JPH02178501A - Fluidized-bed boiler - Google Patents

Fluidized-bed boiler

Info

Publication number
JPH02178501A
JPH02178501A JP33362588A JP33362588A JPH02178501A JP H02178501 A JPH02178501 A JP H02178501A JP 33362588 A JP33362588 A JP 33362588A JP 33362588 A JP33362588 A JP 33362588A JP H02178501 A JPH02178501 A JP H02178501A
Authority
JP
Japan
Prior art keywords
fluidized bed
divided
steam
tube group
steam pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33362588A
Other languages
Japanese (ja)
Inventor
Akio Nishiyama
明雄 西山
Kenji Toukawa
謙示 東川
Shujiro Koga
古賀 修二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP33362588A priority Critical patent/JPH02178501A/en
Publication of JPH02178501A publication Critical patent/JPH02178501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To reduce a pressure loss of a divided steam tube group and easily perform round-off of boiler minimum load by blocking steam allowed to flow through the divided steam tube group with the lowering of a load. CONSTITUTION:After fuel and air flows are throttled to some extent because combustibility is lowered when the temperature of a fluidized bed 3 lowers too much at the time of cell slapping, an air amount adjustment damper 11a is wholly closed to stop the flow of a right-half of the fluidized bed 3 and combustibility is not lowered at fluidized bed side temperature by supplying the same quantity as a fuel layer supplied to both combined fluidized bed 3 to a right-side fluidized bed 3 alone. The pressure loss of steam between an inlet and an outlet of a divided steam tube group 4b is at least necessary minimum pressure loss because the same quantity as a steam quantity allowed to flow in both the divided steam tube groups 4a, 4b is allowed to flow through the divided steam tube group 4b alone by closing a steam shut-off valve 38 at the side of the divided steam tube group 4a positioned at the side which stops the right-half of the fluidized bed 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は流動層燃焼装置に係り、特に流動層ボイラの最
低負荷の切下げを図るのに好適な流動層ボイラに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fluidized bed combustion apparatus, and particularly to a fluidized bed boiler suitable for reducing the minimum load of the fluidized bed boiler.

〔従来の技術〕[Conventional technology]

重油、石炭などを燃料とする流動層ボイラの層内温度は
通常800〜900 ’Cとされ、この層内に伝熱管、
蒸気管を埋設した流動層ボイラにおいては、この伝熱管
、蒸気管の層中伝熱量(熱伝達率)が従来形ボイラのガ
ス流のみからの伝熱量に比べて5〜10倍程度大きく、
大量の伝熱量をもたらす特徴がある。
The temperature in the bed of a fluidized bed boiler that uses heavy oil, coal, etc. as fuel is usually 800 to 900'C, and heat transfer tubes,
In a fluidized bed boiler with buried steam pipes, the amount of heat transfer (heat transfer coefficient) in the layer of the heat transfer tubes and steam pipes is about 5 to 10 times larger than the amount of heat transferred from only the gas flow in a conventional boiler.
It has the characteristic of providing a large amount of heat transfer.

そして、流動層ボイラは層中での伝熱特性が優れている
ことから、従来はぼた山に投棄していたスラッジ炭のよ
うな低品位炭であっても流動層ボイラの燃料として有効
に活用することができ、しかもこれら低品位炭を焼却す
ることによって低品位炭の減容にも役立つことから、近
年流動層ボイラは脚光をあびている。
Furthermore, since fluidized bed boilers have excellent heat transfer characteristics in the bed, even low-grade coal such as sludge coal, which was conventionally dumped into piles, can be effectively used as fuel for fluidized bed boilers. In recent years, fluidized bed boilers have been attracting attention because they can reduce the volume of low-grade coal by incinerating it.

以下、第10図および第11図を用いて流動層ボイラの
概要について説明する。
The outline of the fluidized bed boiler will be explained below using FIG. 10 and FIG. 11.

第10図は従来の流動層ボイラの縦断面図、第11図は
第10図の■−■線横線面断面図る。
FIG. 10 is a longitudinal cross-sectional view of a conventional fluidized bed boiler, and FIG. 11 is a cross-sectional view taken along the horizontal line ``--■'' in FIG.

流動層ボイラ1の底部には多孔板2を配置し、この多孔
ui2上には図示していない媒体投入管から投入された
流動媒体によって流動N3を形成する。この流動1!I
3内には分割蒸気管群4a、4b。
A perforated plate 2 is arranged at the bottom of the fluidized bed boiler 1, and a fluid N3 is formed on the perforated plate 2 by a fluid medium introduced from a medium input pipe (not shown). This flow 1! I
3 includes divided steam pipe groups 4a and 4b.

伝熱管5が配置され、この流動WJa上の対流伝熱部6
には蒸気管7が、節炭器管8がそれぞれ廃熱回収の目的
で配置されている。
A heat transfer tube 5 is arranged, and a convection heat transfer section 6 on this flow WJa
A steam pipe 7 and an economizer pipe 8 are respectively arranged for the purpose of waste heat recovery.

9は仕切壁で、空気室10a、10bは仕切壁9によっ
て分割され、空気室10a、10bの入口には空気HJ
I整ダンパlla、1)bが配置されている。
9 is a partition wall, the air chambers 10a and 10b are divided by the partition wall 9, and an air HJ is provided at the entrance of the air chambers 10a and 10b.
I-regular dampers lla, 1)b are arranged.

流動化用、燃焼用空気は空気ダクト12、空気量調整ダ
ンパlla、llb、空気室10a、10bより流動N
3へ供給される。
Fluidization and combustion air flows from the air duct 12, air amount adjustment dampers lla and llb, and air chambers 10a and 10b.
3.

一方、流動rIJS内で燃焼した燃料及び粉化した流動
媒体は流vJ層3で分割蒸気管群4a、4b、伝熱管5
、対流伝熱部6の蒸気管7、節炭器管8で熱回収され排
ガスとなって煙道13に至る。
On the other hand, the fuel burned in the flow rIJS and the powdered fluid medium are transferred to the flow vJ layer 3 through the divided steam pipe groups 4a, 4b and the heat transfer tubes 5.
The heat is recovered by the steam pipe 7 of the convection heat transfer section 6 and the economizer pipe 8, and reaches the flue 13 as exhaust gas.

この様な構造において流動層ボイラ1の定格負荷運転時
における給水の流れを第10図および第11図を用いて
説明する。
In such a structure, the flow of feed water during rated load operation of the fluidized bed boiler 1 will be explained with reference to FIGS. 10 and 11.

図示していないボイラ循環ポンプからの給水は主給水管
14より節炭器入口ヘッダ15から節炭器管8へ供給さ
れて予熱され節炭器出口ヘッダ16、連絡管17からド
ラム18へ供給される。
Water supplied from a boiler circulation pump (not shown) is supplied from the main water supply pipe 14 to the economizer inlet header 15 to the economizer pipe 8, where it is preheated and then supplied from the economizer outlet header 16 and the connecting pipe 17 to the drum 18. Ru.

ドラム1日で蒸気と水に分離された水は連絡管I9より
伝熱管入口へラダ20より伝熱管5へ供給されて流動層
3で加熱され伝熱管出口ヘッダ21、連絡管22よりド
ラム18に供給される。
Water separated into steam and water in one day is supplied to the heat exchanger tube 5 from the connecting pipe I9 to the heat exchanger tube inlet via the ladder 20, heated in the fluidized bed 3, and sent to the drum 18 via the heat exchanger tube outlet header 21 and the connecting pipe 22. Supplied.

ドラム18で分離された蒸気は連絡管23、蒸気管入口
ヘッダ24より蒸気管7へ供給され、対流伝熱部6の排
ガスによって過熱され、蒸気管出口ヘッダ25、連絡管
26を経て入口ヘッダ27より分割蒸気管群4aへ供給
され、分割蒸気管群4aで流動層3の燃焼熱によって過
熱され、出口ヘッダ28、連絡管29、過熱器スプレ3
0、連絡管31、人口ヘッダ32へ流れ、分割蒸気管群
4bで再び過熱されて出口へラダ33から主蒸気管34
へ供給される。
The steam separated in the drum 18 is supplied to the steam pipe 7 through the communication pipe 23 and the steam pipe inlet header 24, where it is superheated by the exhaust gas from the convection heat transfer section 6, passes through the steam pipe outlet header 25 and the communication pipe 26, and is then supplied to the inlet header 27. is supplied to the divided steam pipe group 4a, superheated by the combustion heat of the fluidized bed 3 in the divided steam pipe group 4a, and is supplied to the outlet header 28, the connecting pipe 29, and the superheater spray 3.
0, flows to the connecting pipe 31 and the population header 32, is superheated again in the divided steam pipe group 4b, and flows to the outlet from the ladder 33 to the main steam pipe 34.
supplied to

なお、35はスプレー調整弁である。In addition, 35 is a spray adjustment valve.

この様に従来の流動層ボイラ1においては、蒸気管7で
加熱された蒸気の全量が分割蒸気管群4a、4bに直列
に流れるためにセル・スランビング制御を行なうものに
おいては好ましくない。
As described above, in the conventional fluidized bed boiler 1, the entire amount of steam heated in the steam pipe 7 flows in series to the divided steam pipe groups 4a and 4b, which is not preferable in a case where cell slumbing control is performed.

つまり、第10図および第11図に示す空気室10a、
10bの内、一方の空気室10aへの燃焼用空気と燃料
の供給を停止して半分の流動J!!3で負荷制御を行な
う、いわゆるセル・スランピング制御における低負荷運
転時においては、圧力損失が増大し、蒸気の偏流が発生
する。
That is, the air chamber 10a shown in FIGS. 10 and 11,
10b, the supply of combustion air and fuel to one air chamber 10a is stopped and the flow rate is reduced to half J! ! During low load operation in so-called cell slumping control, in which load control is performed in step 3, pressure loss increases and steam drift occurs.

第12図は縦軸に蒸気の圧力損失、横軸に蒸発量を示し
た特性曲線図で、曲4mAは従来の流動層ボイラ1にお
ける圧力損失を示す。
FIG. 12 is a characteristic curve diagram in which the vertical axis shows the pressure loss of steam and the horizontal axis shows the evaporation amount, and the curve 4 mA shows the pressure loss in the conventional fluidized bed boiler 1.

従来技術の流v3Jiiボイラ1においては、低負荷運
転時での分割蒸気管群4a、4bの蒸気の偏流による局
所過熱を防止するために、最低負荷運転時には蒸気の流
速を十分確保しておかなければならないために第12図
の曲&iAに示すようになる。
In the conventional flow v3 Jii boiler 1, in order to prevent local overheating due to drift of steam in the divided steam pipe groups 4a and 4b during low load operation, a sufficient steam flow rate must be ensured during minimum load operation. Therefore, the song becomes as shown in song &iA in Fig. 12.

従って、要求される最低負荷が低い場合、第12図の曲
線Aで示すように少ない蒸気流量で、必要最小圧力損失
(B点)が必要になるために、最大負荷時には蒸気の圧
力損失が0点で示すように掻めて大きくなる。
Therefore, when the required minimum load is low, the required minimum pressure loss (point B) is required with a small steam flow rate as shown by curve A in Figure 12, so the steam pressure loss is 0 at the maximum load. It grows larger when scratched as shown by the dots.

即ち、最低負荷運用条件が低くなるほど、定格負荷運転
時の圧力損失は曲klAで示すように増大し、従ってド
ラム18、給水配管をはじめとするボイラ耐圧部の設計
圧力を高めなければならない。
That is, as the minimum load operating condition becomes lower, the pressure loss during rated load operation increases as shown by curve klA, and therefore the design pressure of the boiler pressure-resistant parts including the drum 18 and the water supply piping must be increased.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この様に従来の流動層ボイラにおいては、蒸気の圧力損
失が大きく、最低負荷の切り下げを行なうことができな
い欠点があった。
As described above, the conventional fluidized bed boiler has the drawback that the steam pressure loss is large and the minimum load cannot be reduced.

本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、分割蒸気管群での圧力損失の
低減を図り、ボイラ最低負荷の切下げを容易に行なうこ
とができる流動層ボイラを提供することにある。
The present invention aims to eliminate such conventional drawbacks,
The purpose is to provide a fluidized bed boiler that can reduce pressure loss in a group of divided steam pipes and easily reduce the minimum boiler load.

〔課題を解決するための手段) 本発明は前述の目的を達成するために、入口ヘッダの下
流と出口ヘッダの上流に分割蒸気管群入口ヘッダと分割
蒸気管群出口ヘッダを設け、入口ヘッダと分割蒸気管群
入口ヘッダを蒸気遮断弁ををする入口連絡管によって、
出口ヘッダと分割蒸気管群出口ヘッダを出口連絡管によ
ってそれぞれ接続したものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a divided steam pipe group inlet header and a divided steam pipe group outlet header downstream of the inlet header and upstream of the outlet header. The divided steam pipe group inlet header is connected to the inlet connecting pipe which serves as a steam cutoff valve.
The outlet header and the divided steam pipe group outlet header are connected by outlet connecting pipes.

〔作用〕[Effect]

負荷(蒸発量)の低下に伴って分割蒸気管群を流れる蒸
気を遮断することによって、分割f気管群内の蒸気の流
速・即ち圧力損失を常に必要最小圧力損失以上に保つの
で、最低負荷の切り上げを行うことができる。
By cutting off the steam flowing through the divided steam pipe groups as the load (evaporation amount) decreases, the flow rate of steam in the divided f-trachea group, that is, the pressure loss, is always kept above the required minimum pressure loss, so that the lowest load can be achieved. You can round up.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係る流動層ボイラの縦断面図
、第2図は第1図のII−II線線断断面図第3図(a
)、  (b)は縦軸に蒸気の圧力損失、流動層の温度
を示し、横軸にボイラ負荷をしめした特性曲線図、第4
図は第1図の流動層ボイラの運転方法を説明する縦断面
図、第5図及び第6図は他の実施例を示す縦断面図とV
l−Vll線断断面図第7図(a)、(b)は第5図お
よび第6図に示す流動層ボイラの特性曲線図、第8図お
よび第9図は他の実施例を示す縦断面図とTX−TXv
A横断面図である。
FIG. 1 is a longitudinal sectional view of a fluidized bed boiler according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II-II in FIG.
), (b) is a characteristic curve diagram in which the vertical axis shows steam pressure loss and fluidized bed temperature, and the horizontal axis shows boiler load.
The figure is a longitudinal sectional view explaining the operating method of the fluidized bed boiler shown in Fig. 1, and Figs. 5 and 6 are longitudinal sectional views showing other embodiments.
7(a) and 7(b) are characteristic curve diagrams of the fluidized bed boiler shown in FIGS. 5 and 6, and FIGS. 8 and 9 are longitudinal sections showing other embodiments. Top view and TX-TXv
It is a cross-sectional view of A.

第1図、第2図および第4図において、符号1から28
.30,34.35は従来のものと同一のものを示す。
In Figures 1, 2, and 4, numbers 1 to 28
.. 30, 34, and 35 are the same as the conventional one.

35a、bは入口ヘッダ27の下流に設けた分割蒸気管
群入口ヘッダ、37a、37bは入口ヘッダ27と分割
蒸気管群入口ヘッダ36a、36bを連絡する入口連絡
管、38a、38bは入口連絡管37a、37bの蒸気
遮断弁、39a、39bは出口ヘッダ28の上流に設け
た分割蒸気管群出口ヘッダ、40a、40bは分割1気
管群出口ヘツダ39a、39bと出口ヘッダ28を連絡
する出口連絡管である。
35a and 35b are divided steam pipe group inlet headers provided downstream of the inlet header 27, 37a and 37b are inlet connecting pipes that connect the inlet header 27 and the divided steam pipe group inlet headers 36a and 36b, and 38a and 38b are inlet connecting pipes. Steam cutoff valves 37a and 37b, 39a and 39b are divided steam pipe group outlet headers provided upstream of the outlet header 28, and 40a and 40b are outlet communication pipes that connect the divided 1 trachea group outlet headers 39a and 39b with the outlet header 28. It is.

第1図、第2図および第4図に示す流動層ボイラにおい
て、第10図および第11図に示す従来の流動層ボイラ
と異なる点は、分割蒸気管群4a。
The fluidized bed boiler shown in FIGS. 1, 2 and 4 differs from the conventional fluidized bed boiler shown in FIGS. 10 and 11 in the divided steam pipe group 4a.

4bの人口側においては入口ヘッダ27の下流に分割蒸
気管群入口ヘッダ36 a、  36 bを設け、この
入口ヘッダ27と分割蒸気管群入口ヘッダ36a、36
bを蒸気遮断弁38a、3[1bを有する人口連絡管3
7a、37bで連絡した点である。
On the population side of 4b, divided steam pipe group inlet headers 36 a, 36 b are provided downstream of the inlet header 27, and this inlet header 27 and the divided steam pipe group inlet headers 36 a, 36
b is an artificial connecting pipe 3 having steam cutoff valves 38a, 3 [1b
This is the point mentioned in 7a and 37b.

一方、分割蒸気管群4a、4bの出口側においても出口
ヘッダ28の上流に分割蒸気管群出口ヘッダ39a、3
9bを設け、この分割蒸気管群出口ヘッダ39a、39
bと出口ヘッダ28を出口連絡管4Qa、40bで連結
した点である。
On the other hand, on the outlet side of the divided steam pipe groups 4a, 4b, there are also divided steam pipe group outlet headers 39a, 3 upstream of the outlet header 28.
9b, and these divided steam pipe group outlet headers 39a, 39
b and the outlet header 28 are connected by outlet communication pipes 4Qa and 40b.

流動層ボイラlの運転方法としては、先ず第1図、第2
図に示すようにボイラ定格運転時においては、空気量調
整ダンパlla、llb及び蒸気遮断弁38a、38b
は両方具間いて、流動層3全体が運転され、定格運転時
における流動[3の温度は第3図(b)のD点にあり、
この時の圧力損失は第3図(a)の8点にある。
As for the operating method of the fluidized bed boiler l, first of all, Fig. 1 and Fig. 2.
As shown in the figure, during boiler rated operation, air amount adjustment dampers lla, llb and steam cutoff valves 38a, 38b
The entire fluidized bed 3 is operated between both devices, and the temperature of the fluidized bed 3 during rated operation is at point D in Fig. 3(b),
The pressure loss at this time is at 8 points in FIG. 3(a).

ぞして、前述したように流動層ボイラ1の負荷制御をセ
ル・スランビング制御によって行なう場合は、第4図に
示すように流動層3の右半分への燃料供給量を減らしこ
の待合せて空燃比一定になる様空気量調整ダンパlla
も絞り、流動rB3の温度を第3図(b)の点りから点
Fへ下げ分割蒸気管群4aでの熱吸収量を低減する。(
この時蒸気の圧力損失も第3図(a)の点Eから点Gに
低下する。)即ち分割蒸気管群4a、4bの熱吸収量−
伝熱面積X熱伝達率×〔層温度−流体温度〕の式にもと
ずき、流lJJ層3の温度の低下に伴って減少していく
、この場合、流動層3の温度が低下しすぎると燃焼性の
低下をもたらすため、燃料及び空気量をある程度絞った
後、空気1iPl整ダンパ11aを全閉にし第4図の斜
線で示す流動N3の右半分の流動を停止し、合せてそれ
まで両方の流動層3へ供給していた燃料量と同じ僅を第
4図の左側の流動rrI3だけに供給してやることによ
って、第3図(b)に示す様に流動している側の層温度
は再び点Fから点Hに戻り、燃焼性の低下をもたらすこ
とはない0合せて、第4図の流動層3の右半分を停止し
た側に位置する分割蒸気管群4a側の蒸気遮断弁38a
を閉めることにより、それまで両方の分割蒸気管群4a
、4bに流れていた藩気量と同じ量が片方の分割蒸気管
群4bのみに流れるため、第3図(a)に示す様に分割
蒸気管群4b出入口の蒸気の圧力損失は、第3図(a)
の点Gから点Iに上昇し必要最少圧損以下になることは
ない、さらに、蒸気を遮断した分割蒸気管群4aの設置
場所は第4図に示す様に図の右半分の流動層3は流動を
停止しているため熱伝達は行なわれないので、分割蒸気
管群4aがオーバーヒートすることはない。
Therefore, when the load control of the fluidized bed boiler 1 is performed by cell slumping control as described above, the amount of fuel supplied to the right half of the fluidized bed 3 is reduced and the air-fuel ratio is adjusted as shown in FIG. Air volume adjustment damper lla to keep it constant
The temperature of the flow rB3 is lowered from the point shown in FIG. 3(b) to the point F to reduce the amount of heat absorbed in the divided steam pipe group 4a. (
At this time, the steam pressure loss also decreases from point E to point G in FIG. 3(a). ) That is, the heat absorption amount of the divided steam pipe groups 4a and 4b -
Based on the formula: heat transfer area If too much, the combustibility will deteriorate, so after reducing the amount of fuel and air to a certain extent, the air 1iPl adjustment damper 11a is fully closed to stop the flow of the right half of the flow N3 shown by the diagonal line in FIG. By supplying the same amount of fuel that had been supplied to both fluidized beds 3 up to now only to the flow rrI3 on the left side of Fig. 4, the temperature of the bed on the flowing side will decrease as shown in Fig. 3(b). returns from point F to point H again, and there is no reduction in combustibility.In addition, the steam cutoff valve on the side of the divided steam pipe group 4a located on the side where the right half of the fluidized bed 3 in FIG. 4 is stopped. 38a
By closing both divided steam pipe groups 4a
, 4b flows through only one of the divided steam pipe groups 4b, so the pressure loss of the steam at the entrance and exit of the divided steam pipe group 4b is Diagram (a)
The pressure drop rises from point G to point I, and the pressure drop never drops below the required minimum pressure drop.Furthermore, the installation location of the divided steam pipe group 4a that shuts off the steam is as shown in Figure 4, where the fluidized bed 3 in the right half of the figure is Since the flow is stopped, no heat transfer takes place, so the divided steam pipe group 4a will not overheat.

第5図および第6図は他の実施例を示すもので、第5図
は流動層ボイラの縦断面図、第6図は第5図のVl−V
I線線断断面図ある。
5 and 6 show other embodiments, FIG. 5 is a longitudinal cross-sectional view of a fluidized bed boiler, and FIG. 6 is a Vl-V shown in FIG. 5.
There is a sectional view taken along the I line.

第1図、第2図および第4図に示す実施例と異なる点は
、仕切壁9によって空気室を空気室10a、10b、1
0c、10d、10e、10fの6分割にし、分割蒸気
管群4a、4b、4cを3分割にし、入口ヘッダ27と
分割蒸気管群入口ヘッダ36a、36b、36cを蒸気
遮断弁38a。
The difference from the embodiments shown in FIGS. 1, 2, and 4 is that the air chambers 10a, 10b, 1
The steam pipe groups 4a, 4b, 4c are divided into 6 parts, ie, 0c, 10d, 10e, and 10f, and the divided steam pipe groups 4a, 4b, and 4c are divided into 3 parts, and the inlet header 27 and the divided steam pipe group inlet headers 36a, 36b, and 36c are connected to the steam cutoff valve 38a.

38b、38Cを有する入口連絡管37a、37b、3
7cで連結し、出口ヘッダ28と分割蒸気管群出口ヘッ
ダ39a、39b、39cを出口連絡管40 a、  
40 b、  40 Cで連結したものであり、他の説
明は同一であるのでここでは省略する。
Inlet communication pipes 37a, 37b, 3 with 38b, 38C
7c, the outlet header 28 and the divided steam pipe group outlet headers 39a, 39b, 39c are connected to the outlet connecting pipe 40a,
40B and 40C, and the other explanations are the same and will therefore be omitted here.

この第5図および第6図実施例においては空気室を空気
室10a、10b、10cの3分割にすことによって第
7図(b)の曲線Jで示すように層温変動中を第1図、
第2図および第4図のものよりも少なくし、J!!I温
変動に伴う燃焼性及びNOX。
In the embodiment shown in FIGS. 5 and 6, the air chamber is divided into three parts, ie, air chambers 10a, 10b, and 10c. ,
less than those in Figures 2 and 4, and J! ! I Flammability and NOX associated with temperature fluctuations.

Sox等の環境値の変動を抑制することができ、さらに
分割蒸気管群の分割数を分割蒸気管群4a。
Fluctuations in environmental values such as Sox can be suppressed, and the number of divisions of the divided steam pipe group can be reduced to the divided steam pipe group 4a.

4b、4cの3つにすることにより、過熱蒸気の圧力損
失の最大値を第7図(a)の曲線にで示すように低減す
ることができる。又、この場合空気室を6分割している
ことから分割蒸気管群も最大6分割まで可能であり、そ
れによって流動層3の層温変動幅と蒸気の圧力損失をさ
らに低減することもできる。
4b and 4c, the maximum pressure loss of superheated steam can be reduced as shown by the curve in FIG. 7(a). Furthermore, in this case, since the air chamber is divided into six, the divided steam pipe group can also be divided into six at most, thereby making it possible to further reduce the bed temperature fluctuation range of the fluidized bed 3 and the pressure loss of steam.

第8図および第9図は他の実施例を示すもので、既設の
流動層ボイラを改造する場合を示す。
FIGS. 8 and 9 show another embodiment, in which an existing fluidized bed boiler is modified.

第8図は流動層ボイラの縦断面図、第9図は第8図の■
−IX線横断線図断面図。
Figure 8 is a vertical cross-sectional view of a fluidized bed boiler, and Figure 9 is the
- IX line transversal diagram sectional view.

第8図および第9図において、41は既設鉄骨であり、
他の符号は他の実施例の符号と同一のものを示す。
In Figures 8 and 9, 41 is an existing steel frame;
Other symbols indicate the same symbols as in other embodiments.

既設の流動層ボイラ1を本発明の実施例に示すように改
造する場合、分割蒸気管群4a、4bの入口側において
は、既設の入口ヘッダを分割蒸気管群入口へラダ36a
、36bに流用し、第9図に示すように連絡管26と分
割蒸気管群入口ヘッダ35 a、  36 bの間に入
口ヘッダ27を新設して人口ヘッダ27と分割蒸気管群
入口ヘッダ36a、35bの間に新設の蒸気遮断弁38
a、38bを有する入口連絡管37a、37bで連結す
る。
When modifying an existing fluidized bed boiler 1 as shown in the embodiment of the present invention, on the inlet side of the divided steam pipe groups 4a and 4b, the existing inlet header is connected to the inlet of the divided steam pipe group by a ladder 36a.
, 36b, and as shown in FIG. 9, an inlet header 27 is newly installed between the connecting pipe 26 and the divided steam pipe group inlet headers 35a and 36b, and the population header 27 and the divided steam pipe group inlet header 36a, Newly installed steam cutoff valve 38 between 35b
They are connected by inlet communication pipes 37a and 37b having pipes a and 38b.

他方、分割蒸気管群4a、4bの出口側においては既設
の出口ヘッダを分割蒸気管群出口ヘッダ39a、39b
に流用し、第9図に示すように分割蒸気管群出口ヘッダ
39a、39bの間に出口連絡管40a、40bと出口
ヘッダ28を新設することによって、既設の流動層ボイ
ラであっても簡単な改造工事によって、流動N3の層温
変動幅が少なくさらに蒸気の圧力損失が少ない流動層ボ
イラに改造でき、既設鉄骨41や流動層ボイラ1のほと
んどを流用できるので改造工事の期間や費用も少なくて
すむ。
On the other hand, on the outlet side of the divided steam pipe groups 4a and 4b, the existing outlet headers are replaced with the divided steam pipe group outlet headers 39a and 39b.
By installing new outlet connecting pipes 40a, 40b and outlet header 28 between the divided steam pipe group outlet headers 39a, 39b as shown in Fig. 9, even an existing fluidized bed boiler can be easily installed. Through modification work, it is possible to transform the boiler into a fluidized bed boiler with less fluctuation in bed temperature of fluidized N3 and less steam pressure loss, and most of the existing steel frame 41 and fluidized bed boiler 1 can be used, so the period and cost of modification work are shortened. I'm done.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、圧力損失の増大、即ち定格運転時のド
ラム圧力の上昇を招くことなく最低負荷の切下げが可能
となる。従って、ボイラ耐圧部の設計圧力が低減される
ことから各部材料の肉厚を薄くでき、経済性の点でも優
れた流動層ボイラが得られる。
According to the present invention, it is possible to reduce the minimum load without increasing pressure loss, that is, without increasing the drum pressure during rated operation. Therefore, since the design pressure of the boiler pressure-resistant section is reduced, the thickness of each component material can be made thinner, and a fluidized bed boiler that is excellent in terms of economy can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第9図は本発明の実施例に係るもので、第1
図は流動層ボイラの縦断面図、第2図は第1図のff 
−U 4%横断面図、第3図(a)、 (b)は縦軸に
蒸気の圧力損失、流動層の温度を示し、横軸にボイラ負
荷を示した特性曲線図、第4図は第1図の流動層ボイラ
の運転方法を説明する縦断面図、第5図および第6図は
他の実施例を示す縦断面図とvr−VlyL断面図、第
7図(a)、(b)は第5図および第6図に示す流動層
ボイラの特性曲線図、第8図および第9図は他の実施例
を示す縦断面図とIX−IX線横断面図、第10図は従
来の流動層ボイラを示す縦断面図、第11図は第10図
のx+−)1g横断面図、第12図は従来の流動層ボイ
ラにおける特性曲線図である。 2・・・・・・・・・多孔板、3・・・・・・・・・流
動層、4a、4b。 4C・・・・・・・・・分割蒸気管群、9・・・・・・
・・・仕切壁、10a、10b、10c、10d、lO
e、10f・・・・・・空気室、27.32・・・・・
・・・・入口ヘッダ、28゜33・・・・・・・・・出
口ヘッダ、36a、36b、36c・・・・・・・・・
分割蒸気管群入口ヘッダ、37a、37b。 37c・・・・・・・・・入口連絡管、38a、38b
、38C・・・・・・・・・蒸気遮断弁、39a、39
b、39c・・・・・・分割蒸気出口ヘッダ、40a、
40b、40C・・・・・・・・・出口連絡管。 第 図 ホパづフ負斤 (’/、) 第 図 第 図 第 図 ホ′づう自を盲 (’/、) 第10図
FIGS. 1 to 9 relate to embodiments of the present invention, and FIGS.
The figure is a vertical cross-sectional view of a fluidized bed boiler, and Figure 2 is the ff of Figure 1.
-U 4% cross-sectional view, Figures 3 (a) and (b) are characteristic curve diagrams with the vertical axis showing steam pressure loss and fluidized bed temperature, and the horizontal axis showing boiler load, Figure 4 is FIG. 1 is a longitudinal sectional view explaining the operating method of the fluidized bed boiler, FIGS. 5 and 6 are longitudinal sectional views and vr-VlyL sectional views showing other embodiments, and FIGS. 7(a) and (b ) are characteristic curve diagrams of the fluidized bed boiler shown in Figures 5 and 6, Figures 8 and 9 are longitudinal cross-sectional views and cross-sectional views taken along line IX-IX showing other embodiments, and Figure 10 is the conventional one. FIG. 11 is a cross-sectional view along x+-)1g of FIG. 10, and FIG. 12 is a characteristic curve diagram of a conventional fluidized bed boiler. 2...Perforated plate, 3...Fluidized bed, 4a, 4b. 4C・・・・・・Divided steam pipe group, 9・・・・・・
...Partition wall, 10a, 10b, 10c, 10d, lO
e, 10f...Air chamber, 27.32...
...Inlet header, 28°33...Outlet header, 36a, 36b, 36c...
Split steam pipe group inlet header, 37a, 37b. 37c...... Entrance connecting pipe, 38a, 38b
, 38C... Steam cutoff valve, 39a, 39
b, 39c...Divided steam outlet header, 40a,
40b, 40C...Exit connecting pipe. Figure 10 ('/,) Figure 10

Claims (1)

【特許請求の範囲】[Claims] 流動層と空気室の間に多孔板を配置し、空気室を仕切壁
によつて区画してセルを分割すると共にセル分割方向に
そつて入口ヘッダと出口ヘッダに連結された分割蒸気管
群をそれぞれ配置し、蒸気を加熱するものにおいて、前
記入口ヘッダの下流と出口ヘッダの上流に分割蒸気管群
入口ヘッダと分割蒸気管群出口ヘッダを設け、入口ヘッ
ダと分割蒸気管群入口ヘッダを蒸気遮断弁を有する入口
連絡管によつて、出口ヘッダと分割蒸気管群出口ヘッダ
を出口連絡管によつてそれぞれ接続したことを特徴とす
る流動層ボイラ。
A perforated plate is placed between the fluidized bed and the air chamber, and the air chamber is partitioned by a partition wall to divide the cells, and a group of divided steam pipes are connected to the inlet header and the outlet header along the cell dividing direction. A divided steam tube group inlet header and a divided steam tube group outlet header are provided downstream of the inlet header and upstream of the outlet header, and the inlet header and the divided steam tube group inlet header are steam-blocked. 1. A fluidized bed boiler characterized in that an outlet header and a divided steam tube group outlet header are connected to each other by an inlet connecting pipe having a valve, respectively.
JP33362588A 1988-12-29 1988-12-29 Fluidized-bed boiler Pending JPH02178501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33362588A JPH02178501A (en) 1988-12-29 1988-12-29 Fluidized-bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33362588A JPH02178501A (en) 1988-12-29 1988-12-29 Fluidized-bed boiler

Publications (1)

Publication Number Publication Date
JPH02178501A true JPH02178501A (en) 1990-07-11

Family

ID=18268144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33362588A Pending JPH02178501A (en) 1988-12-29 1988-12-29 Fluidized-bed boiler

Country Status (1)

Country Link
JP (1) JPH02178501A (en)

Similar Documents

Publication Publication Date Title
US4473032A (en) Steam generator with circulating atmosphere or pressurized turbulent layer firing, and method for control thereof
JPH03170701A (en) Once-through boiler
US20080276844A1 (en) Coal boiler and coal boiler combustion method
AU700309B2 (en) Boiler
CN100357665C (en) Boiler internal flue gas by-pass regulator for flue gas temperature control
US6269754B1 (en) Steam generator for superheated steam for incineration plants with corrosive flue gases
CN101684937A (en) Steam generator
JPS5837402A (en) Boiler
ITRM950141A1 (en) IMPROVEMENT IN SINGLE PASSING BOILERS AND STEAM GENERATORS, WITH SINGLE AND MULTIPLE PIPES AND RIBS.
US8042497B2 (en) Steam generator arrangement
JPH02178501A (en) Fluidized-bed boiler
CN215951481U (en) Low-temperature heat exchange island of blast furnace gas boiler
CN211260759U (en) High-efficiency wide-load secondary reheating tower furnace economizer grading arrangement system
CN211260758U (en) System for moving high-level economizer of tower furnace to tail flue and improving energy level utilization arrangement
CN209763018U (en) Double reheating circulating fluidized bed boiler
JPH0474601B2 (en)
US20230400179A1 (en) Circulating fluidized bed boiler
JPH03117801A (en) Exhaust heat recovery boiler
JP7492359B2 (en) Boiler and power plant equipped with same
JP3227137B2 (en) Waste heat recovery boiler
JPS60142106A (en) Steam generator
CN114278946A (en) Superheater device with suspension type structure for garbage incinerator
JP2000199601A (en) Boiler
JP2023532168A (en) Apparatus and method for supporting sidewalls of vertical flue gas passages in thermal steam generators
CN110779007A (en) System for moving high-level economizer of tower furnace to tail flue and improving energy level utilization arrangement