JPH02179624A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH02179624A
JPH02179624A JP63335224A JP33522488A JPH02179624A JP H02179624 A JPH02179624 A JP H02179624A JP 63335224 A JP63335224 A JP 63335224A JP 33522488 A JP33522488 A JP 33522488A JP H02179624 A JPH02179624 A JP H02179624A
Authority
JP
Japan
Prior art keywords
nonlinear optical
optical
compd
mu0beta
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63335224A
Other languages
Japanese (ja)
Inventor
Hideji Ikeda
秀嗣 池田
Toshio Sakai
俊男 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP63335224A priority Critical patent/JPH02179624A/en
Publication of JPH02179624A publication Critical patent/JPH02179624A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain excellent nonlinear optical characteristics by using a specific compd. having enamic having enamic nitrogen, i.e. the compd. expressed by the specific general formula. CONSTITUTION:The compd. which can be used as the nonlinear optical material includes various compds. if the compds. are the compd. expressed by the general formula (I); more specifically the copd. contg. a cyanine dyestuff. The immediate decision of the degree of the nonlinear optical effect thereof is possible if the value of mu0beta (the product of a permanent bipolar moment and quadratic nonlinear optical constant) is measured. The nonlinear optical material consisting of this compd. has the mu0beta value much larger than the mu0beta value of the conventional nonlinear optical material of org. systems and exhibits the excellent nonlinear optical effect and above all the high effect of SHG. This material is, therefore, widely utilized as not only higher harmonic producers for semiconductor lasers but also devices, such as laser light sources, computing elements, optical bistable elements, optical modulators, and optical switches and in optical communication, optical information processing, optical measurement, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機非線型光学材料に関し、詳しくは非線型光
学定数が大きく、光素子、光情報処理。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an organic nonlinear optical material, and more specifically, to an organic nonlinear optical material that has a large nonlinear optical constant and is used in optical devices and optical information processing.

光通信、光計測、光集積回路などの分野において有用な
有機非線型光学材料に関する。
This field relates to organic nonlinear optical materials useful in fields such as optical communications, optical measurement, and optical integrated circuits.

〔従来の技術及び発明が解決しようとする課題〕一般に
、非線型光学材料は、光の電界の二乗あるいはそれ以上
の累乗に比例する非線型応答を示す材料であって、光高
調波発生、光整流、光混合。
[Prior art and problems to be solved by the invention] In general, nonlinear optical materials are materials that exhibit a nonlinear response proportional to the square of the electric field of light or a power higher than that, and are used to generate optical harmonics and Rectification, light mixing.

光パラメトリツク増幅、ポッケルス効果など様々な効果
をもたらすことから、近年、光コンピューターや光エレ
クトロニクスなどの各種素材として注目されている。
In recent years, it has attracted attention as a material for optical computers and optical electronics, as it brings about various effects such as optical parametric amplification and the Pockels effect.

従来、このような非線型光学材料としては、主として無
機物、特に強誘電体が用いられてきた。
Conventionally, inorganic materials, particularly ferroelectric materials, have been used as such nonlinear optical materials.

しかし、このような無機系の非線型光学材料は、非線型
光学特性が充分でなく、また応答が遅いなどの問題があ
り、光情報処理や光集積回路などへの応用が困難である
However, such inorganic nonlinear optical materials have problems such as insufficient nonlinear optical properties and slow response, making it difficult to apply them to optical information processing, optical integrated circuits, and the like.

一方、近年に至って、有機系の非線型光学材料が多数開
発されてきている。しかしながら、加工性が悪いこと、
あるいは非線型光学特性が充分でないなどの理由により
、実用的な微小素子を得るには至っていないのが現状で
ある。
On the other hand, in recent years, many organic nonlinear optical materials have been developed. However, the processability is poor,
Alternatively, due to reasons such as insufficient nonlinear optical properties, it is currently not possible to obtain a practical microelement.

そこで、本発明者らは、上記従来の有機系の非線型光学
材料とは全く異なる構造の化合物であって、しかも、す
ぐれた非線型光学特性を有し、実用的に価値の高い有機
非線型光学材料を開発すべく鋭意研究を重ねた。
Therefore, the present inventors have developed an organic nonlinear optical material that has a structure completely different from the conventional organic nonlinear optical materials described above, has excellent nonlinear optical properties, and has high practical value. He conducted extensive research to develop optical materials.

〔課題を解決するための手段〕[Means to solve the problem]

その結果、エナミン性窒素を有する特定の化合物が、上
記目的に適う化合物であることを見出した。本発明はか
かる知見に基いて完成したものである。
As a result, it has been found that a specific compound having enamine nitrogen is a compound suitable for the above purpose. The present invention was completed based on this knowledge.

すなわち、本発明は一般式 〔式中、Rr、R1およびR3はそれぞれ炭素数1〜3
のアルキル基を示す。なお、R1とRzは互いに結合し
て炭素数4〜6のポリメチレン基あるいは−CH2CH
gOCHICHz−を形成することもできる。また、X
は酸素、硫黄、セレ1〜3のアルキル基である。)を示
し、Yは酸素、硫黄あるいはセレンを示す。nは1〜4
の整数を示す、〕 で表わされる化合物からなる有機非線型光学材料を提供
するものである。
That is, the present invention is based on the general formula [wherein Rr, R1 and R3 each have 1 to 3 carbon atoms]
represents an alkyl group. Note that R1 and Rz are bonded to each other to form a polymethylene group having 4 to 6 carbon atoms or -CH2CH
It is also possible to form gOCHICHz-. Also, X
is oxygen, sulfur, or an alkyl group of 1 to 3 sele. ), and Y represents oxygen, sulfur or selenium. n is 1 to 4
The object of the present invention is to provide an organic nonlinear optical material comprising a compound represented by the following integer.

上記一般式(1)における各記号は、前述したとおりで
ある。具体的には、R1,R2およびR3はそれぞれメ
チル基、エチル基、n−プロピル基。
Each symbol in the above general formula (1) is as described above. Specifically, R1, R2 and R3 are a methyl group, an ethyl group, and an n-propyl group, respectively.

l−プロピル基である。またR1とR2は互いに結合し
て炭素数4〜6のポリメチレン基、つまり−(cHt)
4−、−(cHt)s−または−(CHz)i−を形成
し、結合している窒素原子とともに環状になることもで
きる。あるいはR1とRzが互いに結合しT  CH!
 CHz OCHz CHz −ヲ形成シ、結合してい
る窒素原子とともに環状になることもできる。また、X
は酸素、硫黄、セレンあるいは−CON(C)i3)−
、−CON(C2H5)−−CON(C,H,)−を示
す、また、Yは前記した如く酸素、硫黄、セレンのいず
れかを示す、さらに、nは1〜4の整数である。したが
って、nが1のときは、(CH= CH)、、は単結合
(換言すれば原子あるいは原子団が存在しないこと)を
示すこととなる。またnが2.3.4の場合はそれぞれ
CH−CH,CH=CH−CH=CH。
It is l-propyl group. In addition, R1 and R2 are bonded to each other to form a polymethylene group having 4 to 6 carbon atoms, that is, -(cHt).
It is also possible to form 4-, -(cHt)s- or -(CHz)i- to form a ring together with the bonded nitrogen atom. Alternatively, R1 and Rz combine with each other and T CH!
CHZ OCHz CHZ - can also form a ring together with the nitrogen atom to which it is bonded. Also, X
is oxygen, sulfur, selenium or -CON(C)i3)-
, -CON(C2H5)--CON(C,H,)-, and Y represents oxygen, sulfur, or selenium as described above, and n is an integer of 1 to 4. Therefore, when n is 1, (CH=CH) indicates a single bond (in other words, no atom or atomic group exists). Moreover, when n is 2.3.4, CH-CH and CH=CH-CH=CH, respectively.

CH−CH−CH=CH−CH=CHを示すこととなる
This represents CH-CH-CH=CH-CH=CH.

本発明の光学材料として使用できる化合物は、前記一般
式(I)で表わされる化合物であれば、各種のものがあ
るが、具体的にはシアニン系色素を含む次の化合物をあ
げることができる。
There are various compounds that can be used as the optical material of the present invention as long as they are represented by the above general formula (I), and specific examples include the following compounds containing cyanine dyes.

本発明の有機非線型光学材料を構成する上記−般式(1
)の化合物は、公知の方法をはじめ各種の方法で製造す
ることができ、本発明ではこれらの方法で製造された化
合物を用いればよい。
The above general formula (1) constituting the organic nonlinear optical material of the present invention
) can be produced by various methods including known methods, and compounds produced by these methods may be used in the present invention.

〔実施例〕〔Example〕

次に、本発明を実施例および比較例によりさらに詳しく
説明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

合成例1 3−エチルローダニン10g(62ミリモル)およびオ
ルトギ酸トリエチル9.2g(62ミリモル)を無水酢
酸100I11に溶かし、120℃で3時間攪拌した。
Synthesis Example 1 10 g (62 mmol) of 3-ethylrhodanine and 9.2 g (62 mmol) of triethyl orthoformate were dissolved in 100I11 of acetic anhydride and stirred at 120°C for 3 hours.

その後室温まで放冷して、等量の水を入れて二層分離し
たところにメタノールを入れて均一層にした。生じた結
晶を素早く濾過し、メタノールで洗浄して赤褐色板状晶
6.5gを得た。
Thereafter, the mixture was allowed to cool to room temperature, and an equal amount of water was added to separate two layers, and then methanol was added to form a uniform layer. The resulting crystals were quickly filtered and washed with methanol to obtain 6.5 g of reddish-brown plate crystals.

この結晶0.7gおよびモルホリン0.2g(2,5ミ
リモル)をメタノール10dに懸濁し、5分間還流した
。生じた結晶を濾別し、メタノールで洗浄して黄色針状
晶0.7g(収率90%)を得た。
0.7 g of this crystal and 0.2 g (2.5 mmol) of morpholine were suspended in 10 d of methanol and refluxed for 5 minutes. The resulting crystals were filtered and washed with methanol to obtain 0.7 g of yellow needle crystals (yield: 90%).

この黄色針状晶の融点は228°Cであり、紫外−可視
吸収スペクトル(ジメチルスルホキシド(DMSO)溶
媒)の吸収極大波長λ、11xは390nmであり、そ
の波長におけるモル吸光係数の対数値(j!ogε)は
4.7であった。またプロトン核磁気共鳴(言H−NM
R)(共鳴周波数60MHz +標準物質へキサメチル
ジシラン(HMDS)。
The melting point of this yellow needle crystal is 228°C, the absorption maximum wavelength λ, 11x of the ultraviolet-visible absorption spectrum (dimethyl sulfoxide (DMSO) solvent) is 390 nm, and the logarithm of the molar extinction coefficient at that wavelength (j !ogε) was 4.7. Also, proton nuclear magnetic resonance (H-NM
R) (resonance frequency 60 MHz + standard material hexamethyldisilane (HMDS).

溶媒DMSO−d、)の結果は第1表のとおりである。The results for the solvent DMSO-d,) are shown in Table 1.

これらの結果から、この黄色針状晶は、下記の構造式で
示される化合物(化合物■)であることがわかる。
From these results, it can be seen that the yellow needle-like crystals are a compound represented by the following structural formula (compound ■).

第1表 合成例2 3−エチルローダニン4g(25ミリモル)オよび3−
(ジメチルアミノ)−アクロレイン(アルドリッチ社製
)2.5g(25ミリモル)を無水酢酸50II11に
溶かし、100°Cで1時間攪拌した。
Table 1 Synthesis Example 2 4g (25 mmol) of 3-ethylrhodanine and 3-ethylrhodanine
(Dimethylamino)-acrolein (manufactured by Aldrich) 2.5 g (25 mmol) was dissolved in acetic anhydride 50II11 and stirred at 100°C for 1 hour.

その後等量の水を入れて二層分離したところにメタノー
ルを入れて均一層にすると、すぐに結晶が生じたのでこ
れを濾別し、メタノールで洗浄して黒色粉末を得た。
After that, an equal amount of water was added to separate two layers, and then methanol was added to form a uniform layer. Crystals were immediately formed, which were separated by filtration and washed with methanol to obtain a black powder.

この粉末をメタノールと塩化メチレンとの混合溶媒によ
り再結晶して青紫色板状晶3g(収率50%)を得た。
This powder was recrystallized from a mixed solvent of methanol and methylene chloride to obtain 3 g of blue-purple plate crystals (yield: 50%).

この青紫色板状晶の融点は175°Cであり、紫外−可
視吸収スペクトル(DMSO溶媒)の吸収極大波長λs
axは470nmであり、その波長におけるモル吸光係
数の対数値(foga)は4.9であった。また’H−
NMR(共鳴周波数60MHz、標準物質テトラメチル
シラン(TMS)、溶媒重クロロホルム(CDCfs)
)の結果は第2表のとおりである。これらの結果から、
この青紫色板状晶は、下記の構造式で示される化合物(
化合物■)であることがわかる。
The melting point of this blue-violet platelet crystal is 175°C, and the absorption maximum wavelength λs of the ultraviolet-visible absorption spectrum (DMSO solvent)
ax was 470 nm, and the logarithm value of molar extinction coefficient (foga) at that wavelength was 4.9. Also 'H-
NMR (resonance frequency 60 MHz, standard material tetramethylsilane (TMS), solvent deuterated chloroform (CDCfs)
) results are shown in Table 2. From these results,
This blue-purple plate crystal is a compound represented by the following structural formula (
It can be seen that it is a compound (■).

第2表 合成例3 3−エチルローダニン6.8g(42ミリモル)および
グルタコンアルデヒドシアニル塩酸塩12g(42ミリ
モル)を無水酢酸201dに懸濁し、20分間還流した
。その後室温まで放冷すると結晶が生じたのでこれを濾
別し、メタノールとエーテルとの混合溶媒で洗浄して褐
色針状晶2.9gを得た。
Table 2 Synthesis Example 3 6.8 g (42 mmol) of 3-ethylrhodanine and 12 g (42 mmol) of glutaconaldehyde cyanyl hydrochloride were suspended in 201 d of acetic anhydride and refluxed for 20 minutes. Thereafter, when the mixture was allowed to cool to room temperature, crystals were formed, which were filtered and washed with a mixed solvent of methanol and ether to obtain 2.9 g of brown needle crystals.

この結晶0.5gおよびモルホリン0.3gをメタノー
ル10dに懸濁し、4時間還流した。その後生じた結晶
を濾別し、メタノールで洗浄して青緑色板状晶0.4g
(収率92%)を得た。
0.5 g of this crystal and 0.3 g of morpholine were suspended in 10 d of methanol and refluxed for 4 hours. After that, the formed crystals were filtered, washed with methanol, and 0.4 g of blue-green plate-shaped crystals were obtained.
(yield 92%).

この青緑色板状晶の融点は185℃であり、紫外−可視
吸収スペクトル(DMSO溶媒)の吸収極大波長J +
aaxは550 nmであり、その波長におけるモル吸
光係数の対数値(foga)は5.0であった。またI
H−NMR(共鳴周波数60MHz、標準物質TMS、
溶媒CDCf5)の結果は第3表のとおりである。これ
らの結果から、この青緑色板状晶は、下記の構造式で示
される化合物(化合物■)であることがわかる。
The melting point of this blue-green platelet crystal is 185°C, and the absorption maximum wavelength J + of the ultraviolet-visible absorption spectrum (DMSO solvent)
aax was 550 nm, and the logarithm of molar extinction coefficient (foga) at that wavelength was 5.0. Also I
H-NMR (resonance frequency 60MHz, standard material TMS,
The results for the solvent CDCf5) are shown in Table 3. From these results, it can be seen that this blue-green platelet crystal is a compound (compound 2) represented by the following structural formula.

第3表 合成例4〜6 上記合成例1〜3に準じて下記の構造式で示される化合
物■〜■を得た。
Table 3 Synthesis Examples 4 to 6 Compounds 1 to 2 represented by the following structural formulas were obtained according to the above Synthesis Examples 1 to 3.

(以下余白) これら化合物■〜■の収率および性状は第4表の通りで
ある。
(Left below) The yields and properties of these compounds (1) to (2) are shown in Table 4.

第4表 次に、これら合成例1〜6で得られた化合物(化合物■
〜■)の非線型光学効果の測定実験を実施例に示すが、
それに先立って実施例で測定するμ。β(永久双極子モ
ーメントと二次の非線型光学定数の積)の意義について
若干の説明を加える。
Table 4 Next, the compounds obtained in these synthesis examples 1 to 6 (compound ■
~■) Measurement experiments of the nonlinear optical effects are shown in Examples.
μ, which is measured in Examples prior to that. Some explanation will be given about the significance of β (product of permanent dipole moment and second-order nonlinear optical constant).

一般に光が物質に入射すると、光の電界已によって、分
極Pが生じ、その関係は次式 %式% で表わされる。ここでχ、は感受率、χ2は二次の非線
型光学定数、χ、は三次の非線型光学定数である。
Generally, when light is incident on a substance, polarization P occurs due to the electric field of the light, and the relationship is expressed by the following formula. Here, χ is the susceptibility, χ2 is a second-order nonlinear optical constant, and χ is a third-order nonlinear optical constant.

上記関係式は巨視的な分極と電界の関係式であるが、分
子1個に対しても同様な式が成り立つと考えられる。つ
まり、有機分子の微視的分極μは次式で表わされる。
Although the above relational expression is a relational expression between macroscopic polarization and electric field, it is thought that a similar expression holds true for a single molecule. That is, the microscopic polarization μ of an organic molecule is expressed by the following equation.

ルーμ。+αE+βE2+γE3+・・・(式中、μ。Lou μ. +αE+βE2+γE3+... (in the formula, μ.

は永久双極子モーメント、Eは光による電界、αは分極
率、βは二次の非線型光学定数、Tは三次の非線型光学
定数を示す。)ここで、非線型光学定数であるβ、Tや
χ2.χ3はそれぞれ関連があり、一つが大きいものは
他の値も大きいと考えられる。また、これらβ、γやχ
2.χ5等の非線型光学定数の大きいものほど大きな非
線型光学効果を発現するものである。しかも永久双極子
モーメントであるμ。は物質の違いによる差はそれほど
顕著でなく、はとんどの物質が3 X 10−”〜10
 X 10−”esu程度である。
is a permanent dipole moment, E is an electric field due to light, α is a polarizability, β is a second-order nonlinear optical constant, and T is a third-order nonlinear optical constant. ) Here, the nonlinear optical constants β, T and χ2. The χ3 values are related to each other, and it is considered that if one value is large, the other values are also large. Also, these β, γ and χ
2. The larger the nonlinear optical constant such as χ5, the greater the nonlinear optical effect. Moreover, μ is the permanent dipole moment. The difference due to different substances is not so remarkable, and most substances have 3
It is approximately X 10-"esu.

したがって、各物質のμ。βを測定して比較すれば、そ
の値の違いはβの値に起因するものと考えてよい、それ
故、μ。β値を測定すればその物質の非線型光学効果の
程度が直ちに判定できることとなる。
Therefore, μ of each substance. If β is measured and compared, the difference in the values can be considered to be due to the value of β, therefore μ. By measuring the β value, the degree of the nonlinear optical effect of the substance can be immediately determined.

実施例1〜6 合成例1〜6で得られた化合物のμ。βの値を第1図に
示すようにして測定した。
Examples 1-6 μ of the compounds obtained in Synthesis Examples 1-6. The value of β was measured as shown in FIG.

即ち、第1図は試料の第二高調波(S HG)の強度を
測定してμ。βを算出するために使用する装置のブロッ
ク図であり、まず試料(合成例で得られた化合物)をD
MSO溶媒に濃度0.O1〜0.2重量%となるように
溶解し、これを試料セル2に入れる。次にこの試料セル
に高電圧パルサー8により3X10’V/mの電界をパ
ルス的に印加した。光源はQスイッチYAGレーザー1
の基本波ω(1,064μm)を用い、偏光面を電界と
平行に入射した。発生したSHGを分光器3で分けて受
光器4に集め、ここで得られたMaker干渉縞のピー
ク強度と間隔のデータを増幅器5.A/Dコンバーター
6を通してコンピューター7で処理し、μ。βを求めた
。結果を第5表に示す。
That is, FIG. 1 shows the measurement of the intensity of the second harmonic (SHG) of the sample. This is a block diagram of the device used to calculate β. First, a sample (compound obtained in a synthesis example) is
MSO solvent at a concentration of 0. The solution is dissolved to a concentration of 1 to 0.2% by weight and placed in the sample cell 2. Next, an electric field of 3×10'V/m was applied in pulses to this sample cell using a high voltage pulser 8. Light source is Q-switch YAG laser 1
The fundamental wave ω (1,064 μm) was used, and the plane of polarization was incident parallel to the electric field. The generated SHG is separated by a spectrometer 3 and collected into a photoreceiver 4, and the peak intensity and interval data of the Maker interference fringes obtained here are sent to an amplifier 5. Processed by computer 7 through A/D converter 6, μ. β was calculated. The results are shown in Table 5.

なお、上述の実験方法は、CC0C0Ten andA
、  F、 Garito Phys、 Rev、 8
28. 6766゜(1983)に報告された方法とほ
ぼ同じものである。
Note that the above experimental method is based on CC0C0Ten andA
, F. Garito Phys, Rev. 8
28. This method is almost the same as that reported in 6766° (1983).

比較例1 上記実施例において、合成例で得られた化合物の代わり
に、2−メチル−4−ニトロアニリン(M N A )
を用いたこと以外は、実施例と同様の操作を行った。結
果を第5表に示す。
Comparative Example 1 In the above example, 2-methyl-4-nitroaniline (MNA) was used instead of the compound obtained in the synthesis example.
The same operation as in the example was performed except that . The results are shown in Table 5.

第5表 〔発明の効果〕 本発明の化合物からなる非線型光学材料は、これまでの
有機系の非線型光学材料よりもはるかに大きいμ。β値
を有し、すぐれた非線型光学効果、とりわけ大きな5H
(1,の効果を発現する。
Table 5 [Effects of the Invention] The nonlinear optical material made of the compound of the present invention has a μ much larger than that of conventional organic nonlinear optical materials. β value, excellent nonlinear optical effect, especially large 5H
(Expresses the effect of 1.

したがって、本発明の非線型光学材料は、半導体レーザ
ー用の高調波発生器をはじめとするレーザー光源や演算
素子、光双安定素子、光変調器。
Therefore, the nonlinear optical material of the present invention can be used in laser light sources such as harmonic generators for semiconductor lasers, operational elements, optical bistable elements, and optical modulators.

光スィッチなどのデバイスとして、光通信、光情報処理
、光計測などに有効かつ幅広く利用できる
Can be effectively and widely used as devices such as optical switches in optical communication, optical information processing, optical measurement, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例および比較例で行った試料のμ。β値
を求める実験に用いた装置のブロック図である。 図中、1はQスイッチYAGレーザー、2は試料セル、
3は分光器、4は受光器、5は増幅器。 6はA/Dコンバーター、7はコンピューター8は高電
圧パルサーを示す。 j;−□パ ++、〜+J
FIG. 1 shows μ of the samples conducted in Examples and Comparative Examples. FIG. 2 is a block diagram of an apparatus used in an experiment to determine a β value. In the figure, 1 is a Q-switched YAG laser, 2 is a sample cell,
3 is a spectrometer, 4 is a photodetector, and 5 is an amplifier. 6 is an A/D converter, and 7 is a computer 8 is a high voltage pulser. j;-□Pa++, ~+J

Claims (1)

【特許請求の範囲】[Claims] (1)一般式 ▲数式、化学式、表等があります▼ 〔式中、R^1、R^2およびR^3はそれぞれ炭素数
1〜3のアルキル基を示す、なお、R^1とR^2は互
いに結合して炭素数4〜6のポリメチレン基あるいは−
CH_2CH_2OCH_2CH_2−を形成すること
もできる。また、Xは酸素、硫黄、セレンあるいは▲数
式、化学式、表等があります▼(但し、R^4は炭素数 1〜3のアルキル基である。)を示し、Yは酸素、硫黄
あるいはセレンを示す。nは1〜4の整数を示す。〕 で表わされる化合物からなる有機非線型光学材料。
(1) General formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ [In the formula, R^1, R^2 and R^3 each represent an alkyl group having 1 to 3 carbon atoms. ^2 is bonded to each other to form a polymethylene group having 4 to 6 carbon atoms or -
CH_2CH_2OCH_2CH_2- can also be formed. In addition, X represents oxygen, sulfur, selenium, or ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, R^4 is an alkyl group having 1 to 3 carbon atoms.), and Y represents oxygen, sulfur, or selenium. show. n represents an integer of 1 to 4. ] An organic nonlinear optical material consisting of a compound represented by
JP63335224A 1988-12-30 1988-12-30 Organic nonlinear optical material Pending JPH02179624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63335224A JPH02179624A (en) 1988-12-30 1988-12-30 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63335224A JPH02179624A (en) 1988-12-30 1988-12-30 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH02179624A true JPH02179624A (en) 1990-07-12

Family

ID=18286142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63335224A Pending JPH02179624A (en) 1988-12-30 1988-12-30 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH02179624A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0497268A2 (en) * 1991-01-28 1992-08-05 Idemitsu Kosan Company Limited Organic optical logic device
JPH04340404A (en) * 1990-10-30 1992-11-26 Internatl Business Mach Corp <Ibm> Material processing method and material surface monitoring apparatus
US5256784A (en) * 1992-01-16 1993-10-26 Minnesota Mining And Manufacturing Company Nonlineaphores and polymers incorporating such nonlineaphores
WO1997045421A1 (en) * 1996-05-15 1997-12-04 Neurocrine Biosciences, Inc. Oxocoumarin and barbituric acid derivates, their preparation and their use as ligand inhibitors of a corticotropin-releasing factor (crf) and/or a crf-binding protein complex
CN108796613A (en) * 2018-06-29 2018-11-13 江南大学 A kind of preparation method and crystalline material of W/S/Cu clusters-metallic crystal material with third order non-linear optical property

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340404A (en) * 1990-10-30 1992-11-26 Internatl Business Mach Corp <Ibm> Material processing method and material surface monitoring apparatus
EP0497268A2 (en) * 1991-01-28 1992-08-05 Idemitsu Kosan Company Limited Organic optical logic device
US5182666A (en) * 1991-01-28 1993-01-26 Idemitsu Kosan Co., Ltd. Organic optical logic device
US5256784A (en) * 1992-01-16 1993-10-26 Minnesota Mining And Manufacturing Company Nonlineaphores and polymers incorporating such nonlineaphores
WO1997045421A1 (en) * 1996-05-15 1997-12-04 Neurocrine Biosciences, Inc. Oxocoumarin and barbituric acid derivates, their preparation and their use as ligand inhibitors of a corticotropin-releasing factor (crf) and/or a crf-binding protein complex
US5959109A (en) * 1996-05-15 1999-09-28 Neurocrine Biosciences, Inc. Compounds and methods for increasing endogenous levels of corticotropin-releasing factor
US6133276A (en) * 1996-05-15 2000-10-17 Neurocrine Biosciences, Inc. Compounds and methods for increasing endogenous levels of corticotropin-releasing factor
CN108796613A (en) * 2018-06-29 2018-11-13 江南大学 A kind of preparation method and crystalline material of W/S/Cu clusters-metallic crystal material with third order non-linear optical property
CN108796613B (en) * 2018-06-29 2020-07-10 江南大学 Preparation method of W/S/Cu cluster-metal crystal material with third-order nonlinear optical performance and crystal material

Similar Documents

Publication Publication Date Title
CA1270257A (en) High performance nonlinear optical substrates
JPH02288874A (en) Nonlinear, optically active thiophene compound, substance containing the same, and apparatus
Parvathy et al. Studies on structural, optical, homo-lumo and mechanical properties of piperazinium p-hydroxybenzoate monohydrate single crystal for nonlinear optical applications
Sakunthaladevi et al. Chemical growth dynamics of 4-Methyl-4′-Hydroxy Benzylidene Aniline NLO single crystal structure and spectroscopic applications
Wang et al. Preparation, structure analysis and performance characterization of a novel organic second-order nonlinear optical crystal DOBT
JPH02179624A (en) Organic nonlinear optical material
Wu et al. Main-chain second-order nonlinear optical polyaryleneethynylenes containing isolation chromophores: enhanced nonlinear optical properties, improved optical transparency and stability
Angeloni et al. Crystal structures, magnetic and non-linear optical properties of methoxyphenyl nitronyl–nitroxide radicals
Boopathi et al. Synthesis, crystal growth and characterizations of bis (l-proline) cadmium iodide: a new semi-organic nonlinear optical material
US4986935A (en) Wavelength converting device
Mugeshini et al. Synthesis, growth, experimental, and theoretical characterization of 6-amino-1H-pyrimidine-2, 4-dione dimethylacetamide single crystal
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
JPH03131826A (en) Organic nonlinear optical material
JPH02179623A (en) Organic nonlinear optical material
JPH022534A (en) Organic nonlinear optical material
JPH03134633A (en) Organic nonlinear optical material
JPH0197926A (en) Organic nonlinear optical material
US4938896A (en) High performance nonlinear optical media
US4983325A (en) High performance nonlinear optical media
JPH02118524A (en) Organic nonlinear optical material
JPH01105918A (en) Organic nonlinear optical material
Durgadevi et al. Computational, experimental investigations on effect of phosphoric acid to enhance the linear and nonlinear optical properties of hexamine p-nitrophenol crystal
JPH01209430A (en) Organic nonlinear optical material
Lakshmi et al. Studies on the Growth and Characterization of N-methyl-4-nitroaniline Organic Single Crystal Grown by Slow Evaporation Technique
JPH01300235A (en) Organic nonlinear optical material