JPH02179500A - Fresnel zone plate for soft x-ray - Google Patents

Fresnel zone plate for soft x-ray

Info

Publication number
JPH02179500A
JPH02179500A JP33191988A JP33191988A JPH02179500A JP H02179500 A JPH02179500 A JP H02179500A JP 33191988 A JP33191988 A JP 33191988A JP 33191988 A JP33191988 A JP 33191988A JP H02179500 A JPH02179500 A JP H02179500A
Authority
JP
Japan
Prior art keywords
fzp
ray
gold
ray absorber
fresnel zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33191988A
Other languages
Japanese (ja)
Inventor
Masaru Kawada
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP33191988A priority Critical patent/JPH02179500A/en
Publication of JPH02179500A publication Critical patent/JPH02179500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To enable a further strong image formation than that gotten by usage of a gold by using a nickel and the like other than gold as a material of a shielding part located side by side to a cocentric rings which constitutes a Fresnel zone plate Fzp. CONSTITUTION:Hatched parts in the figure show ring bands made of an X-ray absorber. An incident X-ray which is regarded as a beam parallel along to an positive direction of an Z axis, is focused to a focusing point F by a Fzp. Assuming that a focusing distance is f, a thickness of the X-ray absorber is t and a refraction index of the X-ray absorber at a wave length lambda0 in use, is n=1-delta+ik, a transmissivity t(r) of the Fzp at an arbitrary distance r from a center can be expressed as the equation showed in the figure. The first term of the right side of the equation is the 0 order diffraction which transmits as it is without being affected by any diffraction, and the second term shows the first stage to (2n-1) order diffraction beams according to a value of m. If thicknesses are same, k becomes small, and for a material having larger delta, a greater phase effect can be expected and therefore, when a Fzp having enough thickness are not available by a limitation derived from a fine processing, a Fzp close to a phase-typed one can be manufactured by using a nickel and the like, for example, other than a gold, as an X-ray absorber.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 この発明は、X線リソグラフィーやX締顕微鏡の結像素
子として必要なフレネルゾーンプレートに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a Fresnel zone plate necessary as an imaging element for X-ray lithography and X-ray microscopes.

従来の技術とその問題点 LSI製造工程において、従来、レジストパターンの形
成に用いられてきた光縮小露光方式は、パターンの微細
化にともない理論上の解像限界に近づ・きつつある。光
ではサブミクロンパターンの転写はかなり困難だと考え
られている。
Prior Art and Its Problems In the LSI manufacturing process, the optical reduction exposure method conventionally used to form resist patterns is approaching its theoretical resolution limit as patterns become finer. It is thought that it is quite difficult to transfer submicron patterns using light.

2゜ 3゜ l。2゜ 3゜ l.

に) 光にかわる露光方式としては今有力視されているものの
1つにX線リソグラフィーがある。しかし、現在開発あ
るいは市販されているX線露光装置は全て近接露光によ
る等倍投影露光方式なので、サブミクロンパターンには
対処できるもののクォーターミクロンの転写に対しては
ランアウト誤差、半影ぼけ、マスク製作等の問題点が出
てきて困難となる。
) One of the exposure methods that is currently considered to be a promising alternative to light is X-ray lithography. However, all currently developed or commercially available X-ray exposure systems use the same-magnification projection exposure method using close-up exposure, so although they can handle submicron patterns, they cannot handle quarter-micron transfer due to run-out errors, penumbra blur, and mask production. Problems such as these arise and become difficult.

このX線等倍投影露光方式の課題を克服するものとして
種々の方式による縮小投影露光法が検討されている。例
えば、X線縮小露光法の1例を第4図にしたがって説明
する。これはローランド円上にある点光源りから出た発
散X線をヨハンソン湾曲結晶Cによって同じ円周上にあ
るフレネルゾーンプレートに集光させ、EzpでX線マ
スクMの縮小像をウェハW上に結像させるというもので
ある。ところで、結像素子のX線用FzpにはX線吸収
体く遮蔽部分)に金を用い、となりあう遮蔽部分と透過
部分の線幅の比が、1対1であるようなFzpが通常用
いられる。X線用FzpもFzpである以上、同心円輪
帯を構成するX線吸収体は完全にX線を遮蔽することが
理想であるが、実際には完全に遮蔽することはできない
、しかも、使用波長が短(なるにつれてX線の透過力は
大きくなるので、その遮蔽はより困難となる。X線吸収
体の厚みを厚くすればX線は遮蔽できるが、端の輪帯に
いくほどアスペクト比の高いパターニングが必要になる
ので、微細加工上の制約から口径の大きなFzpを作る
のは難しくなり、X線吸収体の厚みをむやみに厚くする
こともできない。
In order to overcome the problems of the X-ray equal-magnification projection exposure method, various reduction projection exposure methods are being considered. For example, one example of the X-ray reduction exposure method will be explained with reference to FIG. This involves focusing divergent X-rays emitted from a point light source on the Rowland circle onto a Fresnel zone plate on the same circumference using a Johansson curved crystal C, and placing a reduced image of the X-ray mask M on the wafer W using Ezp. This is to form an image. By the way, in the X-ray Fzp of the imaging element, gold is used for the X-ray absorber (shielding part), and the line width ratio of the adjacent shielding part and the transmitting part is 1:1. It will be done. Since the Fzp for X-rays is also Fzp, it would be ideal for the X-ray absorbers that make up the concentric ring zones to completely shield X-rays, but in reality they cannot completely shield them. (As the X-ray absorber becomes thicker, the X-ray penetrating power increases, so it becomes more difficult to block the X-rays.) Since a high degree of patterning is required, it becomes difficult to create a large-diameter Fzp due to microfabrication constraints, and the thickness of the X-ray absorber cannot be increased unnecessarily.

しかし、X線吸収体の厚みが十分でないと、結像点での
回折光の強度が弱くなり、像のコントラストを落とす原
因の1つになる。このようにX線吸収体に金を用いたX
線用Fzpにおいて。
However, if the thickness of the X-ray absorber is not sufficient, the intensity of the diffracted light at the imaging point will be weakened, which is one of the causes of reduced image contrast. In this way, X-rays using gold as an X-ray absorber
In line Fzp.

素子の生産性と結像素子としての性能とはトレードオフ
の関係にある。
There is a trade-off relationship between the productivity of the device and the performance as an imaging device.

(ハ) 目的 この発明は、遮蔽部に金を用いた通常のX線用Fzpよ
りはるかに強い強度での結像が可能なFzpを提供する
ことを目的とする。
(c) Purpose The object of the present invention is to provide an Fzp that uses gold in its shielding part and is capable of forming an image with much stronger intensity than a normal Fzp for X-rays.

に) 構成 まず、この発明で用いる位相型X線用Fzpの構成につ
いて第1図にしたがって説明する。
2) Configuration First, the configuration of the phase-type X-ray Fzp used in the present invention will be explained with reference to FIG.

第1図はFzpの断面図で、斜線部はX線吸収体ででき
た輪帯を表わしている。入射X線はZ軸の正の方向(図
中右方向)に向かって進む平行光源とし、Fzpによっ
て焦点Fに集光する。
FIG. 1 is a cross-sectional view of Fzp, and the shaded area represents the annular zone made of the X-ray absorber. Incident X-rays are a parallel light source that travels in the positive direction of the Z axis (rightward in the figure) and are focused at a focal point F by Fzp.

焦点距離をf、X線吸収体の厚みをt、X線吸収体の使
用波長λ0における屈折率をn 冨 l −δ + 1
に とおくと、中心から任意の距離rにおけるFzpの透過
係数 t(r )は次のように表わせる。
The focal length is f, the thickness of the X-ray absorber is t, and the refractive index at the used wavelength λ0 of the X-ray absorber is n.
Then, the transmission coefficient t(r) of Fzp at an arbitrary distance r from the center can be expressed as follows.

t(「)■ (1)式のうち右辺の第1項は回折を受けずにそのまま
透過してい(0次回折光を表わし、第2項はmの値によ
ってそれぞれ1次、3次・・・・・・・・−・・・・(
2m−1)次・・・・・・の回折光を表わす。
t('')■ In equation (1), the first term on the right side is transmitted as is without undergoing diffraction (represents 0th order diffracted light, and the second term is 1st order, 3rd order, etc. depending on the value of m, respectively).・・・・・・-・・・・・・(
2m-1) order...represents diffracted light.

例えば、可視光領域等で実現可能な完全位相型Fzpで
は上式において k→0゜ t→λG/(2δ)と書けるので、0次光は完全に消え
、そのかわり1次光が最大の強度を持つようになる。
For example, in the complete phase type Fzp that can be realized in the visible light region, etc., the above equation can be written as k→0゜t→λG/(2δ), so the 0th order light completely disappears, and instead the 1st order light has the maximum intensity. come to have.

しかし、一般に領域ではどの物質もδやkは有限な値を
とるので、完全な位相型Fzpを作ることはできない。
However, since δ and k of any material generally take finite values in the region, it is not possible to create a perfect phase type Fzp.

しかし、同じ厚みであるならkが小さ(、δが大きい物
質の方が位相効果が期待できるので。
However, if the thickness is the same, a material with a small k (and a large δ) can be expected to have a phase effect.

微細加工上の制約から十分な厚みを持ったFzpを作る
ことができないとき2本発明ではX線吸収体に金属外の
物質を・用いることによってより位相型に近いFzpを
作り、集光強度を増強し。
When it is not possible to create an Fzp with sufficient thickness due to microfabrication constraints, the present invention uses a substance other than metal for the X-ray absorber to create an Fzp that is closer to the phase type and increases the focused light intensity. Reinforce.

あわせてノイズとなる0次光をとり除こうとするもので
ある。
At the same time, it is intended to remove zero-order light that becomes noise.

(ホ) 作用 第2図の光学系において、平行光でFzpに入射したと
き、結像面にできる回折光の強度分布を調べる。光軸を
Z軸に選びX線の進行方向を正にとる。半径aのFzp
と結像面はそれぞれZ軸と垂直であり、Fzp面の原点
O1結像面の原点をFとする。今、注目している結像面
上の点PはFからρの距離にあり、PとOの距離をS′
とする。
(E) Effect In the optical system shown in FIG. 2, the intensity distribution of diffracted light produced on the imaging plane when parallel light is incident on Fzp is investigated. The optical axis is chosen to be the Z-axis, and the traveling direction of the X-rays is set to be positive. Fzp of radius a
and the imaging plane are perpendicular to the Z-axis, and the origin of the Fzp plane is O1, and the origin of the imaging plane is F. The point P on the imaging plane that we are currently focusing on is at a distance of ρ from F, and the distance between P and O is S'
shall be.

点PにおけるX線の強度はFzpの透過率を考慮したフ
レネルキルヒホッフの回折積分をフレネル近似のもとで
計算し1次のように求まる+ (P) = l B 1
2(W、!+ W、2)  ・・・・・・・・■但し、
Bは定数である。
The intensity of the X-ray at point P is calculated as the first order by calculating the Fresnel-Kirchhoff diffraction integral considering the transmittance of Fzp under Fresnel approximation + (P) = l B 1
2 (W,!+ W, 2) ・・・・・・・・・■However,
B is a constant.

W、m C(II、v)冨 S(u、v)■ ・・・・・・lμat>lvlのとき W宣− ・・・・・・・・・・・・・・・■ ・・・・・・1μml>lvlのとき ここでJn(x)は第1種ベッセル関数を表わす。W,m C (II, v) Tomi S(u,v)■ ...When lμat>lvl W announcement- ・・・・・・・・・・・・・・・■ ...When 1μml>lvl Here, Jn(x) represents a Bessel function of the first kind.

S’−ft−7 ・・・・・・・・・・・・・・・■ 本発明の位相型Fzpでは、吸収体に金以外の物質を用
いて位相効果を高め焦点における強度を強くする。位相
効果を強くするには、X線を透過しやす(、かつ大きく
屈折する物質を用いればよいので金よりもδが大きく、
kが小さいニッケル、銅、銀、スズを用いる。
S'-ft-7 ・・・・・・・・・・・・・・・■ In the phase-type Fzp of the present invention, a substance other than gold is used for the absorber to enhance the phase effect and strengthen the intensity at the focal point. . In order to strengthen the phase effect, it is sufficient to use a material that transmits X-rays easily (and refracts them greatly), so δ is larger than that of gold.
Nickel, copper, silver, and tin with small k are used.

(へ)実施例 Xnの波長を λo =5.4人、Fzpの半径をa=
0.1−とする、実施例として銀のFzpを選ぶ。λo
 =5.4人における銀の光学定数は。
(to) The wavelength of Example Xn is λo = 5.4 people, and the radius of Fzp is a =
We choose Fzp of silver as an example, which is 0.1-. λo
=5.The optical constant of silver in 4 people is.

δ=3.1636X10−4. k−4,4311X1
0−iテあり。
δ=3.1636X10-4. k-4,4311X1
There is 0-i-te.

金の光学定数6=2.5223X10−4. k=3.
0247xlO−4に(らべてδは大きく、には小さい
、厚みが6000人のときに金Fzpと銀のFzpによ
る回折強度1 (P)を計算して第3図に示した。
Optical constant of gold 6=2.5223X10-4. k=3.
The diffraction intensity 1 (P) due to gold Fzp and silver Fzp was calculated and shown in FIG. 3 when δ is large and δ is small compared to 0247xlO-4 and the thickness is 6000 mm.

第3図において2両者の集光強度を比較してみると同じ
厚みのFZpでも銀の方が金の場合より約2.3倍強度
が強いことがわかる。
Comparing the condensed light intensities of the two in FIG. 3, it can be seen that even with the same thickness of FZp, the intensity of silver is approximately 2.3 times stronger than that of gold.

なお銀でFzpを作る手順は金のFzpを作る手順とほ
とんど同じで加工上の難易度に差はない。
The procedure for making FZP from silver is almost the same as the procedure for making FZP from gold, and there is no difference in processing difficulty.

(ト)  効果 金以外の物質を吸収体に用いることによって集光強度が
従来型のFzpより増大し、露光のスループットの向上
が可能となる。
(g) Effect By using a substance other than gold for the absorber, the focused light intensity is increased compared to the conventional Fzp, and the exposure throughput can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFzpの断面図。 第2図はFzpによって結像させるときの結像光学系の
幾何学的配置を描いた図。 第3図はFzpの輪帯の材料に金を用いたときと銀を用
いたときの結像面での強度分布を表わした図で、縦軸は
強度、横軸は結像面上の点の光軸からの距離を表わす。 第4図はX線縮小投影露光光学系の1例である。 C・・・湾曲結晶、X線多層膜ミラー等のX線集光素子 D・・・ X線源 k・・・結像素子(Fzp) m・・・ X線マスク W・・・ 0・・・ F・・・ Q・・・ P・・・ 結像面(ウェハー) Fzpの中心 Fzpの焦点 Fzp上の点 傷面上の点
FIG. 1 is a cross-sectional view of Fzp. FIG. 2 is a diagram depicting the geometrical arrangement of the imaging optical system when imaging by Fzp. Figure 3 shows the intensity distribution on the imaging plane when gold and silver are used as the annular material of Fzp, where the vertical axis is the intensity and the horizontal axis is the point on the imaging plane. represents the distance from the optical axis. FIG. 4 shows an example of an X-ray reduction projection exposure optical system. C... X-ray condensing element such as a curved crystal or X-ray multilayer mirror D... X-ray source k... Imaging element (Fzp) m... X-ray mask W... 0...・ F... Q... P... Imaging surface (wafer) Center of Fzp Point on focal point Fzp of Fzp Point on the flawed surface

Claims (1)

【特許請求の範囲】[Claims] (1)フレネルゾーンプレートを構成する同心状リング
のとなりあう開口部と遮蔽部のうち遮蔽部分の材質がニ
ッケル、銅、銀、スズのいずれかであることを特徴とす
る軟X線用フレネルゾーンプレート。
(1) Fresnel zone for soft X-rays, characterized in that the material of the shielding part of the adjacent opening and shielding part of the concentric rings constituting the Fresnel zone plate is nickel, copper, silver, or tin. plate.
JP33191988A 1988-12-29 1988-12-29 Fresnel zone plate for soft x-ray Pending JPH02179500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33191988A JPH02179500A (en) 1988-12-29 1988-12-29 Fresnel zone plate for soft x-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33191988A JPH02179500A (en) 1988-12-29 1988-12-29 Fresnel zone plate for soft x-ray

Publications (1)

Publication Number Publication Date
JPH02179500A true JPH02179500A (en) 1990-07-12

Family

ID=18249104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33191988A Pending JPH02179500A (en) 1988-12-29 1988-12-29 Fresnel zone plate for soft x-ray

Country Status (1)

Country Link
JP (1) JPH02179500A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182152A (en) * 1981-04-20 1982-11-09 Us Government Diffraction device
JPS617732A (en) * 1984-06-22 1986-01-14 Toshiba Corp Stereo signal demodulating circuit
JPS63113504A (en) * 1986-10-31 1988-05-18 Canon Inc Manufacture of self-standing type optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182152A (en) * 1981-04-20 1982-11-09 Us Government Diffraction device
JPS617732A (en) * 1984-06-22 1986-01-14 Toshiba Corp Stereo signal demodulating circuit
JPS63113504A (en) * 1986-10-31 1988-05-18 Canon Inc Manufacture of self-standing type optical element

Similar Documents

Publication Publication Date Title
JP2699433B2 (en) Projection exposure apparatus and projection exposure method
JP2995820B2 (en) Exposure method and method, and device manufacturing method
JP3291849B2 (en) Exposure method, device formation method, and exposure apparatus
US20040125442A1 (en) Phase contrast microscope for short wavelength radiation and imaging method
JPH02142111A (en) Lighting method and device therefor and projection type exposure method and device therefor
JPH06120110A (en) Projection aligner and exposure method
JP3201027B2 (en) Projection exposure apparatus and method
US5650632A (en) Focal plane phase-shifting lithography
JPH05188577A (en) Photomask, exposing method and projection aligner
JP3148818B2 (en) Projection type exposure equipment
JPH0611609A (en) Exposure device
JPH07147223A (en) Pattern forming method
JP3259221B2 (en) Projection aligner
JPH02179500A (en) Fresnel zone plate for soft x-ray
JPH0588355A (en) Reflection type mask and exposure device using the same
JP3189009B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JPS6362231A (en) X-ray reduction stepper
JPH05346503A (en) Manufacture of zone plate
JP3427210B2 (en) Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method
JP3214033B2 (en) Exposure method
EP0479968B1 (en) X-ray imaging system
JPH0319312A (en) Alignment mark
JP3244076B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP3396037B2 (en) Exposure method and method for forming semiconductor element
JPH0729807A (en) Projection aligner