JPH02180515A - Plastic working drill - Google Patents

Plastic working drill

Info

Publication number
JPH02180515A
JPH02180515A JP33259788A JP33259788A JPH02180515A JP H02180515 A JPH02180515 A JP H02180515A JP 33259788 A JP33259788 A JP 33259788A JP 33259788 A JP33259788 A JP 33259788A JP H02180515 A JPH02180515 A JP H02180515A
Authority
JP
Japan
Prior art keywords
oil hole
rear end
hole
taper surface
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33259788A
Other languages
Japanese (ja)
Inventor
Tadashi Kamimura
正 上村
Akira Ibuki
伊吹 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP33259788A priority Critical patent/JPH02180515A/en
Publication of JPH02180515A publication Critical patent/JPH02180515A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance fatigue strength by forming both a taper surface by which a compressive load is applied to the rear end side of a boring drill to produce residual stresses and a flange part by which the circumference of a hole is flatly compression-formed, so that residual compressive stresses can be induced on the near-side periphery of the drilled hole CONSTITUTION:On the rear end of the oil hole boring drill part 8 of a plastic working drill 7, a taper surface 10 whose diameter is gradually enlarged toward the rear is formed, so that after drilling the oil hole, it is pressed against the circumference of the hole to cause cold plastic deformation corresponding to the load, and to induce residual compressive stresses. And a flange part 11 is also formed at the rear end of the taper surface 10, by which the excess thickness around the oil hole enlarged further greater than the maximum diameter, fluidized and bulged out by the cold plastic deformation due to the taper surface 10 is forcibly pressed down to assist the residual of stresses.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は各種機械部品の穿孔加工を行う穿孔用ドリル
に係り、特に穿孔と同時に穿孔に塑性加工を施して圧縮
応力を残留させ、穿孔部分の疲労強度の向上を図る塑性
加ニトリルに関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a drilling drill for drilling various mechanical parts, and in particular, it applies plastic working to the hole at the same time as drilling to leave a compressive stress on the drilled part. This invention relates to plasticized nitrile that aims to improve the fatigue strength of.

[従来の技術と発明が解決しようとする課題]金型内に
繊維強化金属材料を充填し、その金型内に溶融金属を注
いだ後に金型に高圧を加えて繊維強化金属材料に溶融金
属を浸透させ複合化する高圧鋳造法(溶湯#i造法)に
てロッカアーム等の@械要素を形成すると、軽量、高強
度の機械要素を形成できる利点があるが、このような方
法によって形成したロッカアーム等にあっても、オイル
穴に疲労亀裂が発生することがある。
[Prior art and problems to be solved by the invention] A mold is filled with a fiber-reinforced metal material, and after pouring molten metal into the mold, high pressure is applied to the mold to pour the molten metal into the fiber-reinforced metal material. Forming machine elements such as rocker arms using a high-pressure casting method (molten metal #i production method) that permeates and composes mechanical elements has the advantage of being able to form lightweight, high-strength machine elements. Fatigue cracks may also occur in oil holes, such as in rocker arms.

つまり、オイル穴が小径(約28程度)であり、このオ
イル穴を形成するためのボス部が他部に対して部分的に
肉厚であるために、穿孔形成したオイル穴に応力が集中
し、疲労亀裂に至り易くなるからである。
In other words, since the oil hole has a small diameter (approximately 28 mm) and the boss part for forming this oil hole is partially thicker than other parts, stress concentrates on the oil hole that has been drilled. This is because fatigue cracks are more likely to occur.

[課題を解決するための手段] この発明は上記課題を解決することを目的とし、穿孔用
ドリルの後端に、穿孔の後@側に圧縮荷重を掛けてその
後端側に圧縮応力を残留させるテーパ面を形成し、この
テーパ面の後端に、オイル穴周りを平坦に圧縮成形する
フランジ部を成形して塑性加ニトリルを構成したもので
ある。
[Means for Solving the Problems] The present invention aims to solve the above-mentioned problems by applying a compressive load to the rear end of a drilling drill on the @ side after drilling so that compressive stress remains on the rear end side. The plasticized nitrile is formed by forming a tapered surface, and forming a flange portion on the rear end of the tapered surface to flatten compression mold around the oil hole.

[作用] 塑性加ニトリルは先端のドリル部によって紺径のオイル
孔を穿孔した後、このドリル部の後端に形成したテーパ
面を穿孔側にさらに進め、軸受部の外面側のオイル穴に
圧縮荷重を掛けて冷間塑性変形させる。すると、軸受部
の外面側のオイル穴に圧縮応力が残留する。テーパ面の
後端に形成したフランジ部は、冷間塑性変形時に、軸受
部の外面側へ冷間塑性変形によって流動化し食みだそう
とする部分を強制的に押え付け、軸受部の外面側のオイ
ル穴を平坦に維持する。つまり、フランジ部は金属組繊
的にテーパ面の縮径方向に金属組織を流動させ、かつ、
結晶粒を開平化して粒界密度が高くし軸受部の外面側の
応力残留を助長する。
[Operation] After the plasticized nitrile drills an oil hole with a dark blue diameter using the drill part at the tip, the tapered surface formed at the rear end of this drill part is further advanced toward the drilling side, and is compressed into the oil hole on the outer surface of the bearing part. Apply a load to cause cold plastic deformation. As a result, compressive stress remains in the oil hole on the outer surface of the bearing. The flange formed at the rear end of the tapered surface forcibly suppresses the portion that tends to flow and bulge toward the outer surface of the bearing during cold plastic deformation, and Keep the oil hole flat. In other words, the flange part allows the metal structure to flow in the diameter reduction direction of the tapered surface, and
The crystal grains are flattened to increase grain boundary density and promote residual stress on the outer surface of the bearing.

したがって、このような塑性加ニトリルによって形成す
るオイル穴の冷間塑性加工を繰返し行うことによって、
オイル穴の疲労強度はさらに向上する。
Therefore, by repeatedly performing cold plastic working of the oil hole formed by such plasticized nitrile,
The fatigue strength of the oil hole is further improved.

[実施例] 以下にこの発明の好適一実施例を添付図面に基づいて説
明する。
[Embodiment] A preferred embodiment of the present invention will be described below based on the accompanying drawings.

第2図に示す1は、金型内に繊維強化金属材料を充填し
、その金型内に溶融金属を注いだ後に金型に高圧を加え
て繊維強化金属材料に溶融金属を浸透さ、せ、複合化さ
せる高圧鋳造法(溶湯鍛追法)にて形成した軽量、高強
度のロッカアームである。
1 shown in Fig. 2 is a method in which a mold is filled with a fiber-reinforced metal material, molten metal is poured into the mold, and high pressure is applied to the mold to infiltrate the molten metal into the fiber-reinforced metal material. This is a lightweight, high-strength rocker arm formed using a composite high-pressure casting method (molten metal forging method).

実施例にあってロッカアーム1は、吸気または排気弁(
図示せず)を駆動する作用点側アーム2と、このアーム
2の反対側へ延びてアジャストスクリュー(図示せず)
を介して上記作用点側アーム2を開弁方向へ駆動する力
点側アーム3と、これらアーム2.3の中間でこれらを
連結し、ロッカアーム軸(図示せず)に回動自在に支持
される軸受部4とから成る。
In the embodiment, the rocker arm 1 has an intake or exhaust valve (
(not shown), and an adjustment screw (not shown) extending to the opposite side of this arm 2.
The force side arm 3 drives the force side arm 2 in the valve opening direction via the force point side arm 3, and these arms 2.3 are connected in the middle thereof, and are rotatably supported on a rocker arm shaft (not shown). It consists of a bearing part 4.

さて、軸受部4の軸受面5へ潤滑油を供給するために、
上記力点側アーム3の下部に位置する軸受部4には、軸
受部4の外面より軸受面5に貫通する半径方向のオイル
穴6を穿孔によって形成する。
Now, in order to supply lubricating oil to the bearing surface 5 of the bearing part 4,
A radial oil hole 6 that penetrates from the outer surface of the bearing part 4 to the bearing surface 5 is formed in the bearing part 4 located at the lower part of the force side arm 3 by drilling.

この実施例にあって、オイル穴6は第1図、第2図に示
す特殊形状の塑性加ニトリル7によって形成する。
In this embodiment, the oil hole 6 is formed by plasticized nitrile 7 having a special shape as shown in FIGS. 1 and 2.

図示されるように塑性加ニトリル7は、オイル穴穿孔用
のドリル部8の後場に、そのドリル部8から後方へ順次
拡径されて、オイル穴6の穿孔後に軸受部4の外面側9
のオイル穴6を、押付は荷重(圧縮荷重)に応じて冷間
塑性変形させ、そのオイル穴6の軸受部4の外面fl1
9に圧縮応力を残留させるテーパ面10を形成すると共
に、そのテーパ面10の後端にテーパ面10の最大径よ
りさらに拡径されて、テーパ面10の冷間塑性変形によ
って軸受部4の外面側9さ流動化されて食みだそうとす
るオイル6六周りの余肉を強制的に押え付け、軸受部4
の外面側9の応力残留を助長するフランジ部11を形成
して轡成される。12はシャンクである。
As shown in the figure, the plasticized nitrile 7 is placed behind the drill part 8 for drilling the oil hole, and the diameter of the plasticized nitrile 7 is sequentially expanded rearward from the drill part 8, so that after drilling the oil hole 6, the plasticized nitrile 7 is placed on the outer surface side of the bearing part 4.
The oil hole 6 is cold-plastically deformed according to the load (compressive load) when pressed, and the outer surface fl1 of the bearing part 4 of the oil hole 6 is
A tapered surface 10 is formed at the rear end of the tapered surface 10 to retain compressive stress, and the outer surface of the bearing portion 4 is expanded further in diameter than the maximum diameter of the tapered surface 10 by cold plastic deformation of the tapered surface 10. The side 9 is forced to hold down the excess material around the oil 6 which is fluidized and tries to ooze out, and the bearing part 4 is
This is accomplished by forming a flange portion 11 that promotes residual stress on the outer surface side 9 of. 12 is a shank.

したがって、このような塑性加ニトリル7によって形成
したオイル穴6は第4図に示すように、軸受部5の外面
IFI9に皿グリ部13を形成し、皿ぐり加工によるも
のとその外見上での相違はないが、材料及び加工条件を
同一にして、上記オイル穴6に、上記ドリル7による冷
間塑性加工を繰返し施した例(破線工)と、冷間塑性加
工を施していない例(実線■)との試験データを示す第
3図に示す、ように、冷間塑性加工を繰返し行うことに
よって、オイル穴6の疲労強度を大巾(約15%)に向
上する。但し、ロッカアームの材質は強化繊維金属とし
、テーパ面の押し付は荷重を約30に+r、塑性加ニト
リルの回転数を約500rl)11、塑性加工の繰返し
数を10程度とした試験データである。
Therefore, the oil hole 6 formed by such plasticized nitrile 7 forms a countersunk part 13 on the outer surface IFI9 of the bearing part 5, as shown in FIG. Although there is no difference, there is an example in which the oil hole 6 is repeatedly subjected to cold plastic working using the drill 7 (dotted line) and an example in which cold plastic working is not performed (solid line) using the same materials and processing conditions. As shown in FIG. 3, which shows the test data for (2), by repeatedly performing cold plastic working, the fatigue strength of the oil hole 6 is greatly improved (about 15%). However, the material of the rocker arm is reinforced fiber metal, and the pressure of the tapered surface is test data with a load of approximately 30+r, a rotation speed of plasticized nitrile of approximately 500rl)11, and a repetition rate of plastic working of approximately 10. .

つまり、金属組織的には第4図及び第5図に示すように
上記テーパ面10の縮径方向に金属組織が流動しく第4
図)、その結晶粒も偏平して粒界密度が高くなるからで
ある(第5図)。
In other words, in terms of metal structure, as shown in FIGS. 4 and 5, the metal structure is fluid in the diameter reduction direction of the tapered surface 10.
(Fig. 5), the crystal grains are also flattened and the grain boundary density becomes high (Fig. 5).

したがって、上記オイル穴6を形成するボス部14の肉
厚を厚くしてオイル穴6の疲労強度を向上させるような
構造をとる必要がない。
Therefore, there is no need to increase the thickness of the boss portion 14 forming the oil hole 6 to improve the fatigue strength of the oil hole 6.

[発明の効果] 以上説明したことから明らかなようにこの発明によれば
次の如き優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

穿孔用ドリルの後端に、穿孔の後端側に圧縮荷重を掛け
てその後11tlFIに圧縮応力を残留させるテバ面を
形成し、このテーパ面のt&端に、オイル穴周りを平坦
に圧縮成形するフランジ部を成形して塑性加ニトリルを
形成したから、穿孔の手前側に圧縮応力を残留させて、
穿孔の疲労強度の向上を図ることができる。
At the rear end of the drilling drill, form a tapered surface that applies a compressive load to the rear end of the hole and then leaves compressive stress at 11tlFI, and compression molds the area around the oil hole flat on the T & end of this tapered surface. Since the flange part was molded to form plasticized nitrile, compressive stress remained on the front side of the hole,
It is possible to improve the fatigue strength of drilling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の好適一実施例を示す平面図、第2図
は穿孔加工の対象例としてのロッカアームを示す部分断
面図、第3図は塑性加ニトリルによる塑性加工を繰返し
た時の疲労強度の変化を示す性能図、第4図は塑性加工
による金属の流動を示す概略図、第5図は塑性加工によ
る結晶粒の変化を示す模式図である。 図中、1はロッカアーム、6はオイル孔、7は塑性加ニ
トリル、8はドリル部、10はテーパ面、11はフラン
ジ部である。 特許出願人  いすゾ自動車株式会社 代理人弁理士  絹  谷  信  雄第1 第2図
Fig. 1 is a plan view showing a preferred embodiment of the present invention, Fig. 2 is a partial sectional view showing a rocker arm as an example of a drilling target, and Fig. 3 shows fatigue caused by repeated plastic working with plastic nitrile. A performance diagram showing changes in strength, FIG. 4 is a schematic diagram showing metal flow due to plastic working, and FIG. 5 is a schematic diagram showing changes in crystal grains due to plastic working. In the figure, 1 is a rocker arm, 6 is an oil hole, 7 is plasticized nitrile, 8 is a drill part, 10 is a tapered surface, and 11 is a flange part. Patent Applicant: Isuzo Jidosha Co., Ltd. Representative Patent Attorney Nobuo Kinutani 1st Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、穿孔用ドリルの後端に、穿孔の後端側に圧縮荷重を
掛けてその後端側に圧縮応力を残留させるテーパ面を形
成し、該テーパ面の後端に、オイル穴周りを平坦に圧縮
成形するフランジ部を成形したこと特徴とする塑性加工
ドリル。
1. At the rear end of the drilling drill, form a tapered surface that applies a compressive load to the rear end of the hole and leaves compressive stress on the rear end, and flatten the area around the oil hole at the rear end of the tapered surface. A plastic working drill characterized by a molded flange part for compression molding.
JP33259788A 1988-12-28 1988-12-28 Plastic working drill Pending JPH02180515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33259788A JPH02180515A (en) 1988-12-28 1988-12-28 Plastic working drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33259788A JPH02180515A (en) 1988-12-28 1988-12-28 Plastic working drill

Publications (1)

Publication Number Publication Date
JPH02180515A true JPH02180515A (en) 1990-07-13

Family

ID=18256721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33259788A Pending JPH02180515A (en) 1988-12-28 1988-12-28 Plastic working drill

Country Status (1)

Country Link
JP (1) JPH02180515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11192196B2 (en) * 2019-02-04 2021-12-07 EMUGE-Werk Richard Glimpel GmbH & Co. KG Fabrik für Präzisionswerkzeuge Drilling tool and method for producing a drilled hole
JP2022147863A (en) * 2021-03-23 2022-10-06 本田技研工業株式会社 Rocker arm, oil supply structure of internal combustion engine and processing method of rocker arm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11192196B2 (en) * 2019-02-04 2021-12-07 EMUGE-Werk Richard Glimpel GmbH & Co. KG Fabrik für Präzisionswerkzeuge Drilling tool and method for producing a drilled hole
JP2022147863A (en) * 2021-03-23 2022-10-06 本田技研工業株式会社 Rocker arm, oil supply structure of internal combustion engine and processing method of rocker arm

Similar Documents

Publication Publication Date Title
JPH0399741A (en) Method of manufacturing valve
CN106133342A (en) Self-punching rivet
JPH0683862B2 (en) Hollow camshaft manufacturing method
JPH01502410A (en) Single piece light metal part with holes for introducing another part
US6868814B2 (en) Method for manufacturing a multi-part valve for internal combustion engines
US5860401A (en) Bonded valve seat and method
JPH02180515A (en) Plastic working drill
JPH1162945A (en) Cast connecting rod, rod part and cap part
US20080141499A1 (en) Hook forming method
US20040074335A1 (en) Powder metal connecting rod
JPS60166158A (en) Production of piston for internal-combustion engine
CH622857A5 (en)
JPS6024319A (en) Working method of crank shaft by rolling
US4955121A (en) Method for producing a rocker arm for use in an internal combustion engine
JP2010116600A (en) Surface modification method for connecting rod
JPS611438A (en) Reinforcing method of transmission shaft having circular hole
JP6412448B2 (en) Crankshaft oil hole strengthening method and tool
JPH0577026A (en) Composite cam shaft and manufacture of same
JP3671640B2 (en) Cutting method of dissimilar metal composite products
JP3215930B2 (en) Method of vulcanizing and bonding rubber to metal fittings
FR2748677A1 (en) Method of cold forging motor vehicle clutch components
JP3163487B2 (en) Method of manufacturing welding valve for internal combustion engine
JP2000117341A (en) Tube bulging method
JPH05131503A (en) Strength improvement method for opening in structural component
CN2463086Y (en) Tin-base alloy bush casting technology form mould