ore shift. From then on, the gas flow distribution situation became appropriate from 13°. - Due to a temporary lack of peripheral flow, the temperature of the furnace bricks has decreased from around 10 degrees, but because we have adjusted the peripheral flow distribution, the decrease was stopped at 13 degrees, and it has since started to rise. . At around 13 degrees, a decrease in the furnace heat is predicted by the group of protective rules, and actions are taken in accordance with the instruction for zero heat increase due to a fuel ratio increase of 5 kg/l-p. As a result, the drop in hot metal temperature was 15
It stopped at ° and has since recovered. Due to the recovery of the furnace heat status and the stabilization of other operating conditions, the 23:00 attack rule group instructed us to reduce the heat to 0 by reducing the fuel ratio by 5 kg/l-p as a return to the heat increase action, and we are implementing the action. .

さらに2日の8時には、攻撃用ルール群により炉熱状況
に余裕有りと判断され、燃料比2kg/l−p低減によ
る減熱Oの指示に従ってアクションを実施している。1
7°には、通気状況や炉熱状況などは、後退、攻撃共ア
クションを実施する状態にはなっていないが、分布改善
ルール群により、周辺流弾の状態と判断され、鉱石外域
りによる周辺流抑制分布改善○の指示がなされ、アクシ
ョンを実行している。この結果、ガス流分布状況は再び
適正に戻っている。
Furthermore, at 8:00 on the 2nd, it was determined that the reactor heat status had sufficient margin according to the attack rule group, and actions were taken in accordance with the instructions for heat reduction O by reducing the fuel ratio by 2 kg/l-p. 1
At 7°, ventilation conditions and furnace heat conditions are not in a condition to carry out retreat or joint attack actions, but according to the distribution improvement rules, it is determined that there are stray bullets in the surrounding area, and the surrounding area due to the outer area of the ore Flow suppression distribution improvement ○ instruction has been given and action is being taken. As a result, the gas flow distribution situation has returned to being appropriate again.

この実施例においては、本発明の知識ベースによる推論
をlO分周期で行っており、図中O−Oがアクション発
生に至ったものであり、その他の推論結果はすべて現状
維持である。
In this embodiment, inference based on the knowledge base of the present invention is performed every 10 minutes, and O-O in the figure indicates the occurrence of an action, and all other inference results remain as they are.

C発明の効果〕 知識工学システムにより高炉の操業を行うにあたり、知
識ベースを防御用ルール群、攻撃用ルール群、分布改善
用ルール群の順に推論を実行する階層構造としたことに
より、異常予知だけでなく、後退アクション後の戻し、
操業レベル向上のためのアクション等、日常操業判断の
ほとんどを、可読性の良い構造でシステムに取込んむ事
ができると共に、本システムの使用により、操業判断の
迅速化、的確化により操業レベルの向上が図られる。
Effects of invention C] When operating a blast furnace using a knowledge engineering system, the knowledge base has a hierarchical structure in which inference is executed in the order of a group of defense rules, a group of attack rules, and a group of rules for improving distribution, so that only abnormality prediction can be performed. Not return after retreat action,
Most of the daily operational decisions, such as actions to improve the operational level, can be incorporated into the system in a highly readable structure, and by using this system, the operational level can be improved by making operational decisions faster and more accurate. is planned.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の知識ベースによる推論の概略フロー
図、 第2図は、第1図中操業変動仮説推論の内容の説明図、 第3図は第1図中操業余裕仮説推論の内容の説明図、 第4図は第1図中分布改善仮説推論の内容の説明図、 第5図は本発明のシステムによる高炉操業の実施例を示
す説明図である。 出 願 人 新日本製鐵株式会社 代理人弁理士  青  柳      稔第4図 第1図
Figure 1 is a schematic flow diagram of inference based on the knowledge base of the present invention. Figure 2 is an explanatory diagram of the content of the operation fluctuation hypothesis inference in Figure 1. Figure 3 is the content of the operation margin hypothesis inference in Figure 1. FIG. 4 is an explanatory diagram of the content of the distribution improvement hypothesis inference in FIG. 1, and FIG. 5 is an explanatory diagram showing an example of blast furnace operation by the system of the present invention. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Figure 4 Figure 1

Claims (1)

【特許請求の範囲】 1、知識工学を用いて高炉の炉内状況を推論し、この結
果に基づいて操業アクションを行う方法において、 第1段階として各種の高炉の操業変動を予測し、燃料比
の増加や送風量の減少等の後退アクションを導き出す防
御用ルール群により炉内状況判断を行い、該防御用ルー
ル群でアクション必要の事態が発生した場合アクション
指示を行って推論を停止し、該防御用ルール群でアクシ
ョン発生に至らない場合に、 第2段階として操業の安定度により燃料比低減等の操業
レベルの向上アクションを導き出す攻撃用ルール群によ
り炉内状況判断を行い、該攻撃用ルール群でアクション
必要の事態が発生した場合アクション指示を行って推論
を停止し、該攻撃用ルール群でアクション発生に至らな
い場合に現状維持とするような構成とした知識ベースに
より炉内状況を推論し、この結果に基づいて操業アクシ
ョンを行うことを特徴とする高炉の操業方法。 2、攻撃用ルール群でアクション発生に至らない場合に
、 第3段階として反応効率の向上や炉体放散熱の低減等の
可能性を判断し適正な装入物分布アクションを導き出す
分布改善ルール群により炉内状況判断を行い、該分布改
善ルール群でアクション必要の事態が発生した場合アク
ション指示を行って推論を停止し、該分布改善ルール群
でアクション発生に至らない場合に現状維持とするよう
な構成とした請求項1記載の高炉の操業方法。
[Claims] 1. In a method of inferring the internal situation of a blast furnace using knowledge engineering and taking operational actions based on this result, the first step is to predict the operational fluctuations of various blast furnaces, and to determine the fuel ratio. The situation inside the reactor is judged based on a group of defensive rules that derive retreat actions such as an increase in air flow or a decrease in air flow, and if a situation that requires action occurs using the group of defensive rules, an action instruction is given and reasoning is stopped. If the defensive rule group does not lead to an action, the second step is to judge the situation inside the reactor using an attack rule group that derives actions to improve the operational level, such as reducing the fuel ratio, depending on the stability of the operation, and then execute the attack rule. When a situation that requires action occurs in a group, an action instruction is given and inference is stopped, and if the attack rule group does not lead to the occurrence of an action, the status quo is maintained.Inferring the situation inside the reactor. A method for operating a blast furnace characterized by performing operation actions based on the results. 2. If the attack rules do not result in an action, the third step is a distribution improvement rule group that determines the possibility of improving reaction efficiency, reducing furnace body heat dissipation, etc., and derives an appropriate charge distribution action. The situation inside the reactor is judged based on the rules, and if a situation that requires an action occurs with the distribution improvement rule group, an action instruction is given and the inference is stopped, and if the distribution improvement rule group does not lead to the occurrence of an action, the status quo is maintained. 2. The method of operating a blast furnace according to claim 1, wherein the blast furnace is configured as follows.
JP88789A 1988-12-20 1989-01-06 Blast furnace operation method Expired - Fee Related JPH0663005B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP88789A JPH0663005B2 (en) 1989-01-06 1989-01-06 Blast furnace operation method
US07/450,390 US4976780A (en) 1988-12-20 1989-12-14 Blast furnace operation management method and apparatus
EP93100520A EP0542717B1 (en) 1988-12-20 1989-12-14 Blast furnace operation management method and apparatus
EP94117502A EP0641863B1 (en) 1988-12-20 1989-12-14 Blast furnace operation management method and apparatus
ES94117502T ES2157233T3 (en) 1988-12-20 1989-12-14 METHOD AND APPARATUS FOR THE MANAGEMENT OF THE OPERATION OF A HIGH OVEN.
EP89313087A EP0375282B1 (en) 1988-12-20 1989-12-14 Blast furnace operation management method and apparatus
ES89313087T ES2085285T3 (en) 1988-12-20 1989-12-14 METHOD AND APPARATUS FOR THE MANAGEMENT OF THE OPERATION OF A HIGH OVEN.
ES93100520T ES2097936T3 (en) 1988-12-20 1989-12-14 METHOD AND APPARATUS FOR CONDUCTING THE OPERATION OF A HIGH OVEN.
AU46884/89A AU612531B2 (en) 1988-12-20 1989-12-18 Blast furnace operation management method and apparatus
CN89109414.8A CN1021833C (en) 1988-12-20 1989-12-20 Blast furnace operation management method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP88789A JPH0663005B2 (en) 1989-01-06 1989-01-06 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH02182812A true JPH02182812A (en) 1990-07-17
JPH0663005B2 JPH0663005B2 (en) 1994-08-17

Family

ID=11486187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88789A Expired - Fee Related JPH0663005B2 (en) 1988-12-20 1989-01-06 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JPH0663005B2 (en)

Also Published As

Publication number Publication date
JPH0663005B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
He et al. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network
Patriarca et al. The Functional Resonance Analysis Method for a systemic risk based environmental auditing in a sinter plant: A semi-quantitative approach
JPS61110203A (en) Formula manipulation controlling system
Hashimoto et al. Practical operation guidance on thermal control of blast furnace
TWI788892B (en) Work instruction method, blast furnace operation method, molten iron manufacturing method, work instruction device
MacRosty et al. Dynamic optimization of electric arc furnace operation
Choi et al. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks
Li et al. Probabilistic analysis of aluminium production explosion accidents based on a fuzzy Bayesian network
Do Koo et al. Prediction of the internal states of a nuclear power plant containment in LOCAs using rule-dropout deep fuzzy neural networks
JPH02182812A (en) Method for operating blast furnace
Li et al. Risk Assessment of Oxygen Lance Burning Loss Using Bow‐Tie Analysis Based on Fuzzy Theory
Warren et al. Development and implementation of a generic blast-furnace expert system
JPS62270708A (en) Control system for blast furnace heat
EP3989013B1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for producing hot metal, and device for controlling process
Cateni et al. The importance of variable selection for neural networks-based classification in an industrial context
Zeng et al. Intelligent optimization method for the dynamic scheduling of hot metal ladles of one-ladle technology on ironmaking and steelmaking interface in steel plants
JPH0637647B2 (en) Blast furnace operation management system
Gao-peng et al. Silicon content prediction of hot metal in blast furnace based on attention mechanism and CNN-IndRNN model
KR19990050918A (en) Static Control Method of Converter Operation Using Expert System
JP2907621B2 (en) Method and apparatus for automatically acquiring operation knowledge
EP4155421A1 (en) Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
KR102606436B1 (en) Melting Furnace System, and Boiling Prediction System and Prediction Method for This
Zarandi et al. A multi-agent expert system for steel grade classification using adaptive neuro-fuzzy systems
Putra et al. Simplification of the Calcine Transfer Control System Architecture for Ferronickel Projects in System Reliability Assessment
Kolesnikova et al. Calculation of equilibrium in the system metal-slag during steelmaking in electric arc furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees