JPH02179382A - Method for repairing inside surface of pipe penetrating through vessel - Google Patents

Method for repairing inside surface of pipe penetrating through vessel

Info

Publication number
JPH02179382A
JPH02179382A JP63333718A JP33371888A JPH02179382A JP H02179382 A JPH02179382 A JP H02179382A JP 63333718 A JP63333718 A JP 63333718A JP 33371888 A JP33371888 A JP 33371888A JP H02179382 A JPH02179382 A JP H02179382A
Authority
JP
Japan
Prior art keywords
pipe
tube
metal sleeve
wall
penetration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63333718A
Other languages
Japanese (ja)
Inventor
Tadahiro Umemoto
忠宏 梅本
Akitake Matsushita
昭武 松下
Terufumi Uchikado
内門 暉史
Mitsuo Hayashi
三雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP63333718A priority Critical patent/JPH02179382A/en
Publication of JPH02179382A publication Critical patent/JPH02179382A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To easily repair the defective part of a penetration pipe by expanding the wall of the penetration pipe mounted by welding into the piping penetration hole of the above-mentioned wall, inserting a metallic sleeve having the length to cover the range of the pipe expansion into the penetration pipe and then seal welding both ends thereof and the inside surface of the penetration pipe. CONSTITUTION:A closing plug 6 is mounted into the hole 3a of the penetration pipe 3 penetrating in the piping penetration hole 2 of the vessel wall 1. An air atmosphere is maintained in the hole 3a lower than the plug 6. Cooling water W is stored in the vessel. The pipe 3 is expanded by a roll method, etc., as shown by an arrow. The expanding range Y is taken slightly larger than the range of a weld zone 5. A rugged surface 7 is formed above and below from the weld zone 5 and distantly from the range Y. The metallic sleeve 8 of the length to cover the surface 7 from the inside is inserted into the pipe 3. The upper and lower parts of the sleeve are expanded. Both ends thereof and the inside surface of the pipe 3 are seal welded by TIG welding, etc. The defective part is easily repaired without exchanging the penetration pipe itself in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、容器貫通管内面の補修方法に関するものであ
る。 「従来の技術とその課題」 原子力発電関連プラント、各種エネルギ関連プラント、
化学プラント、火力発電プラント等には、容器を貫通し
た状態の配管、つまり、容器貫通管が使用される。 例えば、第2図に示すように、沸騰水型原子炉における
原子炉圧力容器(容器)には、その容器!!(下鏡部)
lに明けた配管貫通用穴2を経由して貫通管(配管)3
が貫通しているとともに、配管貫通用穴2を上方に延長
するように、容器壁1の内底部にスタブチューブ4が立
設され、該スタブチューブ4における上縁部と貫通管3
の外周部との間が、溶接部5によって一体化されており
、貫通管3は、例えば、原子炉の状態を検出するための
各種センサの信号伝達等を行なっている。 このような貫通管3は、機械的強度の優れた容器壁1及
びスタブチューブ4に取り付けられているために、貫通
管3の伸縮や曲げによる変形力の影響が、溶接部5やそ
の近傍の配管壁に現れ易く、十分な信頼性を確保するこ
とが要求される。 また、溶接部5を形成する場合には、溶融状態の溶接金
属が凝固するときに収縮することに基づいて、機械的強
度が相対的に小さい貫通管3が外側に引っ張られる現象
や、貫通管3の熱容量が、その近傍の容器壁lやスタブ
チューブ4の熱容量と比較して小さいために、溶接部5
の形成時の溶接熱によって、貫通管3の管壁の一部が加
熱される現象を生じ易い。 したがって、定期検査時等において、溶接部5あるいは
その近傍の配管壁の状態を検査することが望ましい。 従来、溶接部5の近傍に欠陥部が生じていた場合は、そ
の欠陥部の状態に応じて溶接部5の部分で解体し、新規
の配管を再溶接によって取り付ける等の対策が必要゛と
なる。 しかしながら、新規配管との交換作業時の労力は、多大
なものとなるとともに、前述の原子炉圧力容器における
容器壁1の場合であると、原子炉運転後の交換作業には
、交換作業従事者の放射線被曝低減対策を十分に行なう
ことも必要となり、その労力は膨大なものとなる。 本発明は、このような事情に鑑みてなされたもので、配
管内面において、欠陥部が生じる可能性のある部分や、
欠陥部の発生した部分を溶接部等を解体することなく、
確実に補修することを目的とするものである。 「課題を解決するための手段」 本発明では、これらの課題を解決するために三つの手段
を提案している。 第1の手段は、容器壁の配管貫通用穴に溶接部によって
取り付けられている貫通管の管壁を、溶接部の形成範囲
よりも若干大きな範囲で拡管し、該拡管範囲を覆う長さ
の金属スリーブを貫通管内に挿入してその両端と貫通管
内面との間をシール溶接するものである。 第2の手段は、容器壁の配管貫通用穴に溶接部によって
取り付けられている貫通管の中に、溶接部の形成範囲を
覆う長さを有する金属スリーブを挿入するとともに、そ
の両端と貫通管内面との間をシール溶接する補修方法に
おいて、金属スリーブの挿入に先立ち、溶接部位置から
貫通管の長手方向に離間しt;位置における貫通管内面
部分または金属スリーブの外表面に凹凸面を形成し、次
いで金属スリーブを貫通管の中に挿入するとともに、該
金属スリーブの管壁を拡管して前記凹凸面の形成範囲に
おける金属スリーブ及び貫通管の管壁両表面を圧接状態
とした後、前記シール溶接を行なうものである。 ゛第3の手段は、容器壁の配管貫通用穴に溶接部によっ
て取り付けられている貫通管の管壁を、溶接部の形成範
囲よりも若干大きな範囲で拡管するとともに、溶接部位
置から貫通管の長手方向に離間した位置における貫通管
内面部分または金属スリーブの外表面に凹凸面を形成し
、次いで金属スリーブを貫通管の中に挿入するとともに
、該金属スリーブの管壁を拡管して、前記凹凸面の形成
範囲における金属スリーブ及び貫通管の管壁両表面を圧
接状態とした後、金属スリーブの両端部と貫通管内面と
の間のシール溶接を行なうものである。 「作用」 これらの各手段にあって、貫通管の管壁を拡管すると、
拡管にともなう管壁の半径外方向の移動が、溶接部の存
在によって抑制されるとともに、溶接部から貫通管の長
手方向に少し外れた箇所の管壁では、半径外方向の移動
が許容されるため、管壁が弾性変形するとともに、その
一部が引っ張り応力の範囲を越えて塑性変形を起こすよ
うになる。 塑性変形分だけ管壁の直径が大きくなった状態で拡管の
I;めの外力を解放すると、塑性変形が生じていない管
壁部分で、塑性変形分を縮小させる現象が生じるために
、塑性変形部分に圧縮残留応力が付与されるものとなる
。 金属スリーブの挿入後の拡管により、貫通管と金属スリ
ーブとの間の凹凸面を圧接状態にすると、凹凸面の部分
の弾性変形等によって、面の間に保合部分が形成されて
、貫通管と金属スリーブとの長手方向の移動が抑制され
ることになる。したがって、貫通管と金属スリーブとの
間に熱膨張差等に基づいてずれを生じさせる力が作用し
た場合にあっても、凹凸面部分の近傍で相互のずれ止め
がなされて、シール溶接部分に過大な力が加わらないよ
うになる。 また、貫通管の内側に挿入した金属スリーブのシール溶
接部によりその間が隔離されて、貫通管の内部流体との
直接接触が妨げられ、その範囲での新たな欠陥部の発生
や欠陥部の成長が阻止されるものとなる。 「実施例」 第1r!!J(A)ないし第1図(、G )は、本発明
に係る容器貫通管内面の補修方法を、第2図に示した原
子炉圧力容器における容器壁1の貫通管2に適用した一
実施例を示すものである。 以下、第1図(A)ないし第1図(G)に基づいて工程
順に説明する。 [溶接部形成による影響の検討] 貫通管3をスタブチューブ4に溶接部5によって取り付
ける構造とした場合、溶接金属が溶融状態から凝固する
ときの熱収縮現象により、溶接部5の近傍の貫通管3及
びスタブチューブ4には、第1図(A)に十符号で示す
ように、引っ張り残留応力が生じる。 このため、貫通管3は、溶接部5の近傍で半径外方向に
引っ張られて、第1図(B)に示すように、径の大きく
なった箇所が生じるので、配管壁の外面の一部に、十符
号で示す引っ張り残留応力が付与された状態となってい
ると仮定する。 また、貫通管3は、小口径管とされるとともに、その配
管壁がスタブチューブ4と比較して薄く、熱容量が相対
的に小さくなるために、溶接部5の形成時の溶接熱によ
って、配管壁の一部が加熱されることによって鋭敏化し
た部分、つまり、溶接部5の中心位置Cの両側における
位置1と位置すとの範囲に、熱影響部Xが生じているも
のと仮定する。 一方、一般論として、オーステナイト系鋼においては、
腐食因子と引っ張り残留応力とが同時に存在する場合に
、応力腐食割れ等が進行し易い傾向がある。 そこで、貫通管3の内外面に、腐食流体である水が存在
しているとともに、同時に管壁に引っ張り残留応力が付
与されている状態がある場合に、これを改善することを
検討する。 例えば、貫通管3の外面における位1t+と位置すとの
間の部分に、第1図(B)に十符号で示す引っ張り残留
応力が付与されている場合を仮定して、貫通管3におけ
る管壁の一部を、以下に説明するように拡管することに
よって改善旭理を行なうものとする。 [容器貫通管の閉塞] 第1図(C)に示すように、容器壁(例えば主として低
合金鋼によって構成される)1の配管貫通用穴2を貫通
している貫通管(例えば5US304からなる配管)3
の管式3息の中に、閉塞栓6を装着して管式31の中を
上下に区画し、閉塞栓6より下方の管式31を空気雰囲
気とする。また、容器の中には、冷却水Wを貯留した状
態として、作業員の放射線被曝線量を低減しながら作業
を行なう(以下の各作業においても同様である )。 [貫通管の拡管コ 貫通管3の中に適宜機器を挿入するとともに、ロール法
や局部的内圧負荷法等によって、第1図(C)において
各矢印で示すように、管壁を半径外方向に拡管させる。 この場合の拡管範囲Yは、溶接部5の範囲(高さ寸法範
囲)よりも若干大きくなるように、例えば溶接部5の範
囲から、30IIm〜40mmに及ぶように、かつ、前
述の熱影響部Xよりも大きくなるように設定する。なお
、拡管機器あるいは作業の制限により、拡管範囲Yを分
割しなければならない場合は、溶接部5の範囲を重複さ
せるように設定する。 拡管によって管壁を半径外方向に移動させると、溶接部
5が存在する部分では、管壁の移動が妨げられ、一方、
溶接部5から上下に離間している箇所の管壁では、半径
外方向の移動が許容されるため、管壁が弾性変形すると
ともに、その一部の内部応力が降伏点を越えて、塑性変
形を起こし、第1図(D)において鎖線で示すように、
塑性変形分だけ管壁の直径が大きくなる。この場合にお
ける拡管量は、貫通管3の材質や溶接部5の大きさによ
って影響を受けるが、例えば直径が1〜5%程度大きく
なる程度の拡管を行なう。 次いで、拡管のための力を除去した状態に戻すと、塑性
変形部分を第1図(D)の鎖線で示す状態から実線で示
す状態に縮小させる力が生じ、塑性変形部分、つまり、
第1図(B)に符号中で示した表面について、その部分
の残留応力を圧縮残留応力とする方向に移行させるよう
に働く。 [貫通管内面の凹凸面加工1 第1図(E)に示すように、溶接部5から上下にそれぞ
れ離間するとともに、前述の拡管範囲Yから、例えばR
oam程度外れた部分の管壁内面に、例えば複数の周溝
からなる凹凸面7を形成する。 周溝を形成する場合であると、その深さを例えば0.1
m1〜0.5識臘に設定する。
"Field of Industrial Application" The present invention relates to a method for repairing the inner surface of a container penetrating pipe. "Conventional technology and its issues" Nuclear power generation related plants, various energy related plants,
BACKGROUND OF THE INVENTION In chemical plants, thermal power plants, and the like, piping that penetrates a container, that is, a container penetrating pipe is used. For example, as shown in Fig. 2, the reactor pressure vessel (container) in a boiling water reactor has the following characteristics: ! (Lower mirror part)
Penetration pipe (piping) 3 via pipe penetration hole 2 drilled in l.
A stub tube 4 is erected at the inner bottom of the container wall 1 so as to extend the pipe penetration hole 2 upward, and the upper edge of the stub tube 4 and the penetration pipe 3
The through pipe 3 is integrated with the outer circumferential portion of the nuclear reactor by a welded portion 5, and the through pipe 3 performs, for example, signal transmission of various sensors for detecting the state of the nuclear reactor. Since such a penetration pipe 3 is attached to the container wall 1 and the stub tube 4, which have excellent mechanical strength, the influence of deformation force due to expansion, contraction, and bending of the penetration pipe 3 will affect the welded part 5 and its vicinity. It tends to appear on pipe walls, and it is required to ensure sufficient reliability. In addition, when forming the welded part 5, it is necessary to avoid the phenomenon that the through pipe 3, which has relatively low mechanical strength, is pulled outward due to the shrinkage of the molten weld metal as it solidifies, or the phenomenon that the through pipe 3, which has relatively low mechanical strength, is pulled outward. Since the heat capacity of the welded portion 5 is smaller than that of the nearby container wall l and the stub tube 4, the welded portion 5
The welding heat generated during formation tends to cause a phenomenon in which a part of the tube wall of the through tube 3 is heated. Therefore, it is desirable to inspect the condition of the welded portion 5 or the pipe wall in the vicinity during periodic inspections. Conventionally, if a defect occurred near the weld 5, it would be necessary to take measures such as dismantling the weld 5 and installing new piping by re-welding, depending on the condition of the defect. . However, the labor involved in replacing piping with new pipes is enormous, and in the case of the vessel wall 1 in the reactor pressure vessel mentioned above, replacement work after reactor operation requires a large amount of labor. It is also necessary to take sufficient measures to reduce radiation exposure, which requires an enormous amount of effort. The present invention has been made in view of the above circumstances, and is designed to protect the inner surface of piping from areas where defects may occur,
The defective part can be removed without dismantling the welded part etc.
The purpose is to ensure reliable repair. "Means for Solving the Problems" The present invention proposes three means for solving these problems. The first method is to expand the pipe wall of the penetration pipe attached to the pipe penetration hole in the container wall by a welded part in an area slightly larger than the area where the welded part is formed, and to create a length that covers the expanded area. A metal sleeve is inserted into a through-tube, and both ends of the metal sleeve are sealed and welded to the inner surface of the through-tube. The second method is to insert a metal sleeve with a length that covers the area where the weld is formed into the through pipe that is attached to the pipe through hole in the container wall by a weld, and to insert both ends of the metal sleeve into the through pipe. In a repair method that performs seal welding between surfaces, prior to inserting the metal sleeve, the metal sleeve is separated from the welding point in the longitudinal direction of the through-hole, and an uneven surface is formed on the inner surface of the through-hole or the outer surface of the metal sleeve at the position t; Then, the metal sleeve is inserted into the through tube, and the tube wall of the metal sleeve is expanded to bring both surfaces of the metal sleeve and the tube wall of the through tube into pressure contact in the area where the uneven surface is formed. Seal welding is performed.゛The third method is to expand the pipe wall of the penetration pipe that is attached to the pipe penetration hole in the container wall by a welded part in an area slightly larger than the area in which the welded part is formed, and to remove the penetration pipe from the welded part position. forming an uneven surface on the inner surface of the through-tube or on the outer surface of the metal sleeve at positions spaced apart in the longitudinal direction, and then inserting the metal sleeve into the through-tube and expanding the tube wall of the metal sleeve; After the surfaces of the metal sleeve and the tube wall of the through tube are brought into pressure contact in the area where the uneven surface is formed, seal welding is performed between both ends of the metal sleeve and the inner surface of the through tube. "Effect" In each of these means, when the wall of the through pipe is expanded,
The radially outward movement of the pipe wall due to pipe expansion is suppressed by the presence of the weld, and radially outward movement of the pipe wall at a location slightly away from the weld in the longitudinal direction of the through tube is allowed. As a result, the tube wall undergoes elastic deformation, and a portion of the tube wall begins to undergo plastic deformation beyond the range of tensile stress. When the external force for pipe expansion is released in a state where the diameter of the pipe wall has increased by the amount of plastic deformation, a phenomenon occurs in which the plastic deformation is reduced in the part of the pipe wall where no plastic deformation has occurred. A compressive residual stress is applied to the part. When the uneven surface between the penetrating pipe and the metal sleeve is brought into pressure contact by expanding the pipe after inserting the metal sleeve, a retaining part is formed between the surfaces due to elastic deformation of the uneven surface, etc., and the penetrating pipe The movement of the metal sleeve in the longitudinal direction is suppressed. Therefore, even if a force that causes misalignment is applied between the through pipe and the metal sleeve due to differences in thermal expansion, etc., mutual misalignment is prevented near the uneven surface portion, and the seal welded portion This prevents excessive force from being applied. In addition, the seal welded part of the metal sleeve inserted inside the penetrating pipe isolates the space between them, preventing direct contact with the internal fluid of the penetrating pipe, and causing new defects or growth of defects in that area. will be prevented. “Example” 1st r! ! J(A) to FIG. 1(, G) show one implementation in which the method for repairing the inner surface of a vessel penetrating pipe according to the present invention is applied to a penetrating pipe 2 of a vessel wall 1 in a reactor pressure vessel shown in FIG. This is an example. Hereinafter, the steps will be explained in order based on FIG. 1(A) to FIG. 1(G). [Study of the influence of welded part formation] When the penetrating pipe 3 is attached to the stub tube 4 by the welded part 5, due to the heat contraction phenomenon when the weld metal solidifies from a molten state, the penetrating pipe near the welded part 5 may 3 and the stub tube 4, a tensile residual stress is generated in the stub tube 4, as indicated by the 0 symbol in FIG. 1(A). For this reason, the penetration pipe 3 is pulled in the radial outward direction near the welded part 5, and as shown in FIG. It is assumed that a tensile residual stress indicated by the 0 sign is applied to the In addition, the penetration pipe 3 is a small-diameter pipe, and its pipe wall is thinner than that of the stub tube 4, so that its heat capacity is relatively small. It is assumed that a heat-affected zone X is generated in a part of the wall that has become sensitized by being heated, that is, in a range located at position 1 on both sides of the center position C of the welded part 5. On the other hand, generally speaking, in austenitic steel,
When corrosion factors and tensile residual stress exist at the same time, stress corrosion cracking and the like tend to progress. Therefore, if there is water as a corrosive fluid on the inner and outer surfaces of the penetrating pipe 3 and at the same time tensile residual stress is applied to the pipe wall, we will consider ways to improve this situation. For example, assuming that tensile residual stress is applied to the portion between position 1t+ and position 1t+ on the outer surface of the penetration pipe 3, the tensile residual stress shown in FIG. Improvements will be made by expanding a portion of the wall as described below. [Closure of container penetrating pipe] As shown in FIG. 1(C), a penetrating pipe (for example, made of 5US304 Piping) 3
A blockage stopper 6 is installed in the tube type 3 breather to divide the inside of the tube type 31 into upper and lower sections, and the tube type 31 below the blockage stopper 6 is made into an air atmosphere. In addition, the cooling water W is stored in the container, and the work is carried out while reducing the radiation exposure dose of the workers (the same applies to each of the following works). [Pipe Expansion of the Penetration Pipe] Insert appropriate equipment into the penetration pipe 3, and use the roll method, local internal pressure loading method, etc. to expand the pipe wall in the radial outward direction as shown by the arrows in Fig. 1(C). Expand the tube. In this case, the expansion range Y is set to be slightly larger than the range (height size range) of the welded part 5, for example, from 30 II m to 40 mm from the range of the welded part 5, and Set it to be larger than X. Note that if the tube expansion range Y has to be divided due to limitations of the tube expansion equipment or work, the ranges of the welded portions 5 are set to overlap. When the pipe wall is moved in the radial outward direction by pipe expansion, the movement of the pipe wall is blocked in the part where the welded part 5 is present, and on the other hand,
The pipe wall at locations vertically away from the welded part 5 is allowed to move in the radial outward direction, so the pipe wall deforms elastically, and some internal stress exceeds the yield point, resulting in plastic deformation. , as shown by the chain line in Figure 1 (D),
The diameter of the tube wall increases by the amount of plastic deformation. The amount of tube expansion in this case is affected by the material of the through tube 3 and the size of the welded portion 5, but the tube is expanded to an extent that the diameter increases by about 1 to 5%, for example. Next, when the force for expanding the tube is returned to the state in which it is removed, a force is generated that reduces the plastically deformed portion from the state shown by the chain line in FIG. 1(D) to the state shown by the solid line, and the plastically deformed portion
Regarding the surface indicated by the reference numeral in FIG. 1(B), it acts to shift the residual stress in that portion to a compressive residual stress. [Irregular surface machining 1 on the inner surface of the penetrating pipe 1 As shown in FIG.
An uneven surface 7 consisting of, for example, a plurality of circumferential grooves is formed on the inner surface of the tube wall in a portion that is deviated by about oam. When forming a circumferential groove, the depth is set to 0.1, for example.
Set m1 to 0.5 degrees.

【金属スリーブの挿入と拡管】[Insertion and expansion of metal sleeve]

拡管範囲Yよりも長い寸法で、かつ、凹凸面7を内方か
ら覆う長さを有する金属スリーブ8を貫通管3の中に挿
入して、凹凸面7を内面側から覆った状態とする。 この場合の金属スリーブ8の材料は、貫通管3が5US
304材からなる場合であると、これよりも相対的に柔
らかい材料、例えば5US304L材や5US316L
材を使用する。 そして、金属スリーブ8における上端部分、次いで、下
端部分について、第1図(F)に示すように拡管を行な
い、該拡管に基づいて金属スリーブ8の表面を凹凸面7
に圧接させるとともに、その管壁を若干塑性変形させる
。つまり、金属スリーブ8の外径が管式3&の内径より
例えば0.5〜1%程度大きくなる拡管として、圧接状
態の維持を行なわせるようにする。ただし、第1図(F
)は、後述するシール溶接部9を形成した状態で示しで
ある。 このように、貫通管3と金属スリーブ8との間に、凹凸
面7が介在するようにして相互に圧接させると、材料的
に柔らかい金属スリーブ8の表面が局部的に弾性変形ま
たは塑性変形して、第1図(G)に示すように、両面間
に保合部分が形成され、長手方向の相互移動を妨げるよ
うになる。 [シール溶接〕 さらに、金属スリーブ8の両端部と貫通管3の内面との
間をTIG溶接またはYAGレーザ等によりシール溶接
し、シール溶接部9の形成によって、金属スリーブ8を
配した範囲の密封を行なう。 この場合のシール溶接は、溶接熱が貫通管3の管壁部分
に影響を及ぼすことを少なくするために、溶接入熱を例
えば1〜5キロ・ジューシフ0重程度に押さえると良い
。 [補修後の状態] シール溶接部9の形成後において、金属スリーブ8は貫
通管3と一体化されるが、貫通管3と金属スリーブ8と
の間に、温度差の付与、材料差、熱膨張差等に基づく寸
法差に基づくずれが生じた場合には、凹凸面7の部分で
長手方向の移動を拘束するため、これより僅かに離間し
た部分のシール溶接部9に、過大な力、応力が加わるこ
とを避けることができる。 また、シール溶接部9の形成後において、貫通管3の内
部流体が溶接部5の近傍における管壁内面に直接接触す
ることはない。 一方、シール溶接部9の形成後において、前述した閉塞
栓6は撤去されることになる。 く他の実施態様〉 以上説明した実施例に代えて次の構成を採用することが
できる。 (イ)原子炉圧力容器の下鏡部の貫通管への適用に代え
て、配管の外周面に7ランジを溶接部によって取り付け
ているものに適用することや、直管状の単純な金属管に
適用すること。 (ロ)凹凸面7を金属スリーブ8の外表面に形成するこ
と。 (ハ)凹凸面7が周溝以外のもの、例えばエンボス加工
を施したもの、ローレフト加工を施したもの、ねじ加工
を施したもの等であること。 (ニ)凹凸面7を形成する範囲を金属スリーブ8の両端
部近傍に限定せず、貫通管3と金属スリーブ8とが嵌合
状態となる範囲の全部あるいは複数箇所とすること。 (ホ)金属スリーブの拡管範囲を凹凸面7の部分に止ど
めず、貫通管3と金属スリーブ8とが嵌合状態となる範
囲の全部あるいは複数箇所に広げ、中間等においても一
体化を図ること。 (へ)貫通管3の内面の必要箇所、つまり、シール溶接
部9の位置から上下方向に延ばした適宜範囲(シール溶
接による熱影響部の範囲)に、内側を覆う耐食性コーテ
ィング層を形成すること。 (ト)耐食性コーティング層が、貫通管3の内部流体を
考慮して、耐食性を有するC r、T i等の金属メツ
キにより形成されること。 (チ)耐食性コーティング層の部分を金属溶融凝固層に
置き換えて形成することができ、この場合、シール溶接
部9の上下に、(r、Ti等の粉末を付着させた状態で
、レーザによりCr、T iを急速加熱して溶融させる
とともに、その後の冷却凝固により貫通管3の内面に金
属溶融凝固層を形成し、金属溶融凝固層の金属自身の耐
食性により新たな腐食部、欠陥部の発生を防止すること
。 (す)金属溶融凝固層を形成する別の方法として、レー
ザまたはTIG溶接トーチを利用し、小入熱となるよう
に設定し、前述のシール溶接部9の形成時に生じた熱影
響部の範囲を内側から覆うとともに、貫通管3の内面、
極表面の組織を直接溶融凝固させることにより、再凝固
した組織がデルタフェライトを含むように改質すること
。 「発明の効果」 以上説明したように、本発明に係る金属管内面の補修方
法は、 (i)配管貫通用穴に溶接部によって取り付けられてい
る貫通管の中に、新規の金属スリーブを挿入して、貫通
管内面との間をシール溶接するものであるから、溶接部
近傍の管壁内面に欠陥部が発生している場合や、その可
能性のある場合に、貫通管そのものを交換することなく
、欠陥部の補修を容易に実施することかでさる。 (U)貫通管の内面に生じた欠陥部、あるいは欠陥部の
発生の可能性のある部分を金属スリーブで覆って、シー
ル溶接することにより密閉するものであるから、貫通管
の取り付は状態に影響されることなく、欠陥部の補修対
策や漏洩防止対策を行なうことができる。 (iii)上記により、貫通管の交換作業や溶接部解体
作業が伴うことがないので、原子炉圧力容器の貫通管の
場合は、補修作業者の放射線被曝線量を低減することが
できる。 (iv)貫通管を拡管することによって、溶接部近傍の
管壁を圧縮残留応力とする方向に導くようにしているか
ら、貫通管内面の補修作業だけでなく、溶接部近傍の外
表面における残留応力を改善し、欠陥部の発生そのもの
を抑制するとともに、欠陥部が発生している場合はその
成長を妨げることができる。 (v)金属スリーブを拡管して凹凸面を圧接状態とする
ものであるから、貫通管と金属スリーブとの長手方向の
ずれが生じようとした場合に、凹凸面の部分で固定され
ていることにより、ずれがシール溶接部に影響を及ぼす
ことが少なく、密封対象範囲を確実に内部流体から保護
して接触を妨げることができる。 等の優れた効果を奏する。
A metal sleeve 8 having a dimension longer than the tube expansion range Y and having a length to cover the uneven surface 7 from inside is inserted into the through tube 3 to cover the uneven surface 7 from the inner side. In this case, the material of the metal sleeve 8 is 5US.
304 material, a material that is relatively softer than this, such as 5US304L material or 5US316L material.
Use materials. Then, the upper end portion and then the lower end portion of the metal sleeve 8 are expanded as shown in FIG.
At the same time, the pipe wall is slightly plastically deformed. That is, the outer diameter of the metal sleeve 8 is expanded to be larger, for example, by about 0.5 to 1% than the inner diameter of the tubular type 3&, so that the pressed state is maintained. However, in Figure 1 (F
) is shown with a seal welded portion 9, which will be described later, formed. In this way, when the through pipe 3 and the metal sleeve 8 are brought into pressure contact with each other with the uneven surface 7 interposed between them, the surface of the metal sleeve 8, which is soft in material, is locally elastically or plastically deformed. As a result, as shown in FIG. 1(G), a retaining portion is formed between both surfaces to prevent mutual movement in the longitudinal direction. [Seal Welding] Furthermore, seal welding is performed between both ends of the metal sleeve 8 and the inner surface of the through pipe 3 by TIG welding or YAG laser, etc., and by forming a seal weld 9, the area where the metal sleeve 8 is placed is sealed. Do this. In seal welding in this case, in order to reduce the influence of welding heat on the tube wall portion of the penetrating pipe 3, it is preferable to suppress the welding heat input to, for example, about 1 to 5 kg. [Condition after repair] After the seal weld 9 is formed, the metal sleeve 8 is integrated with the through pipe 3, but there is a difference in temperature, material difference, and heat between the through pipe 3 and the metal sleeve 8. If a deviation occurs due to dimensional differences due to differences in expansion, etc., in order to restrict movement in the longitudinal direction at the uneven surface 7, an excessive force or Addition of stress can be avoided. Furthermore, after the seal weld 9 is formed, the internal fluid of the through tube 3 does not come into direct contact with the inner surface of the tube wall in the vicinity of the weld 5. On the other hand, after the seal weld 9 is formed, the above-mentioned plug 6 is removed. Other Embodiments> The following configuration can be adopted instead of the embodiment described above. (b) Instead of being applied to the penetration pipe of the lower head of the reactor pressure vessel, it may be applied to the pipe in which 7 flanges are attached to the outer peripheral surface of the pipe by welding, or to a simple straight metal pipe. apply. (b) Forming the uneven surface 7 on the outer surface of the metal sleeve 8. (c) The uneven surface 7 is other than a circumferential groove, such as an embossed surface, a low-left surface, or a threaded surface. (d) The area in which the uneven surface 7 is formed is not limited to the vicinity of both ends of the metal sleeve 8, but is formed in the entire area or in a plurality of areas where the through pipe 3 and the metal sleeve 8 are fitted together. (E) The expansion range of the metal sleeve is not limited to the uneven surface 7, but is expanded to the entire range or multiple locations where the through pipe 3 and the metal sleeve 8 are fitted, and the expansion range is also integrated in the middle etc. What to aim for. (f) Forming a corrosion-resistant coating layer covering the inside of the penetrating pipe 3 at necessary locations on the inner surface, that is, in an appropriate range extending vertically from the position of the seal weld 9 (range of the heat affected zone due to seal welding). . (g) The corrosion-resistant coating layer is formed of metal plating such as Cr, Ti, etc. that has corrosion resistance, taking into account the internal fluid of the through pipe 3. (H) It is possible to replace the corrosion-resistant coating layer with a metal molten solidified layer. In this case, with powders of (r, Ti, etc.) adhered to the top and bottom of the seal weld 9, a laser beam is applied to Cr, Ti, etc. , T i is rapidly heated and melted, and then a metal molten solidified layer is formed on the inner surface of the through pipe 3 by cooling and solidification, and new corroded parts and defective parts are generated due to the corrosion resistance of the metal itself in the metal molten solidified layer. (1) Another method for forming a molten metal solidified layer is to use a laser or TIG welding torch and set it to have a small heat input to prevent the formation of the seal weld 9 described above. In addition to covering the range of the heat affected zone from the inside, the inner surface of the through pipe 3,
Modification of the re-solidified structure so that it contains delta ferrite by directly melting and solidifying the structure on the extreme surface. "Effects of the Invention" As explained above, the method for repairing the inner surface of a metal pipe according to the present invention includes: (i) inserting a new metal sleeve into the through pipe that is attached to the pipe through hole by a welded part; Since the pipe is sealed and welded to the inner surface of the through pipe, if a defect occurs or there is a possibility of a defect on the inner surface of the pipe wall near the weld, the through pipe itself should be replaced. This makes it easy to repair defective parts without any problems. (U) Defects or areas where defects may occur on the inner surface of the through pipe are covered with a metal sleeve and sealed by seal welding. It is possible to take measures to repair defective parts and prevent leakage without being affected by this. (iii) As a result of the above, there is no need to replace the penetrating pipe or dismantle the welded part, so in the case of a penetrating pipe of a reactor pressure vessel, the radiation exposure dose of repair workers can be reduced. (iv) By expanding the penetrating pipe, the pipe wall near the weld is guided in the direction of creating compressive residual stress, so it is possible to not only repair the inner surface of the penetrating pipe, but also to repair the residual stress on the outer surface near the weld. It is possible to improve stress, suppress the occurrence of defective parts themselves, and prevent the growth of defective parts if they have been generated. (v) Since the metal sleeve is expanded to bring the uneven surface into pressure contact, even if the through tube and the metal sleeve become misaligned in the longitudinal direction, they must be fixed by the uneven surface. Therefore, the displacement has little effect on the seal weld, and the area to be sealed can be reliably protected from the internal fluid and prevented from contacting it. It has excellent effects such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)ないし第1図(G)は本発明に係る容器貫
通管内面の補修方法を原子炉圧力容器の容器壁の貫通管
に適用した一実施例を示す工程説明図、第2図は沸騰水
型原子炉における容器壁を貫通する配管の例を示す正断
面図である。 第1図(A) l・・・・・・容器!!!(下鏡部)、2・・・・・・
配管貫通用穴、 3・・・・・・貫通管、 31・・・・・・管式、 4・・・・・・スタブチューブ、 5・・・・・・溶接部、 6・・・・・・閉塞栓、 7・・・・・・凹凸面、 8・・・・・・金属スリーブ、 9・・・・・・シール溶接部、 W・・・・・・冷却水、 X・・・・・・熱影響部、 Y・・・・・・拡管範囲。 第1図 (D) 第1図(F)
1(A) to 1(G) are process explanatory diagrams showing one embodiment in which the method for repairing the inner surface of a vessel penetrating pipe according to the present invention is applied to a penetrating pipe of a vessel wall of a reactor pressure vessel; The figure is a front sectional view showing an example of piping that penetrates a vessel wall in a boiling water reactor. Figure 1 (A) l... Container! ! ! (Lower mirror part), 2...
Piping penetration hole, 3... Penetration pipe, 31... Pipe type, 4... Stub tube, 5... Welded part, 6... ...Occupation plug, 7...Uneven surface, 8...Metal sleeve, 9...Seal welded part, W...Cooling water, X... ...Heat-affected zone, Y...Pipe expansion range. Figure 1 (D) Figure 1 (F)

Claims (3)

【特許請求の範囲】[Claims] (1)容器壁の配管貫通用穴に溶接部によって取り付け
られている貫通管の管壁を、溶接部の形成範囲よりも若
干大きな範囲で拡管し、該拡管範囲を覆う長さの金属ス
リーブを貫通管内に挿入してその両端と貫通管内面との
間をシール溶接することを特徴とする容器貫通管内面の
補修方法。
(1) Expand the pipe wall of the penetration pipe attached to the pipe penetration hole in the container wall by a weld to an area slightly larger than the area where the weld is formed, and install a metal sleeve long enough to cover the expansion range. A method for repairing the inner surface of a container penetrating pipe, the method comprising inserting the penetrating pipe into the pipe and sealing welding between both ends of the penetrating pipe and the inner surface of the penetrating pipe.
(2)容器壁の配管貫通用穴に溶接部によって取り付け
られている貫通管の中に、溶接部の形成範囲を覆う長さ
を有する金属スリーブを挿入するとともに、その両端と
貫通管内面との間をシール溶接する補修方法において、
金属スリーブの挿入に先立ち、溶接部位置から貫通管の
長手方向に離間した位置における貫通管内面部分または
金属スリーブの外表面に凹凸面を形成し、次いで金属ス
リーブを貫通管の中に挿入するとともに、該金属スリー
ブの管壁を拡管して前記凹凸面の形成範囲における金属
スリーブ及び貫通管の管壁両表面を圧接状態とした後、
前記シール溶接を行なうことを特徴とする容器貫通管内
面の補修方法。
(2) Insert a metal sleeve with a length that covers the area where the weld is formed into the through pipe that is attached to the pipe through hole in the container wall by a weld, and connect both ends of the sleeve to the inner surface of the through pipe. In the repair method of seal welding between
Prior to inserting the metal sleeve, an uneven surface is formed on the inner surface of the through-tube or on the outer surface of the metal sleeve at a position spaced apart from the welding point in the longitudinal direction of the through-tube, and then the metal sleeve is inserted into the through-tube. , after expanding the tube wall of the metal sleeve and bringing both surfaces of the metal sleeve and the tube wall of the through tube into pressure contact in the area where the uneven surface is formed,
A method for repairing an inner surface of a container penetrating pipe, the method comprising performing the seal welding described above.
(3)容器壁の配管貫通用穴に溶接部によって取り付け
られている貫通管の管壁を、溶接部の形成範囲よりも若
干大きな範囲で拡管するとともに、溶接部位置から貫通
管の長手方向に離間した位置における貫通管内面部分ま
たは金属スリーブの外表面に凹凸面を形成し、次いで金
属スリーブを貫通管の中に挿入するとともに、該金属ス
リーブの管壁を拡管して、前記凹凸面の形成範囲におけ
る金属スリーブ及び貫通管の管壁両表面を圧接状態とし
た後、金属スリーブの両端部と貫通管内面との間のシー
ル溶接を行なうことを特徴とする容器貫通管内面の補修
方法。
(3) Expand the pipe wall of the penetration pipe that is attached to the pipe penetration hole in the container wall by a weld to an area slightly larger than the area where the weld is formed, and extend the pipe wall from the weld location in the longitudinal direction of the penetration pipe. Forming an uneven surface on the inner surface of the through tube or the outer surface of the metal sleeve at a spaced apart position, and then inserting the metal sleeve into the through tube and expanding the tube wall of the metal sleeve to form the uneven surface. 1. A method for repairing an inner surface of a container penetrating tube, the method comprising: bringing both surfaces of the metal sleeve and the tube wall of the penetrating tube into a press-contact state, and then performing seal welding between both ends of the metal sleeve and the inner surface of the penetrating tube.
JP63333718A 1988-12-28 1988-12-28 Method for repairing inside surface of pipe penetrating through vessel Pending JPH02179382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63333718A JPH02179382A (en) 1988-12-28 1988-12-28 Method for repairing inside surface of pipe penetrating through vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333718A JPH02179382A (en) 1988-12-28 1988-12-28 Method for repairing inside surface of pipe penetrating through vessel

Publications (1)

Publication Number Publication Date
JPH02179382A true JPH02179382A (en) 1990-07-12

Family

ID=18269188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333718A Pending JPH02179382A (en) 1988-12-28 1988-12-28 Method for repairing inside surface of pipe penetrating through vessel

Country Status (1)

Country Link
JP (1) JPH02179382A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604265A1 (en) * 1992-12-21 1994-06-29 Framatome Replacement nozzle and method for replacing a nozzle in a pressure vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0604265A1 (en) * 1992-12-21 1994-06-29 Framatome Replacement nozzle and method for replacing a nozzle in a pressure vessel

Similar Documents

Publication Publication Date Title
JP4916879B2 (en) Crack repair system and method using friction stir welding for materials including metal matrix composites, ferrous alloys, non-ferrous alloys, and superalloys
US4556240A (en) Corrosion-resistant, double-wall pipe structures
JPS622903B2 (en)
JP4915251B2 (en) Clad welded structure of low alloy steel base metal
US4960650A (en) Method of repairing or protecting an end of a metal tube in a heat exchanger and sleeve for implementing same
US4783890A (en) Method of repairing a steam generator tube by means of lining
JPH02179382A (en) Method for repairing inside surface of pipe penetrating through vessel
JPS62101374A (en) Method of brazing sleeve into conduit
JPH0592281A (en) Method for improving corrorsion resistance of welding part of through tube to container
KR100509196B1 (en) The method of lining of welding line for chemistry fluid tank made of high quality
JP2751339B2 (en) Repair method for container penetration piping
JPH02173217A (en) Method for fixing penetrating piping at lower end plate in vessel
JPS63199075A (en) Method for welding metallic pipe
JPH0351600A (en) Repair of container passing pipe
JPH02169181A (en) Method for fixing piping passing through vessel lower mirror part
JPH02133191A (en) Preventing method for stress corrosion cracking of vessel through-pipe
EP0121137A1 (en) Seal welded tube sleeve
JPH02133192A (en) Repairing method for inside surface of vessel through-pipe
JPH02224890A (en) Method for repairing pipe penetrating through vessel
JPH0539893A (en) Vessel through pipe repairing method
JPS5952689B2 (en) Method for improving residual stress on the inner and outer surfaces of steel pipes
JPH02187267A (en) Formation of pipe joint
JP5106310B2 (en) Boiling water reactor
WO2009063573A1 (en) Stave cooler for blast furnace
JPH04135067A (en) Residual stress reducing method for tube inside fitting weld zone