JPH02180728A - Heating furnace for producing high-purity quartz preform - Google Patents

Heating furnace for producing high-purity quartz preform

Info

Publication number
JPH02180728A
JPH02180728A JP63332005A JP33200588A JPH02180728A JP H02180728 A JPH02180728 A JP H02180728A JP 63332005 A JP63332005 A JP 63332005A JP 33200588 A JP33200588 A JP 33200588A JP H02180728 A JPH02180728 A JP H02180728A
Authority
JP
Japan
Prior art keywords
furnace
core tube
furnace core
tube
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63332005A
Other languages
Japanese (ja)
Other versions
JPH0442339B2 (en
Inventor
Ichiro Tsuchiya
一郎 土屋
Shinji Ishikawa
真二 石川
Masahide Saito
斉藤 真秀
Yoichi Ishiguro
洋一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63332005A priority Critical patent/JPH02180728A/en
Priority to AU46870/89A priority patent/AU626362B2/en
Priority to GB8928691A priority patent/GB2226628B/en
Priority to US07/459,299 priority patent/US5032079A/en
Priority to KR898920189A priority patent/KR920001386B1/en
Priority to EP90106551A priority patent/EP0450124B1/en
Publication of JPH02180728A publication Critical patent/JPH02180728A/en
Publication of JPH0442339B2 publication Critical patent/JPH0442339B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To prevent the intrusion of the atmosphere into a heating atmosphere with a short device and simple structure by providing a means for vertically separating a furnace core tube in a heating furnace for passing a glass body vertically through the inside of the furnace core tube piercing the furnace body having a hollow zone heater. CONSTITUTION:A carbon heater 4 and the furnace core tube 3 are provided inside the furnace body 5 in the heating furnace. A quartz partition 23 pierced with a gas passage hole 24 is provided at the protruding part of the tube 3 above the furnace body 5. A high-purity quartz porous glass preform 1 is firstly fixed through a support 2 to a rotatable and liftable chuck, the upper lid 37 of the tube 3 is opened, and the preform 1 is lowered into the upper part 34 of the tube 3. In this case, the partition 23 is closed, and a purging gaseous N2 is introduced into the tube 3 from an inlet 7 for the atmospheric gas in the furnace core tube. Accordingly, the atmosphere is not introduced even when the upper lid 37 is opened. When the treated preform is discharged from the furnace, the preform is raised above the partition 23, the atmospheric gas is exhausted from an exhaust port 21 while introducing gaseous N2 from the inlet 7, the inside of the tube 3 is filled completely with the N2 atmosphere, the partition 23 is closed, and the upper lid 37 is opened.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光ファイバなどの製造に用いる高純度石英ガ
ラス母材の加熱炉に関し、更に詳しくは、多孔質ガラス
体を加熱処理(たとえば脱水、ドーパント添加、焼結)
して光ファイバなどの製造に用いる透明な高純度石英ガ
ラス母材とする加熱炉に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heating furnace for a high-purity quartz glass base material used in the production of optical fibers, and more specifically, the present invention relates to a heating furnace for a high-purity quartz glass base material used in the production of optical fibers, etc. , dopant addition, sintering)
This invention relates to a heating furnace that uses transparent high-purity quartz glass as a base material for manufacturing optical fibers and the like.

し従来の技術と解決すべき課題1 光フアイバ用ガラス母材を製造するために使用する加熱
炉において、従来、例えば特公昭58−42136及び
58−58299号公報並びに特開昭60−86049
号公報に示されているように、炉芯管として石英ガラス
管を使用することが提案されている。しかしながら、石
英ガラス管には高温で変形し易いという重大な問題点が
存在する。実際、1500°C以上で加熱炉を使用した
場合、炉芯管の支持方法と炉芯管内外の差圧とを厳密に
調節しないと石英ガラス管が変形し、使用不可能となっ
てしまう。また、1150℃以上で長時間使用すると、
石英ガラス管において失透(結晶化)が生じる。ガラス
層と失透層とは、熱膨張係数が異なるため、生じた歪に
よって、炉芯管が破壊するという問題点も存在する。
Conventional techniques and problems to be solved 1 In heating furnaces used to manufacture glass preforms for optical fibers, conventional techniques have been used, for example, in Japanese Patent Publications No. 58-42136 and No. 58-58299 and Japanese Patent Application Laid-open No. 60-86049.
As shown in the publication, it has been proposed to use a quartz glass tube as a furnace core tube. However, a serious problem with quartz glass tubes is that they are easily deformed at high temperatures. In fact, when a heating furnace is used at temperatures above 1500°C, the quartz glass tube will deform and become unusable unless the method of supporting the furnace core tube and the differential pressure inside and outside the furnace core tube are strictly controlled. Also, if you use it for a long time at 1150℃ or higher,
Devitrification (crystallization) occurs in the quartz glass tube. Since the glass layer and the devitrification layer have different coefficients of thermal expansion, there is also the problem that the furnace core tube may be destroyed by the resulting strain.

本発明者等は、この問題点を解決するため、炉芯管とし
てカーボン管が有効であることを既に見出している(例
えば、国際出願公開WO38106145参照)。カー
ボン管は、2000℃以上においても安定であり耐熱性
に優れるばかりでなく、灰分を20ppm以下にでき高
純度化が行ないやすく、また、光フアイバ用ガラス母材
の加熱処理に有用な反応性ガス(CQ2、CCa、、S
iF、、SFいCC(h F 2等)と反応しないとい
う長所をもっている。カーボン管は加工精度が良いので
、組立式にし、低コスト化をはかることができ、さらに
外面をSiCコートやカーボンコートすることにより気
密性が向上するのでさらに高品質の光フアイバ用ガラス
母材を得ることができる。
In order to solve this problem, the present inventors have already found that a carbon tube is effective as a furnace core tube (see, for example, International Application Publication No. WO38106145). Carbon tubes are not only stable at temperatures above 2000°C and have excellent heat resistance, but also have an ash content of 20 ppm or less, making them easy to purify, and are also a reactive gas useful for heat treatment of glass base materials for optical fibers. (CQ2,CCa,,S
It has the advantage of not reacting with iF, SF CC (hF2, etc.). Carbon tubes have good processing accuracy, so they can be assembled and cost-cut, and the outer surface can be coated with SiC or carbon to improve airtightness, making it possible to use even higher quality glass base materials for optical fibers. Obtainable.

従来の加熱炉は、例えば、第3図のように構成されてい
る。この加熱炉は、中空のゾーンヒータにより加熱処理
を行なう加熱炉の一例を示したもので、炉体5の内側に
カーボンヒータ4及び炉芯管3が設けられている。この
加熱炉は、炉体パージ用窒素ガス入口6、炉芯管内雰囲
気ガス入ロア及びガラス母材支持治具2を有しており、
多孔質ガラス体1が加熱炉の中に挿入されている。炉芯
管3は、上部34、中央部35及び下部36から構成さ
れ、少なくとも中央部35ははカーボンからできており
、カーボンの表面にはSiCコーティングまたはカーボ
ンコーティングが施されている。
A conventional heating furnace is configured as shown in FIG. 3, for example. This heating furnace is an example of a heating furnace that performs heat treatment using a hollow zone heater, and a carbon heater 4 and a furnace core tube 3 are provided inside a furnace body 5. This heating furnace has a nitrogen gas inlet 6 for purging the furnace body, a lower atmosphere gas in the furnace core tube, and a glass base material support jig 2.
A porous glass body 1 is inserted into a heating furnace. The furnace core tube 3 is composed of an upper part 34, a central part 35, and a lower part 36. At least the central part 35 is made of carbon, and the surface of the carbon is coated with SiC or carbon.

こともある。Sometimes.

従来の加熱炉は、第3図に示すように構成されているの
で、ガラス体を出し入れする時に、炉芯管内に大気(作
業室の雰囲気)が混入する。第4図は、大気の混入量を
測定する実験に使用するた装置の概略図であるが、この
装置は炉芯管101、パージガス入口102、ガス採取
管103、酸素濃度測定装置104およびポンプ105
を有し、更に炉芯管101の周囲にゾーン炉(図示せず
)を有する。炉芯管101の内径は150mmであり、
ガス採取管の先端は炉芯管の開口部より1m入った点に
固定した。結果を第4図のグラフに示す。
Since the conventional heating furnace is constructed as shown in FIG. 3, the atmosphere (the atmosphere of the working chamber) gets mixed into the furnace core tube when the glass body is taken in and out. FIG. 4 is a schematic diagram of the apparatus used in the experiment to measure the amount of atmospheric air mixed in.
It also has a zone furnace (not shown) around the furnace core tube 101. The inner diameter of the furnace core tube 101 is 150 mm,
The tip of the gas sampling tube was fixed at a point 1 m from the opening of the furnace core tube. The results are shown in the graph of FIG.

炉芯管中に大気が混入しており、パージ窒素ガス流量を
増やしたとしても大気混入を防止することは不可能であ
ることがわかる。
It can be seen that air is mixed into the furnace core tube, and that it is impossible to prevent air mixing even if the purge nitrogen gas flow rate is increased.

このような大気の混入があると、次の様な問題を生じる
。talに、炉芯管内が大気中にダストにより汚染され
る。ダストは、5jOz、A<2xOs、Fe2O3等
で構成されており、このうちAQ203は母材失透の、
Fe、O,はロス増加の原因となる。
Such atmospheric contamination causes the following problems. However, the inside of the furnace core tube is contaminated with dust in the atmosphere. The dust is composed of 5jOz, A<2xOs, Fe2O3, etc. Among these, AQ203 is the base metal devitrification.
Fe, O, causes an increase in loss.

第2に、カーボン炉芯管内面の酸化がおこる。カーボン
焼成体の酸化では、バインダとして使われているタール
及びピッチがまず酸化することが知られている。そのた
め、残された黒鉛粒子は脱落及び飛散し、炉内を舞う。
Second, oxidation occurs on the inner surface of the carbon furnace tube. It is known that when carbon fired bodies are oxidized, tar and pitch used as binders are first oxidized. Therefore, the remaining graphite particles fall off, scatter, and fly around in the furnace.

この粒子が、焼結したガラス母材の表面に付着するので
、このガラス母材から作ったファイバには、低強度部分
が多く含まれることになる。また当然のことながら、カ
ーボン炉芯管の寿命が極端に短くなる。
Since these particles adhere to the surface of the sintered glass base material, a fiber made from this glass base material will contain many low-strength portions. Also, as a matter of course, the life of the carbon furnace tube becomes extremely short.

この様な炉芯管の酸化を防ぐ方法の第1は、ガラス体の
出し入れ温度をカーボンが酸化しない400°C以下に
設定することである。しかしこの方法では、炉の稼動率
が大幅に低下する上に、カーボン炉芯管は多孔質である
ので大気に一度暴露すると、炉芯管に大気中の酸素や水
分が相当量吸着してしまうため、酸化消耗を完全には防
ぎきれない。
The first method for preventing such oxidation of the furnace core tube is to set the temperature at which the glass body is taken in and out to 400° C. or lower, at which point carbon is not oxidized. However, with this method, the operating rate of the furnace decreases significantly, and since the carbon furnace core tube is porous, once exposed to the atmosphere, a considerable amount of oxygen and moisture in the atmosphere will be adsorbed into the furnace core tube. Therefore, oxidative consumption cannot be completely prevented.

第2の方法として、炉芯管の上部に前室を設け、多孔質
ガラス母材を前室に一度収容し、ガス置換した後多孔質
ガラス母材を炉芯管内に移動する方法が前記国際出願公
開wo88106145に開示されている。この前室付
き炉芯管の概略断面図を第6図に示す。
The second method is to provide a front chamber in the upper part of the furnace core tube, store the porous glass base material in the front chamber, replace the gas, and then move the porous glass base material into the furnace core tube. It is disclosed in the published application WO88106145. A schematic cross-sectional view of this furnace core tube with a front chamber is shown in FIG.

炉体5の内側にカーボンヒータ2及びカーボン炉芯管4
が設けられている。この方a黙炉は、炉体パージ用窒素
ガス入自6、炉芯管内雰囲気ガス入ロア、ガラス母材支
持治具2、前室1L前室ガス出口14、前室パージガス
入口15及び間仕切り16を有しており、多孔質ガラス
体7が加熱炉中に挿入されている。
A carbon heater 2 and a carbon furnace core tube 4 are installed inside the furnace body 5.
is provided. This silent furnace has a nitrogen gas inlet 6 for purging the furnace body, a lower atmosphere gas inlet in the furnace core tube, a glass base material support jig 2, a front chamber 1L, a front chamber gas outlet 14, a front chamber purge gas inlet 15, and a partition 16. The porous glass body 7 is inserted into the heating furnace.

第6図の焼結炉へ多孔質ガラス体を挿入するには、次の
様にする。
To insert the porous glass body into the sintering furnace of FIG. 6, proceed as follows.

■66回転上下動可能なチャックに多孔質ガラス体lを
支持棒2を介して取り付ける。
(2) Attach the porous glass body 1 via the support rod 2 to a chuck that can move up and down 66 rotations.

2、前室11の上ブタを開け、多孔質ガラス体lを前室
11内に降下させる。
2. Open the upper lid of the front chamber 11 and lower the porous glass body l into the front chamber 11.

3、上ブタを閉じ、前室内を不活性ガス(N。3. Close the top lid and fill the front chamber with inert gas (N).

又はHe等)で置換する。or He, etc.).

4、前室11と加熱雰囲気を隔てる間仕切り16を開け
、多孔質ガラス体lをあらかじめ加熱処理温度に保たれ
た加熱雰囲気へ導入する。
4. Open the partition 16 that separates the front chamber 11 from the heating atmosphere, and introduce the porous glass body l into the heating atmosphere that has been maintained at the heat treatment temperature in advance.

5、間仕切り16を閉める。5. Close the partition 16.

また、この加熱炉から母材を取り出すには、次の様Iこ
する。
Further, in order to take out the base material from this heating furnace, it is rubbed in the following manner.

1、間仕切り16を開ける。1. Open the partition 16.

2、加熱処理が終わった母材lを加熱雰囲気から前室1
1へ引上げる。その際、加熱雰囲気の温度は、必ずしも
下げる必要はない。
2. Remove the base material l after heat treatment from the heating atmosphere to the front chamber 1.
Raise it to 1. At that time, the temperature of the heating atmosphere does not necessarily need to be lowered.

3、間仕切りL6を閉じる。3. Close the partition L6.

4、前室11の上ブタを開け、母材Iを取り出す。4. Open the top lid of the front chamber 11 and take out the base material I.

この装置は酸化を防止するという機能においては優れた
効果を示すが、装置全長が長くなりすぎ、また間仕切1
6が複雑な構造となるという欠点があっt;。第7図は
、多孔質ガラス母材全長800朋、種棒長200mmの
場合の装置全長の例である。
Although this device has an excellent effect in preventing oxidation, the overall length of the device is too long, and the partition
6 has a drawback that it has a complicated structure. FIG. 7 is an example of the total length of the device when the total length of the porous glass base material is 800 mm and the length of the seed rod is 200 mm.

この場合、チャック下端の位置で6760mm必要であ
り、設計や作業上必要なスペースを見込むと8000m
m近くになってしまう。
In this case, 6,760 mm is required at the lower end of the chuck, and 8,000 m is required considering the space required for design and work.
It ends up being close to m.

また間仕切り16は多孔質ガラス母材支持治具が貫通し
ている時としていない時の両方の場合に対応しなければ
ならないので、保持棒部を切欠いた2つ割の部品と支持
治具貫通部を塞ぐ部品と計3個の部品で前室と炉芯管を
間仕切る必要があっに。
In addition, the partition 16 must be compatible with both cases when the porous glass base material support jig penetrates and when it does not, so it must be divided into two parts with the holding rod section cut out and the support jig penetration section. It was necessary to partition the front chamber and the furnace core tube with a total of 3 parts including the part that blocks the front chamber.

[課題を解決するための手段] 本発明は、このような従来の加熱炉の欠点に鑑みなされ
たもので、その要旨は、中空のゾーンヒータを有する炉
体と、この炉体を貫通する炉芯管とを有し、高純度石英
多孔質ガラス母材を該炉芯管内上下方向に通過させて加
熱処理する為の加熱炉において、該炉芯管が炉体の上部
に突出している部分において炉芯管内空間を上下に仕切
る手段を有することを特徴とする高純度石英母材製造用
加熱炉に存する。
[Means for Solving the Problems] The present invention was made in view of the drawbacks of such conventional heating furnaces, and the gist thereof is to provide a furnace body having a hollow zone heater, and a furnace penetrating the furnace body. In a heating furnace that has a core tube and heat-treats a high-purity quartz porous glass base material by passing it in the vertical direction inside the furnace core tube, in the part where the furnace core tube protrudes from the upper part of the furnace body. The present invention relates to a heating furnace for producing a high-purity quartz base material, which is characterized by having means for partitioning the interior space of the furnace core tube into upper and lower parts.

本発明を、添付図面を参照して、具体的に説明する。The present invention will be specifically described with reference to the accompanying drawings.

第1図は本発明の加熱炉の一具体例である。第1図にお
いて、炉体5の内側にカーボンヒータ4及び炉芯管3が
設けられている。炉芯管3は高純度カーボンの表面にS
iCコーティング又はカーボンコーティングを施した中
央s35、下部36と石英製の上部34及び上蓋37か
らなっている。
FIG. 1 shows a specific example of the heating furnace of the present invention. In FIG. 1, a carbon heater 4 and a furnace core tube 3 are provided inside a furnace body 5. Furnace core tube 3 has S on the surface of high-purity carbon.
It consists of a central part 35, a lower part 36, an upper part 34 made of quartz, and a top lid 37, which are coated with iC coating or carbon coating.

この加熱炉には、炉体パージ用窒素ガス入口6、炉芯管
内雰囲気ガス入ロア、ガラス母材支持具2、炉芯管雰囲
気ガス排気口21.炉芯管上部ガス置換用窒素ガス入口
22、ガス通過用の小穴24を持つ石英製仕切り23を
有しており、多孔質ガラス母材lが炉芯管中に挿入され
る。仕切り23は、外部から石英製仕切移動治具26で
開閉できる様になっている。仕切り23を閉じた状態で
、ガスが炉芯管の下部から上部へわずかなすき間を通っ
て流れる構造になっていればその手段は小穴24でなく
ても良い。また仕切り23より上の炉芯管内空間にガラ
ス母材1が存在する時に100°Cないし800°Cに
加熱することができるヒータ25が取りつけられる場合
がある。このヒータは抵抗発熱体でもよいし、赤外線加
熱ランプでもよい。
This heating furnace includes a nitrogen gas inlet 6 for purging the furnace body, a lower atmosphere gas in the furnace core tube, a glass base material support 2, a furnace core tube atmosphere gas exhaust port 21. The furnace core tube has a nitrogen gas inlet 22 for gas replacement in the upper part of the furnace core tube, and a quartz partition 23 having small holes 24 for gas passage, and a porous glass base material 1 is inserted into the furnace core tube. The partition 23 can be opened and closed from the outside using a quartz partition moving jig 26. The means need not be the small holes 24 as long as the structure is such that the gas flows from the bottom to the top of the furnace core tube through a slight gap when the partition 23 is closed. Further, when the glass base material 1 is present in the inner space of the furnace core tube above the partition 23, a heater 25 capable of heating it to 100°C to 800°C may be installed. This heater may be a resistive heating element or an infrared heating lamp.

ガラス母材lは、仕切り23の上方空間に完全に収容で
きる必要があるが、仕切23はヒータ4より上にあれば
、位置はどこでも良く、図示の位置に限定されるもので
はない。一般には炉体5の上部におかれる。
The glass base material 1 needs to be completely accommodated in the space above the partition 23, but the partition 23 may be positioned anywhere as long as it is above the heater 4, and is not limited to the illustrated position. Generally, it is placed in the upper part of the furnace body 5.

第1図の焼結炉へ多孔質ガラス体を挿入するには次の様
にする。
The porous glass body is inserted into the sintering furnace of FIG. 1 as follows.

■1回転・上下可能なチャックに多孔質ガラス体1を支
持棒2を介して取り付ける。
(2) Attach the porous glass body 1 via the support rod 2 to a chuck that can be rotated up and down once.

2、炉芯管3の上蓋37を開け、多孔質ガラス体を炉芯
管3の上部34内に降下させる。この際、仕切23は閉
じられており、炉芯管雰囲気ガス入ロアよりパージ用窒
素ガスが炉芯管3内に導入され、仕切り23の小穴24
を通じて炉芯管上部34の空間に流入している。従って
、炉芯管の中下部の空間は窒素ガス雰囲気であり、上蓋
35を開いても仕切り23が存在するので大気を巻きこ
むことはない。
2. Open the upper lid 37 of the furnace core tube 3 and lower the porous glass body into the upper part 34 of the furnace core tube 3. At this time, the partition 23 is closed, and nitrogen gas for purging is introduced into the furnace core tube 3 from the furnace core tube atmosphere gas input lower, and the small hole 24 of the partition 23
It flows into the space in the upper part 34 of the furnace core tube. Therefore, the space in the middle and lower part of the furnace core tube is in a nitrogen gas atmosphere, and even if the upper lid 35 is opened, the atmosphere will not be drawn in because of the presence of the partition 23.

3、上蓋37を閉め、炉芯管上部窒素パーシロ22から
窒素ガスを導入し、炉芯管上部34内の空間を窒素ガス
に置換する。この時ヒータ25により多孔質ガラス体l
を加熱すると、多孔質ガラス体には吸着していたガスが
より効率的に放出される。
3. Close the upper lid 37, introduce nitrogen gas from the furnace core tube upper nitrogen persillo 22, and replace the space inside the furnace core tube upper part 34 with nitrogen gas. At this time, the porous glass body l is heated by the heater 25.
When heated, the gas adsorbed in the porous glass body is released more efficiently.

4、仕切り23を開け、多孔質ガラス体を処理開始位置
まで(例えばヒータ上端に多孔質ガラス体下端が来る位
置まで)下げる。上部パージ用ガス入口22からのガス
供給を停止し、ヒータ25も切って、多孔質ガラス体の
焼結処理を開始する。
4. Open the partition 23 and lower the porous glass body to the processing start position (for example, to the position where the bottom end of the porous glass body is at the top end of the heater). Gas supply from the upper purge gas inlet 22 is stopped, the heater 25 is also turned off, and the sintering process of the porous glass body is started.

また第1図の焼結炉から母材を取り出すには次の様にす
る。
Further, the base material is taken out from the sintering furnace shown in FIG. 1 in the following manner.

■、過処理終わった母材を仕切り23の上まで引き上げ
る。炉芯管雰囲気ガス導入ロアから窒素ガスを導入しつ
つ、雰囲気ガスを排気口21から排気し、炉芯管3内を
完全に窒素雰囲気に置換する。
(2) Pull up the overtreated base material to the top of the partition 23. While nitrogen gas is introduced from the furnace core tube atmosphere gas introduction lower, the atmosphere gas is exhausted from the exhaust port 21 to completely replace the inside of the furnace core tube 3 with a nitrogen atmosphere.

2、仕切23を閉じる。導入ロアからの窒素ガス導入は
流量を減らしてもよいが、小穴24を通して上部のガス
を中下部に巻き込まない様に流し続ける。
2. Close the partition 23. The flow rate of nitrogen gas introduced from the introduction lower may be reduced, but the upper gas continues to flow through the small hole 24 so as not to get caught up in the middle and lower parts.

3、上蓋37を開き、母材1を取り出す。3. Open the upper lid 37 and take out the base material 1.

[実施例] 以下に本発明の実施例を示す。[Example] Examples of the present invention are shown below.

実施例1 第7図に相当する多孔質ガラス母材全長800mm、種
棒長200mmの場合に適した装置を、本発明に従って
設計した。最低必要な寸法は、第2図の様に、チャック
下端の位置で5560mmであった。設計上必要なスペ
ースや作業上必要なスペースも含めて実際に設計した装
置の全高は6800mmであった。第7図の同じ大きさ
の母材を処理する装置より約1.2++低くてよいこと
がわかった。
Example 1 An apparatus suitable for a porous glass base material having a total length of 800 mm and a seed rod length of 200 mm, as shown in FIG. 7, was designed in accordance with the present invention. The minimum required dimension was 5560 mm at the lower end of the chuck, as shown in FIG. The total height of the actually designed device, including the space required for design and work, was 6,800 mm. It has been found that the cost is approximately 1.2++ lower than the apparatus shown in FIG. 7 which processes the same size of base material.

実施例2 第1・図に示す加熱炉を使用した。Example 2 The heating furnace shown in Figure 1 was used.

多孔質ガラス体を炉芯管上部に入れ、炉芯管の上蓋を閉
じ、上部内に窒素ガスを10M分で10分間流し、また
下部からも窒素ガスを10a/分で流し続けた。炉芯管
の中央部及び下部として、それぞれ外表面にガス不透過
性カーボン膜またはSiC膜をコーティングした高純度
カーボン製管を用いた。
The porous glass body was placed in the upper part of the furnace core tube, the upper lid of the furnace core tube was closed, and nitrogen gas was flowed into the upper part at 10M min for 10 minutes, and nitrogen gas was continued to flow from the lower part at 10A/min. High-purity carbon tubes whose outer surfaces were coated with a gas-impermeable carbon film or a SiC film were used as the central and lower parts of the furnace core tube.

仕切りを開け、透明な光フアイバ用ガラス母材を製造し
た。なお、脱水および焼結の条件は以下の通りであった
The partition was opened and a transparent glass base material for optical fiber was manufactured. Note that the conditions for dehydration and sintering were as follows.

脱水 He  IOL’分 CO2500CC/分 トラバース速度 8mm/分 温度 1100°C 焼結 He 10a/分 トラバース速度 3 mm1分 温度 1650°に のガラス母材をコア材として用い、クラッドとしては別
途作成したふっ素を添加したガラスバイブを用い、これ
らを抵抗炉により一体化し、さらに外径調整のだめの外
付は法によりガラス層を付けた光フアイバ母材を線引き
し、純シリカコアンングルモード光ファイバを作ったと
ころ、0゜18dB/km (光波長1−55 pmに
おいて)と低損失であった。
Dehydrated He IOL'min CO2500 CC/min Traverse speed 8 mm/min Temperature 1100°C Sintered He 10a/min Traverse speed 3 mm 1 min Temperature 1650° A glass base material was used as the core material, and a separately prepared fluorine material was used as the cladding. A pure silica co-angle mode optical fiber was created by using a doped glass vibrator and integrating them in a resistance furnace.Furthermore, the optical fiber base material with a glass layer attached by the external method for adjusting the outer diameter was drawn. , 0°18 dB/km (at an optical wavelength of 1-55 pm), and the loss was low.

実施例3 実施例2と同様の方法で多孔質ガラス体の焼結処理を4
0回行なった。この間のカーボン炉芯管の減量は14g
(加熱部で35μmの酸化消耗に相当)であった。この
量はカーボン炉芯管が2年程度使用可能であることを示
している。
Example 3 A porous glass body was sintered in the same manner as in Example 2.
Performed 0 times. The weight loss of the carbon furnace core tube during this period was 14g.
(corresponding to 35 μm of oxidation consumption in the heating section). This amount indicates that the carbon furnace core tube can be used for about two years.

比較例1 第6図に示す従来技術の加熱炉を使用した。Comparative example 1 A conventional heating furnace shown in FIG. 6 was used.

多孔質ガラス体を前室に入れ、前室の上ブタを閉じ、前
室内に窒素ガスを10Q/分でlO分間流し、前室内を
窒素ガスで置換した。その後、間仕切りを開け、多孔質
ガラス体を前室から炉芯管内へ移動させ、間仕切りを閉
めた後加熱処理を行ない、透明な光フアイバ用ガラス母
材を製造した。
The porous glass body was placed in the front chamber, the upper lid of the front chamber was closed, and nitrogen gas was flowed into the front chamber at a rate of 10 Q/min for 10 minutes to replace the inside of the front chamber with nitrogen gas. Thereafter, the partition was opened, the porous glass body was moved from the front chamber into the furnace core tube, and after the partition was closed, heat treatment was performed to produce a transparent glass preform for optical fiber.

母材の取り出し時には先ず間仕切りを開け、ガラス母材
を前室に移動させた後に間仕切りを閉め、その後玉ブタ
を開はガラス母材を取り出した。このガラス母材をコア
材として光ファイバを作ったところ、O、18dB/k
m (光波長1.55 pmに於いて)と低損失であっ
た。
When taking out the base material, the partition was first opened, the glass base material was moved to the front chamber, the partition was closed, and then the ball was opened and the glass base material was taken out. When an optical fiber was made using this glass base material as a core material, the result was O, 18 dB/k.
m (at a light wavelength of 1.55 pm), and the loss was low.

比較例2 比較例1と同様の方法で、多孔質ガラス体の加熱処理を
40回行なった。この間のカーボン炉芯管の減量は20
g(表面より50μmの酸化消耗に相当)であった。こ
の量は、カーボン炉芯管が1゜5年程度使用可能である
ことを示している。
Comparative Example 2 A porous glass body was heat-treated 40 times in the same manner as in Comparative Example 1. The weight loss of the carbon furnace core tube during this period was 20
g (corresponding to oxidative wear of 50 μm from the surface). This amount indicates that the carbon furnace core tube can be used for about 1.5 years.

実施例3と比較例2の炉芯管の消耗量の差は、実施例3
では炉芯管下部からも窒素の供給があったこと、比較例
1の方が間仕切が複雑で置換部容積が広かったこと、実
施例3の方が多孔質ガラス体が置換時ヒータに近い位置
にあるため多孔質ガラス体からのガス放出が進んだこと
の3点の複合作用の結果であると考えられる。
The difference in the amount of wear of the furnace core tube between Example 3 and Comparative Example 2 is that of Example 3.
In this case, nitrogen was also supplied from the lower part of the furnace core tube, Comparative Example 1 had more complicated partitions and a larger displacement section volume, and Example 3 had a porous glass body located closer to the heater during displacement. This is considered to be the result of a combination of three factors: gas release from the porous glass body progressed due to the

実施例4 実施例2と同条件で置換時間を20分間に増やし、置換
中多孔質ガラス体を800Wの赤外線ランプ灯で加熱し
た。置換中多孔質ガラス体が均一に加熱されるように回
転させた。40本の焼結処理後のカーボン炉芯管の消耗
量は69(表面より15μmの消耗)であった。この量
はカーボン炉芯管が5年程度使用可能であることを示し
ている。
Example 4 The replacement time was increased to 20 minutes under the same conditions as in Example 2, and the porous glass body was heated with an 800W infrared lamp during the replacement. During substitution, the porous glass body was rotated to ensure uniform heating. The amount of wear of the 40 carbon furnace core tubes after the sintering treatment was 69 (wear of 15 μm from the surface). This amount indicates that the carbon furnace tube can be used for about 5 years.

[発明の効果] 本発明の効果は、以下の通りである。[Effect of the invention] The effects of the present invention are as follows.

加熱雰囲気への大気(作業室の雰囲気)の混入がなくな
り、炉芯管内の不純物による汚染がなくなる。それ故、
ガラス母材の失透が防げると共に、透明度が向上する。
Air (work room atmosphere) is no longer mixed into the heating atmosphere, and contamination by impurities in the furnace core tube is eliminated. Therefore,
This prevents devitrification of the glass base material and improves transparency.

炉芯管がカーボンから製造されている場合、カーボンの
酸化消耗が抑えられ、炉芯管の寿命が伸びる。また同様
の目的で前室を設けた従来技術の加熱炉式と比較して、
構造、機構が単純であるにも拘わらず同等かそれ以上の
効果があり、かつ装置全高も低くてすむ。
When the furnace core tube is manufactured from carbon, the oxidative consumption of carbon is suppressed and the life of the furnace core tube is extended. Also, compared to the conventional heating furnace type, which has a front chamber for the same purpose,
Although the structure and mechanism are simple, the same or better effects can be achieved, and the overall height of the device can be reduced.

ガラス母材の出し入れ時に、炉体を降温させることがな
いので、炉の稼動率が高い。
Since the temperature of the furnace body is not lowered when the glass base material is taken in and out, the furnace operation rate is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の加熱炉の一具体例の概略断面図、 第2図は、本発明の加熱炉に必要な全高を示す模式図、 第3図は、従来技術の加熱炉の1例の断面図、第4図は
、炉芯管への大気の混入量を測定する装置の模式図、 第5図は、第4図の装置で測定した従来技術の加熱炉の
炉芯管への大気混入量を示すグラフ、第6図は、従来技
術の加熱炉の他の例の断面図、および 第7図は、第6図の加熱炉の全高を示す模式図である。 l・・・ガラス母材、2・・・ガラス母材用支持治具、
3・・・炉芯管、4・・・カーボンヒータ、5・・・炉
体、6・・・炉体バージ用窒素ガス入口、7・・・炉芯
管内雰囲気ガス入口、21・・・炉芯管雰囲気ガス排気
口、22・・・炉芯管上部ガス置換用雰囲気ガス入口、
23・・・仕切り、24・・・小穴、25・・・ヒータ
。 特許出願人住友電気工業株式会社 代 理 人 弁理士 青白 葆 はか1名菓シ図 第4図 第S図 ◇ パーク!倉力゛スミ記童()7分) 第6図 手続補正書(自船 特許庁長官殿      平成1年2月17日昭和 年特許願第 万 発明の名称 高純度石英母材製造用加熱炉 住所 大阪府大阪市中央区北浜四丁目5番33号名称 
(213)住友電気工業株式会社代表者   川 上 
哲 部 4、代理 住所 人 〒540  大阪府大阪市中央区域見2丁目1番61号
補正の対象 図 而 翠7司 第2図 第4図 第5図 パージ窒!、77・スうf、1 CJli分) 第3図 第6図 第7図 7.補正の内容 明細書の発明の詳細な説明の欄中、次の箇所を補正しま
す。 (1)5頁3行、「第4図」とあるを、「第5図」と訂
正。 (2)12頁14行、「第7図」とあるを、[第1図と
訂正。 (3)12頁20行、 と訂正。 「第7図」とあるを、 「第6図 以 上 手続補正書 平成 8月31日
FIG. 1 is a schematic sectional view of a specific example of the heating furnace of the present invention, FIG. 2 is a schematic diagram showing the total height required for the heating furnace of the present invention, and FIG. 3 is a schematic cross-sectional view of a specific example of the heating furnace of the present invention. 4 is a schematic diagram of a device for measuring the amount of air entering the furnace core tube, and FIG. 5 is a cross-sectional view of the furnace core tube of a conventional heating furnace measured with the device shown in Figure 4. FIG. 6 is a cross-sectional view of another example of the heating furnace of the prior art, and FIG. 7 is a schematic diagram showing the total height of the heating furnace of FIG. 6. l...Glass base material, 2...Glass base material support jig,
3... Furnace core tube, 4... Carbon heater, 5... Furnace body, 6... Nitrogen gas inlet for furnace body barge, 7... Atmosphere gas inlet in furnace core tube, 21... Furnace Core tube atmosphere gas exhaust port, 22...atmosphere gas inlet for upper gas replacement of the furnace core tube;
23... Partition, 24... Small hole, 25... Heater. Patent Applicant Sumitomo Electric Industries Co., Ltd. Representative Patent Attorney Blue and White Ao Haka1 Famous Confectionery Figure 4 Figure S ◇ Park! (7 minutes) Figure 6 Procedural Amendment (To the Commissioner of the Own Ship's Patent Office February 17, 1999 Patent application No. 10,000, Showa 1999) Name of invention Address of heating furnace for manufacturing high-purity quartz base material 4-5-33 Kitahama, Chuo-ku, Osaka-shi, Osaka Name
(213) Sumitomo Electric Industries Co., Ltd. Representative Kawakami
Tetsu Department 4, Acting address: 2-1-61, Chuo District, Osaka City, Osaka Prefecture, Osaka Prefecture Target of correction: Figure 2, Figure 4, Figure 5, Purge Nitto! , 77 Suf, 1 CJli minute) Figure 3 Figure 6 Figure 7 Figure 7. Contents of amendment The following sections in the detailed description of the invention in the description will be amended. (1) On page 5, line 3, "Figure 4" was corrected to "Figure 5." (2) On page 12, line 14, the text "Figure 7" was changed to [Figure 1]. (3) Page 12, line 20, corrected. ``Figure 7'' has been changed to ``Procedural amendment for Figure 6 and above August 31, 2006.''

Claims (1)

【特許請求の範囲】 1、中空のゾーンヒータを有する炉体と、この炉体を貫
通する炉芯管とを有し、高純度石英多孔質ガラス母材を
該炉芯管内上下方向に通過させて加熱処理する為の加熱
炉において、該炉芯管が炉体の上部に突出している部分
において炉芯管内空間を上下に仕切る手段を有すること
を特徴とする高純度石英母材製造用加熱炉。 2、仕切られた炉芯管の上部空間は、石英多孔質ガラス
母材を完全に収納できる容積を持つ特許請求第1項記載
の加熱炉。 3、仕切り手段より下部にある炉芯管部分が高純度カー
ボンからなる特許請求第1項記載の加熱炉。 4、仕切り手段より上部にある炉芯管部分が石英からな
る特許請求第1項記載の加熱炉。 5、仕切られた炉芯管の上部空間の周囲に熱源を有する
特許請求第1項記載の加熱炉。
[Claims] 1. A furnace body having a hollow zone heater and a furnace core tube passing through the furnace body, with a high-purity quartz porous glass base material passing vertically inside the furnace core tube. A heating furnace for producing high-purity quartz base material, characterized in that the heating furnace is provided with means for partitioning the inner space of the furnace core tube into upper and lower parts at a portion where the furnace core tube projects above the furnace body. . 2. The heating furnace according to claim 1, wherein the upper space of the partitioned furnace core tube has a volume that can completely accommodate the quartz porous glass base material. 3. The heating furnace according to claim 1, wherein the furnace core tube portion located below the partition means is made of high-purity carbon. 4. The heating furnace according to claim 1, wherein the furnace core tube portion above the partition means is made of quartz. 5. The heating furnace according to claim 1, which has a heat source around the upper space of the partitioned furnace core tube.
JP63332005A 1988-12-29 1988-12-29 Heating furnace for producing high-purity quartz preform Granted JPH02180728A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63332005A JPH02180728A (en) 1988-12-29 1988-12-29 Heating furnace for producing high-purity quartz preform
AU46870/89A AU626362B2 (en) 1988-12-29 1989-12-19 Furnace for producing high purity quartz glass preform
GB8928691A GB2226628B (en) 1988-12-29 1989-12-20 Furnace
US07/459,299 US5032079A (en) 1988-12-29 1989-12-29 Furnace for producing high purity quartz glass preform
KR898920189A KR920001386B1 (en) 1988-12-29 1989-12-29 Heating furnace for producing high-purity quartz preform
EP90106551A EP0450124B1 (en) 1988-12-29 1990-04-05 Furnace for producing high purity quartz glass preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332005A JPH02180728A (en) 1988-12-29 1988-12-29 Heating furnace for producing high-purity quartz preform

Publications (2)

Publication Number Publication Date
JPH02180728A true JPH02180728A (en) 1990-07-13
JPH0442339B2 JPH0442339B2 (en) 1992-07-13

Family

ID=18250074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332005A Granted JPH02180728A (en) 1988-12-29 1988-12-29 Heating furnace for producing high-purity quartz preform

Country Status (1)

Country Link
JP (1) JPH02180728A (en)

Also Published As

Publication number Publication date
JPH0442339B2 (en) 1992-07-13

Similar Documents

Publication Publication Date Title
FI76543B (en) FOERFARANDE FOER BILDANDE AV ETT GLASFOEREMAOL AV VILKET AOTMINSTONE EN DEL AER FLUORBEHANDLAD.
KR950014101B1 (en) Heating furnace for glass materials for optical fiber and method of manufacturing same
KR20010053022A (en) Method and apparatus for manufacturing a rare earth metal doped optical fiber preform
JPH0550448B2 (en)
JP2007513862A (en) Alkali-doped optical fiber, preform thereof and method for producing the same
JP2012509245A (en) Apparatus and method for sintering optical fiber preforms
US5032079A (en) Furnace for producing high purity quartz glass preform
KR940021444A (en) Manufacturing method of high quality optical fiber
JP2006520738A (en) Synthetic silica glass tube for preform manufacture, its manufacturing method in vertical stretching process and use of the tube
JPS6136129A (en) Manufacture of glass preform for optical fiber
JPH02180728A (en) Heating furnace for producing high-purity quartz preform
JPH02204339A (en) Heating furnace for producing high-purity quartz base material
JPH0646982Y2 (en) Heating furnace for producing high-purity quartz base material
JP4789689B2 (en) Low loss optical fiber preform manufacturing method
JPH0436100B2 (en)
KR100655531B1 (en) Furnace for manufacturing optical fibers preform, preventing oxidation of heating element
JPS6119575B2 (en)
CA2013730A1 (en) Furnace for producing high purity quartz glass preform
JPH02149442A (en) Production of optical fiber preform
JP3843860B2 (en) Dehydration sintering furnace for optical fiber preform production
KR930000773B1 (en) Process for thermal treatment of glass fiber preform
JP2003165736A (en) Method for manufacturing optical fiber preform and device and manufacturing optical fiber preform using it
JP2002249342A (en) Glass body and method for manufacturing it
JP2022187545A (en) Manufacturing apparatus of glass preform, and manufacturing method of glass preform
JPH01145344A (en) Production of glass article

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 17