JPH02178360A - Powder coating - Google Patents

Powder coating

Info

Publication number
JPH02178360A
JPH02178360A JP88333988A JP33398888A JPH02178360A JP H02178360 A JPH02178360 A JP H02178360A JP 88333988 A JP88333988 A JP 88333988A JP 33398888 A JP33398888 A JP 33398888A JP H02178360 A JPH02178360 A JP H02178360A
Authority
JP
Japan
Prior art keywords
parts
powder
particles
fine particles
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP88333988A
Other languages
Japanese (ja)
Other versions
JP2840953B2 (en
Inventor
Tasaburo Ueno
上野 太三郎
Shozo Uenaka
上中 章三
Katsuaki Kida
貴田 克明
Masayuki Maruta
将幸 丸田
Koichi Tsutsui
晃一 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP63333988A priority Critical patent/JP2840953B2/en
Priority to CA002006930A priority patent/CA2006930C/en
Priority to US07/458,542 priority patent/US5034432A/en
Priority to KR1019890020624A priority patent/KR0147370B1/en
Priority to AU47631/90A priority patent/AU631592B2/en
Publication of JPH02178360A publication Critical patent/JPH02178360A/en
Application granted granted Critical
Publication of JP2840953B2 publication Critical patent/JP2840953B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a powder coating having excellent blocking resistance and giving a coating film having excellent appearance by compounding non crosslinked resin particles having a glass transition temperature falling within a specific range. CONSTITUTION:The objective coating material contains preferably 0.05-35wt.% of fine particles of a non-crosslinked resin having a glass transition temperature (Tg) of 50-150 deg.C (preferably 70-120 deg.C) and an average particle diameter of preferably 0.001-10mum.

Description

【発明の詳細な説明】 技  術  分  野 本発明は粉体塗料に係り、さらに詳しくは耐ブロッキン
グ性に優れ高外観塗膜を与えうる粉体塗料に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a powder coating, and more particularly to a powder coating that has excellent anti-blocking properties and can provide a high-appearance coating.

従  来  技  術 粉体塗料では従来よりそのフロー性と耐ブロッキング性
の両立が必要とされている。ここで耐ブロッキング性と
は常温で検体を貯蔵する際、粒子同士が融着したり固い
ケーキングを形成する所謂ブロッキングを生じることに
対する耐性で貯蔵安定性に関する乙のであり、またフロ
ー性とは粉体塗料を静電塗装あるいは流動浸漬塗装した
後、焼1:fけた際に粉体が溶融し平滑面に流動する性
質で、ピンホールやあばたのない平滑な塗膜を形成しう
るだけの充分な流動性が要求される。
Conventional technology Powder coatings have long been required to have both flowability and anti-blocking properties. Here, blocking resistance refers to resistance to so-called blocking, which occurs when particles fuse together or form a hard cake when a sample is stored at room temperature, and is related to storage stability. After electrostatic coating or fluid dip coating, baking 1: The powder melts and flows onto a smooth surface when it evaporates, which is sufficient to form a smooth coating without pinholes or pockmarks. Liquidity is required.

1ノ′C来、このフロー性を確保するため粉体に使用せ
られるバインダー樹脂の分子量を低下させたり、ガラス
移転温度(T g )を下げるごとが試みられてきたが
、フロー性が出るにつれて耐ブロッキング性が低下した
り、膜物性が悪くなり、ffeって現状ではそれらのバ
ランスをとり、基本性能を重睨しながらフロー性を耐ブ
ロッキング性、物性の兼ねきいを1)1脂設計、塗it
設計の理念としている。6泊ってフロー性に起因する塗
膜外観も通常の溶剤系塗料より平滑性の点で劣り、塗膜
外観を少しでも改善しようとして粉体の粒度分布をそろ
えたり大粒径のものを機械的に取り除くため製造工[7
数、コストが高くなり、また耐ブロッキング性の点で乙
刊・ずしも高性能とはいい難く6ケ月以上の長期安定性
や夏場での貯安性に問題があり、例えば冷凍車で愉送す
るなど貯蔵、輸送上の工数、コストも高く要している。
Since 1999, attempts have been made to lower the molecular weight of the binder resin used in the powder and to lower the glass transition temperature (T g ) in order to ensure this flowability. Blocking resistance decreases, film physical properties worsen, etc. At present, ffe is trying to balance these, focusing on basic performance, flowability and blocking resistance, and combining physical properties with 1) 1-liquid design. Paint it
This is the design philosophy. After 6 days of use, the appearance of the paint film due to its flowability was inferior to that of ordinary solvent-based paints in terms of smoothness. In order to remove it, the manufacturer [7
In addition, in terms of anti-blocking properties, it is difficult to say that Otsukan and Sushi are high-performance, and there are problems with long-term stability for more than 6 months and storage stability in the summer. The man-hours and costs associated with storage and transportation are also high.

そこでこういった問題に対処するなめ粉木塗t4にコロ
イダルシリカやシロキサン等の無機粒子を添加すること
がzノ(みられたが、無機粒子「吏用量には限界があり
、多量にすぎると塗膜のツヤびけなど外観不良となり、
また耐水性などに悪影響を及ぼすため、その使用量ムた
かだか0.2%程度にすぎず、耐プロ、ソキング性の改
善ら極めて不充分であった。そこで扮体塗1′1に対し
、平均粒径0,01〜10μの架橋樹脂粒子を添加し、
耐ブロッキング性、耐候性、硬度の向上3計る技術が本
出願人により提案され(特開昭02292869号)業
界の注目を集めている。この技術によれば粉体塗f1の
耐ブロッキング性は大巾に改善され塗膜の耐候性、硬度
等ら改善が著るしいが微粒子が架橋粒子であるためそれ
自身はフローせず、さらに−段とフロー性にすぐh、外
E1に優れた塗膜を与えうる粉木塗1′:)が求められ
ている。
Therefore, to deal with these problems, it is recommended to add inorganic particles such as colloidal silica and siloxane to the powdered wood coating T4. Appearance defects such as loss of gloss in the paint film may result.
In addition, since it had a negative effect on water resistance, the amount used was only about 0.2% at most, which was extremely insufficient in terms of improvement in professional and soaking resistance. Therefore, cross-linked resin particles with an average particle size of 0.01 to 10μ are added to the 1'1 of the costume coat,
A technique for improving blocking resistance, weather resistance, and hardness has been proposed by the present applicant (Japanese Patent Application Laid-open No. 02292869) and is attracting attention in the industry. According to this technology, the blocking resistance of the powder coating f1 is greatly improved, and the weather resistance and hardness of the coating film are significantly improved, but since the fine particles are crosslinked particles, they do not flow by themselves, and - There is a need for powder wood coating 1':) that can provide a coating film with excellent coating properties on the outside E1 and has excellent flow properties.

発明が解決しようとする問題点 そこで塗ILi外断と耐ブロッキング性という相反事象
をさらに良好に両立させることができ、就中高外rlJ
lfffi +模を与えうる粉木塗丁[を提供すること
が本発明1」的である。
Problems to be solved by the invention Therefore, it is possible to better balance the conflicting phenomena of coated ILi outer cut and blocking resistance, and in particular, to improve
It is an object of the present invention to provide a powdered wooden knife that can give a lfffi+ pattern.

問題点を解決するための手段 本発明にb′Cえば上記発明目的がガラス転移温度(T
g)が50℃〜150°Cの非架li?i崩脂微粒子を
含tJ1分1本塗f′l (、こより達成せられる。
Means for Solving the Problems In the present invention, b'C, the object of the invention is to solve the glass transition temperature (T
g) non-framed li at 50°C to 150°C? This can be achieved by applying 1 coat for 1 minute containing fat-disintegrating fine particles.

本発明で用いられる樹脂1紋粒子は、加熱によりフロー
する乙ので、しからそのTgが特定範囲内にある、すな
わち50℃〜150℃、より好ましくは70℃〜120
℃の範囲内にある非架橋樹脂微粒子である。本発明者ら
は通常平均粒径が30〜50)を程度である粉体塗Ti
fの粉体粒子に対し、耐ブロッキング性を改善する目的
で加えられる微粒子;、n加削について種々検討の結果
上述の粉体粒子を構成する1剥脂より高いTgをもつ非
架橋樹脂微粒子を粉体粒子の少なくと乙表面に存在せし
めておくことにより、たとえ貯蔵時に粉体同士が接触し
てら該樹脂微粒子が接触するなめ常温では融着してプロ
!キングを生じることもなく、むしろずベリが向上し粉
体の流動性は改善されるし、また非架橋()1脂微粒子
であるため、粉体塗料のフロー時熱が加えられるとこの
樹脂微粒子自身もフローして、外観の特に優れた塗膜が
得られ、外M1と耐ブロッキング性の特に良好な粉体塗
料の得られることを見出し、それが本発明の基礎となっ
たものである。
Since the resin particles used in the present invention flow when heated, their Tg is within a specific range, that is, 50°C to 150°C, more preferably 70°C to 120°C.
These are non-crosslinked resin fine particles within the temperature range of ℃. The present inventors have developed powder-coated Ti powder whose average particle size is usually in the range of 30 to 50 mm.
Fine particles added to the powder particles f for the purpose of improving blocking resistance; n As a result of various studies on machining, non-crosslinked resin fine particles having a Tg higher than the peeling fat 1 constituting the powder particles described above were added. By allowing at least some of the powder particles to exist on the surface, even if the powders come into contact with each other during storage, the fine resin particles will fuse together at room temperature, making it easy to use! It does not cause kinging, but rather improves the smoothness and fluidity of the powder.Also, since it is a non-crosslinked ()1 resin fine particle, when heat is applied during the flow of the powder coating, this resin fine particle It was discovered that powder coatings which flow by themselves, have a particularly excellent appearance, and have a particularly good external M1 and blocking resistance, and this is the basis of the present invention.

()1脂微粒子は塗料分野で使用せられる圧念の樹脂か
ら構成せしめうるが、製造上あるいは実用」−の見地か
らビニル(樹脂(アクリル樹脂を含む)、エポキシ樹脂
、ポリエステル樹脂、メラミン(51脂等であることが
好ましく特にビニル樹脂が製造の容易さ、設計の自由慶
大などの点で好ましい。しかしながらこれら樹脂はその
ガラス転■多温度(′「g)が50℃〜150°Cの範
囲でなくてはならない。
(1) The resin particles can be composed of high-quality resins used in the paint field, but from the viewpoint of production or practical use, vinyl (resin (including acrylic resin), epoxy resin, polyester resin, melamine (51) Preferably, vinyl resins are preferred from the viewpoint of ease of manufacture and freedom of design. Must be within the range.

というのはTgが50℃未満では貯蔵、輸送中なとにお
ける粉体塗料の耐ブロツキング性能を充分に確保するこ
と°が難しくなるし、またTgI)’150℃をこえる
ものはあまり実用性がないからである。
This is because if the Tg is less than 50°C, it will be difficult to ensure sufficient blocking resistance of the powder coating during storage and transportation, and if the Tg exceeds 150°C, it will not be very practical. It is from.

樹脂1紋粒子の平均粒径は粉木拉子径より小である限り
さほど厳密なしのである5g・要はないか、通常1)、
1JO1〜10μ、好ましくは0.01〜5μの範囲内
にjE択ωらhる6またその添加旦IJ通常粉木塗ト1
中〕す5〜35重量%好ましくは0.1〜1026程度
である。これは本発明目的に対しく)1脂微粒子の平均
粒径とその添加量とが比例量1系にあって、樹脂微粒子
の工業的な製造の容易さから粒径の下限は約Q、001
 ノを程度でその場合の粒子添加による効果発現には0
.05重量%程度の添加量が必要であること、また粒径
が10μをこえると耐プロ・/キング性を1・[与する
ための粒子添加量が多量必要となり、塗膜外観に悪影響
を及ぼず傾向があるとの知見に基づくものである。
As long as the average particle size of one resin particle is smaller than the powder diameter, it is not very strict.No need for 5g, usually 1),
1 JO 1 to 10 μ, preferably within the range of 0.01 to 5 μ
(middle) 5 to 35% by weight, preferably about 0.1 to 1026%. This is for the purpose of the present invention) 1) The average particle size of the resin fine particles and the amount added are in a proportional amount 1 system, and the lower limit of the particle size is approximately Q,001 due to the ease of industrial production of the resin fine particles.
In that case, the effect of particle addition is 0.
.. If the particle size exceeds 10μ, a large amount of particles will be required to give the coating resistance of 1.0% by weight, which may adversely affect the appearance of the coating film. This is based on the knowledge that there is a tendency for

+31脂微粒子の製法は何ら限定的ならのではなく、例
えば乳1ヒ重き、懸濁重き等で直接上述の如き粒子をI
Yるとか、溶液重き、塊重き等で樹脂を作り粉砕、分級
により()1脂を得ることができる。
The method for producing +31 fat particles is not limited in any way; for example, the above-mentioned particles can be directly produced using milk, suspension, etc.
(1) fat can be obtained by making a resin with Y, solution weight, lump weight, etc., crushing it, and classifying it.

本発明にあっては上記の1+51脂微粒子が通常の粉体
塗ト1用粉体粒子に添加され、少なくともその表面上に
存在せしめられる。
In the present invention, the above-mentioned 1+51 fat particles are added to ordinary powder particles for powder coating 1, and are made to exist at least on the surface thereof.

粉体塗料用の粉体粒子は、例えばビニル樹脂、ポリエス
テル1剥脂、エポキシ樹脂等常温で固体であり加熱によ
り溶融し、フィルム形成性のある作意のバインダー樹脂
と、顔料、硬1ヒ刑および所望により加えられるその池
の添加剤がらなり、その平均粒径は通常30〜50μ程
度に造粒されてなるものである。尚顔料を含まぬクリヤ
ーの場自らある。このように通常粉体塗L1として用い
られる粉体粒子が好都合に利用せられるが、本発明ては
it未来貯蔵時ブロッキングを生じるため1吏用され得
なかった様な低Tg、例えば40 ’C程度までの低′
I゛g F3(脂に基づく粉体塗料も利用しうろことが
確かめられている0本発明ではかかる粉体粒子に前述の
樹脂微粒子がき有せしめられるが、(剥脂微粒子は粉体
粒子の少なくとも表面に存在せしめられる限り、粉体粒
子製造工程の任意の工程に於て添加することができる。
Powder particles for powder coatings include, for example, a binder resin that is solid at room temperature and has film-forming properties such as vinyl resin, polyester resin, and epoxy resin, as well as pigments and hard resins. and additives added as desired, and are usually granulated to have an average particle size of about 30 to 50 microns. There is also a clear field that does not contain pigments. In this way, the powder particles normally used as the powder coating L1 can be advantageously used, but in the present invention, it is possible to apply a powder with a low Tg, such as 40'C, which could not be used once because it would cause blocking during future storage. low to the extent
I゛g F3 (It has been confirmed that powder coatings based on fat may also be used.) In the present invention, such powder particles are coated with the above-mentioned resin particles. It can be added at any step of the powder particle production process as long as it is present on the surface.

しかしながら樹脂微粒子が個形を閑持し、また粉体粒子
の表面上に存在することをより確実ならしめるなめ、好
ましいのは粉体粒子に対し樹脂粒子を添加することであ
る。かがる態様としては、例えば粉体の原料である(A
脂、顔1′−1、i、’f:加剤加削合し溶融混練した
のちにそれらとl;J脂微粒子と3粉砕1iトにスーパ
ーミキサー、ヘンシェルミキサー等のミキサーで混合す
る方法;粉木原f−]から湿式分散で粉体粒子を作り、
乾燥前あるいは乾?37&に樹脂微粒子を加えミキサー
で混かする方法;溶融混練もしくは湿式分散で得られた
粉体粒子と樹脂微粒子をハイブリタイザーボールミル等
で混きし、樹脂微粒子を粉体粒子表面に打ちこむ方法や
粉体粒子を樹脂微粒子でコーディングし連続膜(ヒする
方法などがあげられる。bでって本願発明に於て樹脂微
粒子を「3む」とは、上記いづれの態様をも包含するも
のである。しかしながら本発明はこれらの製法により何
ら制限されるものではなく、例えば粉体の溶融、造粒工
程において比較的高いTgの樹脂微粒子を比較的多量用
い粉体粒子の少なくとも表面に樹脂微粒子を存在せしめ
ることか、これらの方法の組合わせによることも勿論可
能である。何れの方法によるときも本発明の粉体塗料は
、ガラス転移温度が特定の範囲内にあり、加熱時にフロ
ー性を示す樹脂の微粒子が粉体の少なくとも表面に存在
する粉体塗料として提供され、耐ブロッキング性に優れ
、長時間の保存、高湿地帯での貯蔵、輸送にも充分耐え
ることができ、焼付けにより特に外観の優れた塗膜を与
えることができ産業上極めて有用な粉体塗料である。以
下実施例により本発明を説明する。
However, in order to maintain the individual shape of the resin fine particles and to ensure that they are present on the surface of the powder particles, it is preferable to add resin particles to the powder particles. For example, powder raw material (A
Fat, face 1'-1, i, 'f: A method of adding additives, melting and kneading, and then mixing them with l; Powder particles are made by wet dispersion from Powder Kihara f-],
Before or after drying? A method of adding fine resin particles to 37& and mixing with a mixer; A method of mixing powder particles obtained by melt-kneading or wet dispersion with fine resin particles using a hybridizer ball mill, etc., and driving the fine resin particles onto the surface of the powder particles; Examples include a method in which body particles are coated with resin fine particles and formed into a continuous film.B. In the present invention, the term "3" for resin fine particles includes any of the above embodiments. However, the present invention is not limited in any way by these manufacturing methods; for example, a relatively large amount of resin fine particles having a relatively high Tg is used in the powder melting and granulation process, and the resin fine particles are made to exist at least on the surface of the powder particles. Of course, it is also possible to use a combination of these methods. Regardless of which method is used, the powder coating of the present invention has a glass transition temperature within a specific range and is a resin that exhibits flowability when heated. Provided as a powder coating in which fine particles are present at least on the surface of the powder, it has excellent blocking resistance, can withstand long-term storage, storage in high humidity areas, and transportation, and has an especially excellent appearance when baked. This powder coating is industrially extremely useful as it can provide a coating film with a high temperature.The present invention will be explained below with reference to Examples.

特にことわりなき限り、部および%は重量による。Parts and percentages are by weight unless otherwise specified.

費1L倒」−(非架橋樹脂微粒子の合成)攪拌機、冷却
機、温度調節器を備えた反応容器に、脱イオン交換水3
80部、ノニオン性界面活性剤MON2 (三洋化成社
製)2部を仕込、攪拌温度を80°Cに保持しながら溶
解し、これに開始剤:過硫酸アンモニウム1部を脱イオ
ン交換水1o部に溶解した液を添加する。
- (Synthesis of non-crosslinked resin particles) Add 3 liters of deionized exchanged water to a reaction vessel equipped with a stirrer, cooler, and temperature controller.
80 parts of nonionic surfactant MON2 (manufactured by Sanyo Chemical Co., Ltd.) were charged, dissolved while maintaining the stirring temperature at 80°C, and initiator: 1 part of ammonium persulfate was added to 1 part of deionized exchange water. Add the dissolved liquid.

ついで2−ヒドロキシエチルメタクリレート19部、ス
チレン20部、n−ブチルメタクリレート61部からな
る混合溶液を60分間を要して滴下する。
Then, a mixed solution consisting of 19 parts of 2-hydroxyethyl methacrylate, 20 parts of styrene, and 61 parts of n-butyl methacrylate was added dropwise over a period of 60 minutes.

滴下後、80℃で60分間攪拌を続ける。こうして不揮
発分20%、粒子径0.03〜0.05μのエマルジョ
ンが得られる。このエマルジョンを噴霧乾燥して、7g
40℃、平均粒径0.03〜0.05μの樹脂微粒子A
−1を得た。
After dropping, continue stirring at 80°C for 60 minutes. In this way, an emulsion with a nonvolatile content of 20% and a particle size of 0.03 to 0.05 μm is obtained. Spray dry this emulsion and make 7g
40°C, resin fine particles A with an average particle size of 0.03 to 0.05μ
-1 was obtained.

委1目可3−(非架橋樹脂微粒子の合成)攪拌機、冷却
機、温度調節器を備えた反応容器に、脱イオン交換水3
80部、ノニオン性界面活性剤MON2 (三洋化成社
製)2部を仕込、攪拌温度を80℃に保持しながら溶解
し、これに開始剤:過硫酸アンモニウム1部を脱イオン
交換水10部に溶解した液を添加する。
Part 1: Possible 3- (Synthesis of non-crosslinked resin fine particles) In a reaction vessel equipped with a stirrer, a cooler, and a temperature controller, add deionized exchange water 3
80 parts of nonionic surfactant MON2 (manufactured by Sanyo Chemical Co., Ltd.) were charged and dissolved while maintaining the stirring temperature at 80°C, and 1 part of ammonium persulfate (initiator) was dissolved in 10 parts of deionized exchange water. Add the solution.

ついでメチルメタクリレート85部、スチレン5部、n
−ブチルメタクリレート10部からなる混合溶液を60
分間を要して滴下する。滴下後、80℃で60分間攪拌
を続ける。こうして不揮発分20%、粒子径0.03〜
0.05μのエマルジョンが得られる。
Then 85 parts of methyl methacrylate, 5 parts of styrene, n
- 60 parts of a mixed solution consisting of 10 parts of butyl methacrylate
It takes a few minutes to drip. After dropping, continue stirring at 80°C for 60 minutes. In this way, the nonvolatile content is 20%, the particle size is 0.03~
A 0.05μ emulsion is obtained.

このエマルジョンを噴霧乾燥して、Tg10OoCの樹
脂微粒子A−2を得た。
This emulsion was spray-dried to obtain resin fine particles A-2 having a Tg of 100oC.

11良1(非架橋樹脂微粒子の合成) 攪拌機、冷却機、温度調節器を備えた反応容器に、脱イ
オン交換水380部、ノニオン性界面活性剤MON2 
(三洋化成社製)1部を仕込、攪拌温度を80℃に保持
しながら溶解し、これに開始剤:過硫酸アンモニウム1
部を脱イオン交換水10部に溶解した液を添加する。
11 Good 1 (Synthesis of non-crosslinked resin fine particles) In a reaction vessel equipped with a stirrer, a cooler, and a temperature controller, 380 parts of deionized exchanged water and a nonionic surfactant MON2 were added.
(manufactured by Sanyo Chemical Co., Ltd.), dissolved while maintaining the stirring temperature at 80℃, and added initiator: ammonium persulfate 1 part
1 part dissolved in 10 parts deionized exchanged water is added.

ついでメチルメタクリレート85部、スチレン5部から
なる混合溶液を60分間を要して滴下する。
Then, a mixed solution consisting of 85 parts of methyl methacrylate and 5 parts of styrene was added dropwise over a period of 60 minutes.

滴下後、80℃で60分間攪拌を続ける。こうして不揮
発分20%、粒子径0.3μのエマルジョンが得られる
。このエマルジョンを噴霧乾燥してTg10OoCの樹
脂微粒子A−3を得た。
After dropping, continue stirring at 80°C for 60 minutes. In this way, an emulsion with a nonvolatile content of 20% and a particle size of 0.3 μm is obtained. This emulsion was spray-dried to obtain fine resin particles A-3 having a Tg of 10 OoC.

LtL!IL(非架橋樹脂粒子の合成)攪拌機、冷却機
、温度調節器を備えた反応容器に、脱イオン交換水38
0部、ノニオン性界面活性剤MON2 (三洋化成社製
)2部を仕込、攪拌温度を80℃に保持しながら溶解し
、これに開始剤:過硫酸アンモニウム1部を脱イオン交
換水10部に溶解した液を添加する。
LtL! IL (synthesis of non-crosslinked resin particles) Deionized exchanged water (38 cm) was placed in a reaction vessel equipped with a stirrer, a cooler, and a temperature controller.
0 parts of nonionic surfactant MON2 (manufactured by Sanyo Chemical Co., Ltd.) were charged and dissolved while maintaining the stirring temperature at 80°C, and initiator: 1 part of ammonium persulfate was dissolved in 10 parts of deionized exchange water. Add the solution.

ついでメチルメタクリレート61部、スチレン36部、
n−ブチルメタクリレート3部からなる混合溶液を60
分間を要して滴下する。滴下後、80°Cで60分間攪
拌を続ける。こうして不揮発分20%、粒子径0.03
〜0.05μのエマルジョンが得られる。このエマルジ
ョンを噴霧乾燥してTgl10の樹脂微粒子A−4を得
た。
Next, 61 parts of methyl methacrylate, 36 parts of styrene,
60% of a mixed solution consisting of 3 parts of n-butyl methacrylate
It takes a few minutes to drip. After dropping, continue stirring at 80°C for 60 minutes. In this way, the non-volatile content is 20% and the particle size is 0.03.
An emulsion of ~0.05μ is obtained. This emulsion was spray-dried to obtain resin fine particles A-4 with Tgl10.

泉攬1舛擾−(粉砕非架橋粒子の調製)後述の参考例1
1で合成した7g90のアクリル樹脂A−11を粉砕機
により平均粒径15μ程度まで微粒子1ヒし、非架橋樹
脂粒子A−5を得た。
Quan Yen 1 Sudden - (Preparation of pulverized non-crosslinked particles) Reference Example 1 described below
7 g and 90 of the acrylic resin A-11 synthesized in Step 1 were crushed into fine particles using a pulverizer until the average particle size was about 15 μm to obtain non-crosslinked resin particles A-5.

11隨[<粉砕非架橋粒子の調製) 後述の参考例11で合成した7g90のアクリル樹脂A
−11を粉砕機により平均粒径0.5μ程度まで微粒子
化し、非架橋樹脂微粒子A−6を得た。
11 [<Preparation of pulverized non-crosslinked particles] 7g90 acrylic resin A synthesized in Reference Example 11 described below
-11 was pulverized to an average particle size of approximately 0.5 μm using a pulverizer to obtain non-crosslinked resin fine particles A-6.

警1目阻1−(粉砕非架橋粒子の調製)エポキシ樹脂Y
D−019<@東部化成製)を粉砕機により平均粒径0
,5μ程度まで微粒子化し、非架橋樹脂粒子A−7を得
た。
1-(Preparation of crushed non-crosslinked particles) Epoxy resin Y
D-019 <@Tobu Kasei Co., Ltd.) was crushed to an average particle size of 0 using a crusher.
, to obtain non-crosslinked resin particles A-7.

費1目阻3−(架橋樹脂微粒子の合成)攪拌機、冷却機
、温度調節器を備えた反応容器に、脱イオン交換水28
2部、ノニオン性界面活性剤MON2 (三洋化成社製
)2部およびジメチルエタノールアミンを仕込み、攪拌
温度を80°Cに保持しながら溶解し、これに開始剤:
アゾビスシアノ吉草酸4.5部を脱イオン交換水45部
とジメチルエタノールアミン4.3部に溶解した液を添
加する。ついでスチレン70.7部、n−ブチルアクリ
レート94.2部、メチルメタクリレート70.7部、
2−ヒドロキシエチルアクリレート30部およびエチレ
ングリコールジメチルメタクリレート4,5部からなる
混合溶液を60分間を要して滴下する。滴下後さらにア
ゾビスシアノ吉草酸1.5部を脱イオン交換水15部と
ジメチルエタノールアミン1.4部にとかしたものを、
80°Cで60分間攪拌を続ける。こうして不揮発分4
5%、粒子径0.16μのエマルジョンが得られる。こ
のエマルジョンを噴霧乾燥して樹脂微粒子A−8を得た
3-(Synthesis of cross-linked resin fine particles) Add 28 mL of deionized exchanged water to a reaction vessel equipped with a stirrer, cooler, and temperature controller.
2 parts of nonionic surfactant MON2 (manufactured by Sanyo Chemical Co., Ltd.) and dimethylethanolamine were charged and dissolved while maintaining the stirring temperature at 80°C, and the initiator:
A solution prepared by dissolving 4.5 parts of azobiscyanovaleric acid in 45 parts of deionized exchange water and 4.3 parts of dimethylethanolamine is added. Next, 70.7 parts of styrene, 94.2 parts of n-butyl acrylate, 70.7 parts of methyl methacrylate,
A mixed solution consisting of 30 parts of 2-hydroxyethyl acrylate and 4.5 parts of ethylene glycol dimethyl methacrylate is added dropwise over 60 minutes. After dropping, 1.5 parts of azobiscyanovaleric acid was dissolved in 15 parts of deionized water and 1.4 parts of dimethylethanolamine.
Continue stirring at 80°C for 60 minutes. Thus the non-volatile content 4
An emulsion with a particle size of 5% and a particle size of 0.16μ is obtained. This emulsion was spray-dried to obtain resin fine particles A-8.

釡]目外9 (TG70G70アクリル)滴下ロート、
攪拌翼、温度計を備えたフラスコにキシレン80重量部
を仕込、130°Cに加熱した。
Pot] outside 9 (TG70G70 acrylic) dropping funnel,
80 parts by weight of xylene was charged into a flask equipped with a stirring blade and a thermometer and heated to 130°C.

滴下ロートを用いて、メチルメタクリレート55部、ス
チレン10部、グリシジルメタクリレート30部、n−
ブチルメタクリレート5部、開始剤カヤエステル06部
の溶液を上記フラスコに3時間で等速滴下した0滴下終
了f&30分間保持の後、キシレン20部、カヤエステ
ル01部を滴下ロートを用いて1時間で等速滴下した。
Using a dropping funnel, add 55 parts of methyl methacrylate, 10 parts of styrene, 30 parts of glycidyl methacrylate, n-
A solution of 5 parts of butyl methacrylate and 0.6 parts of Kaya ester as an initiator was dropped into the above flask at a uniform rate over 3 hours. After completion of the 0 drop f & held for 30 minutes, 20 parts of xylene and 0.1 part of Kaya ester were added using a dropping funnel over 1 hour. It was dropped at a uniform rate.

滴下終゛了後、さらに130℃で2時間保持の後、キシ
レンを減圧蒸留により除去して、Ta2O、アクリル樹
脂A−9を得た。
After the dropwise addition was completed, the mixture was further maintained at 130° C. for 2 hours, and then xylene was removed by vacuum distillation to obtain Ta2O and acrylic resin A-9.

111辷更(TG40アクリルの合成)滴下ロート、攪
拌翼、温度計を備えたフラスコにキシレン80重量部を
仕込、130℃に加熱した。
111 (Synthesis of TG40 acrylic) 80 parts by weight of xylene was charged into a flask equipped with a dropping funnel, a stirring blade, and a thermometer, and heated to 130°C.

滴下ロートを用いて、メチルメタクリレート19部、ス
チレン10部、グリシジルメタクリレート30部、n−
ブチルメタクリレート41部、開始剤カヤエステル06
部の溶液を上記フラスコに3時間で等速滴下した。滴下
終了後30分間保持の後、キシレン20部、カヤエステ
ル01部を滴下ロートを用いて1時間で等速滴下した。
Using a dropping funnel, add 19 parts of methyl methacrylate, 10 parts of styrene, 30 parts of glycidyl methacrylate, n-
Butyl methacrylate 41 parts, initiator Kayaester 06
A portion of the solution was added dropwise to the flask at a uniform rate over 3 hours. After the dropwise addition was completed, the mixture was held for 30 minutes, and then 20 parts of xylene and 01 parts of Kayaester were added dropwise at a constant rate over 1 hour using a dropping funnel.

滴下終了後、さらに130℃で2時間保持の後、キシレ
ンを減圧蒸留により除去してアクリル樹脂A−10を得
た。
After the dropwise addition was completed, the mixture was further maintained at 130°C for 2 hours, and xylene was removed by vacuum distillation to obtain acrylic resin A-10.

11匠11(TG90アクリルの合成)滴下ロート、撹
拌翼、温度計を備えたフラスコにキシレン80重量部を
仕込み、130℃に加熱した。滴下ロートを用いてメチ
ルメタクリレート36部、スチレン10部、グリシジル
メタクリレート24部、n〜ブチルメタクリレート24
部、ターシャルブチルメタクリレート30部、開始剤カ
ヤエステル06部の溶液を上記フラスコに3時間で等速
滴下した。滴下終了後、30分間保持の後、キシレン2
0部、カヤエステル01部を滴下ロートを用いて1時間
で等速滴下した。滴下終了後、さらに130℃で2時間
保持の後、キシレンを減圧蒸留により除去してアクリル
樹脂A−11を得た。
11 Takumi 11 (Synthesis of TG90 acrylic) 80 parts by weight of xylene was charged into a flask equipped with a dropping funnel, a stirring blade, and a thermometer, and heated to 130°C. Using a dropping funnel, add 36 parts of methyl methacrylate, 10 parts of styrene, 24 parts of glycidyl methacrylate, and 24 parts of n-butyl methacrylate.
A solution containing 30 parts of tertiary butyl methacrylate and 06 parts of initiator Kayaester was added dropwise to the above flask at a constant rate over 3 hours. After dropping, hold for 30 minutes, add xylene 2
0 parts of Kayaester and 01 parts of Kayaester were added dropwise at a uniform rate over 1 hour using a dropping funnel. After the dropwise addition was completed, the mixture was further maintained at 130°C for 2 hours, and then xylene was removed by vacuum distillation to obtain acrylic resin A-11.

m二L3工(TG70G70アクリル塗料)参考例9の
アクリル樹脂A−9100重量部、デカンジカルボン酸
24部、酸fヒチタンCR5030部をヘンシェルミキ
サー(三井三池製作所社製)にて乾式混合し、ついでコ
ニーダーPR−46(スイス:ブス社製ンにて100℃
の温度で溶融分散し、冷却後ハンマーミルにて粉砕し1
50メツシユの金網で分級して粉体粒子を得た。これに
樹脂微粒子A−6を1.54部(母体粉体塗料比で1%
)加えてヘンシェルミキサーにて30秒乾式混合し、粉
体粒子A−12を得た。
m2 L3 (TG70G70 acrylic paint) 100 parts by weight of acrylic resin A-9 of Reference Example 9, 24 parts of decane dicarboxylic acid, and 30 parts of acid f-hititane CR5 were dry mixed in a Henschel mixer (manufactured by Mitsui Miike Seisakusho Co., Ltd.), and then mixed in a co-kneader. PR-46 (Switzerland: 100℃ manufactured by Buss)
Melt and disperse at a temperature of
Powder particles were obtained by classification using a 50-mesh wire mesh. To this, 1.54 parts of resin fine particles A-6 (1% based on the base powder paint ratio)
) and dry mixed for 30 seconds using a Henschel mixer to obtain powder particles A-12.

1 13(ポリエステル塗料の調製) ER6800(日本ポリエステル社製ポリエステル樹脂
)100重量部、フレランUI (BASF社製ブロッ
クイソシアナート)36部、酸化チタンCR5040部
をヘンシェルミキサー(三井三池製作所社製)にて乾式
混合し、ついでコニーダーPR−46(スイス:ブス社
製)にて 100℃の温度で溶融分散し、冷却後ハンマ
ーミルにて粉砕し150メツシユの金網で分級して粉体
粒子A−13を得た。
1 13 (Preparation of polyester paint) 100 parts by weight of ER6800 (polyester resin manufactured by Nippon Polyester Co., Ltd.), 36 parts of Fulleran UI (blocked isocyanate manufactured by BASF), and 40 parts of titanium oxide CR500 were mixed in a Henschel mixer (manufactured by Mitsui Miike Seisakusho Co., Ltd.). The mixture was dry mixed, then melted and dispersed at a temperature of 100°C in a co-kneader PR-46 (manufactured by Buss, Switzerland), and after cooling, it was crushed in a hammer mill and classified with a 150-mesh wire mesh to obtain powder particles A-13. Obtained.

委」L倚LVA工(エポキシ塗料の調製)エポトー)Y
D−019(東部化成社製エポキシ樹脂)100重量部
、ジシアンジアミド3部、酸fヒチタンCR5040部
をヘンシェルミキサー(三井三池製作所社製)にて乾式
混合し、ついでコニーダーPR−46(スイス:ブス社
製)にて100°Cの温度で溶融分散し、冷却後ハンマ
ーミルにて粉砕し150メツシユの金網で分級して粉体
粒子を得た。これに樹脂微粒子A−2を1.46部(母
体塗料比で1%)加えてヘンシェルミキサーにて30秒
乾式混合し、粉体塗料A−14を得た6111LΣ(T
G40アクリル塗料の調製)参考例10のアクリル樹脂
A−10100重量部、デカンジカルボン酸24部をヘ
ンシェルミキサー(三井三池製作所社製)にて乾式混合
し、次いでコニーダーPR−46(スイス:ブス社製)
にて100℃の温度で溶融分散し、冷却後ハンマーミル
にて粉砕し150メツシユの金網で分級して粉体粒子A
−15を得た。
Committee' LVA engineering (preparation of epoxy paint) Epoto) Y
100 parts by weight of D-019 (epoxy resin manufactured by Tobu Kasei Co., Ltd.), 3 parts of dicyandiamide, and 40 parts of acid f-hititanium CR50 were dry mixed in a Henschel mixer (manufactured by Mitsui Miike Manufacturing Co., Ltd.), and then co-kneader PR-46 (Switzerland: Buss Co., Ltd.). After cooling, the mixture was melted and dispersed at a temperature of 100° C., and after cooling, it was crushed in a hammer mill and classified using a 150-mesh wire mesh to obtain powder particles. 1.46 parts of resin fine particles A-2 (1% based on the base paint ratio) were added and dry mixed for 30 seconds in a Henschel mixer to obtain powder paint A-14, 6111LΣ(T
Preparation of G40 acrylic paint) 100 parts by weight of the acrylic resin A-10 of Reference Example 10 and 24 parts of decanedicarboxylic acid were dry mixed in a Henschel mixer (manufactured by Mitsui Miike Seisakusho Co., Ltd.), and then mixed with Cokneader PR-46 (manufactured by Buss AG, Switzerland). )
After cooling, the mixture was melted and dispersed at a temperature of 100°C, then crushed in a hammer mill, and classified using a 150-mesh wire mesh to obtain powder particles A.
-15 was obtained.

#<非架橋樹脂微粒子A−21%添加)参考例12で得
な粉体粒子A−12100部に、樹脂微粒子A−2を1
部(母体粉体塗料比で1%)加えてヘンシェルミキサー
にて30秒乾式混合し、粉体塗料を得た。
#<Non-crosslinked resin fine particles A-21% addition) 1 part of resin fine particles A-2 was added to 100 parts of powder particles A-12 obtained in Reference Example 12.
(1% based on the base powder paint ratio) and dry mixed for 30 seconds in a Henschel mixer to obtain a powder paint.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが双方とも良好な結果かえられている
Table 1 shows the evaluation of the appearance and blocking of the powder coating material prepared in this way, and good results were obtained in both cases.

比J[倒」−(非架橋樹脂微粒子A−11%添加)樹脂
微粒子の種類をA−1とした以外は実施例1と同様にし
て、粉体塗料を得な。
Ratio J [Fine] - (Addition of 11% of non-crosslinked resin fine particles A) A powder coating was obtained in the same manner as in Example 1, except that the type of resin fine particles was changed to A-1.

こうしてできな粉体塗料の外観とブロッキングの評価を
表−1に記載したがブロッキングは不良であった。
The appearance and blocking evaluation of the resulting powder coating are shown in Table 1, and the blocking was poor.

火」1歿3−(非架橋樹脂微粒子A−31%添加)樹脂
微粒子の種類をA−3とした以外は実施例1と同様にし
て、粉体塗料を得た。
A powder coating material was obtained in the same manner as in Example 1 except that the type of resin particles was A-3.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが双方とも良好な結果が得られている
Table 1 shows the evaluation of the appearance and blocking of the thus produced powder coating, and good results were obtained in both cases.

比1石殊タエ(非架橋樹脂微粒子A−51%添加)微粒
子の種類をA−5とした以外は実施例1と同様にして、
粉体塗料を得た。
Comparison 1 Seishi Tae (non-crosslinked resin fine particles A-51% addition) Same as Example 1 except that the type of fine particles was A-5,
A powder coating was obtained.

こうしてできな粉体塗料の外観とブロッキングの評価を
表−1に記載したが、双方とも不良な結果が得られてい
る。
Table 1 shows the evaluation of the appearance and blocking of the resulting powder coating, and poor results were obtained in both cases.

!(非架橋樹脂微粒子A−320%添加)参考例12で
得た粉体粒子A−12100部に、樹脂微粒子A−3を
20部(母体粉体塗料比で20%)加えてヘンシェルミ
キサーにて30秒乾式混合し、粉体塗料を得た。
! (Addition of 20% of non-crosslinked resin particles A-3) 20 parts of resin particles A-3 (20% relative to the base powder coating) were added to 12,100 parts of the powder particles A-12 obtained in Reference Example 12, and the mixture was heated in a Henschel mixer. Dry mixing was performed for 30 seconds to obtain a powder coating.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが、双方とも良好な結果が得られてい
る。
Table 1 shows the evaluation of the appearance and blocking of the powder coating thus produced, and good results were obtained for both.

耽1」工 (非架橋樹脂微粒子A−4 0,01%添加) 樹脂微粒子A−4の添加量を0.01部(母体粉体塗料
比で0.01%)とした以外は実施例3と同様にして、
粉体塗料を得た。
Example 3 except that the amount of resin fine particles A-4 added was 0.01 part (0.01% relative to the base powder coating) Similarly,
A powder coating was obtained.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したがブロッキングは不良な結果が得られ
ている。
The appearance and blocking evaluation of the powder coating thus produced are shown in Table 1, and poor blocking results were obtained.

比U(非架橋樹脂微粒子A−440%添加)樹脂微粒子
A−4の添加量を40部(母体粉体塗料比で40%)と
した以外は実施例3と同様にして、粉体塗料を得た。
Ratio U (addition of 40% of non-crosslinked resin particles A-4) A powder coating was prepared in the same manner as in Example 3, except that the amount of resin particles A-4 added was 40 parts (40% relative to the base powder coating). Obtained.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが、外観は不良な結果が得られている
The appearance and blocking evaluation of the powder coating thus produced are shown in Table 1, and the results show that the appearance is poor.

比ff1(非架橋樹脂微粒子0%添加)樹脂微粒子の量
を全く用いなかった以外は、実施例3と同様にして粉体
塗料を得たに うしてできな粉体塗料の外観とブロッキングの評価を表
−1に記載したが、ブロッキングは不良な結果が得られ
た。
Ratio ff1 (addition of 0% non-crosslinked resin fine particles) Powder paint was obtained in the same manner as in Example 3 except that no amount of resin fine particles was used. Evaluation of appearance and blocking of the resulting powder paint. are listed in Table 1, but poor blocking results were obtained.

実mユ(非架橋樹脂微粒子A−21%添加/ポリエステ
ルパウダー) 参考例13で得た粉体粒子A−13100部に、樹脂微
粒子A−2を1部(母体粉体塗料比で1%)加えてヘン
シェルミキサーにて30秒乾式混合し、粉体塗料を得た
Fruit myu (non-crosslinked resin fine particles A-21% added/polyester powder) 1 part of resin fine particles A-2 was added to 100 parts of powder particles A-13 obtained in Reference Example 13 (1% based on the base powder paint ratio). In addition, dry mixing was performed for 30 seconds using a Henschel mixer to obtain a powder coating.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが、双方とも良好な結果が得られてい
る。
Table 1 shows the evaluation of the appearance and blocking of the powder coating thus produced, and good results were obtained for both.

え1乱i<非架橋樹脂微粒子A−21%添加/エポキシ
パウダー) 参考例14で得た粉体粒子A−14100部に、樹脂微
粒子A−2を1部〈母体粉体粒子比で1%)加えてヘン
シェルミキサーにて30秒乾式混合し、粉体塗料を得た
E1random i<Non-crosslinked resin fine particles A-21% addition/epoxy powder) To 100 parts of powder particles A-14 obtained in Reference Example 14, 1 part of resin fine particles A-2 (1% in terms of base powder particle ratio) ) and dry mixed for 30 seconds using a Henschel mixer to obtain a powder coating.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが、双方とも良好な結果が得られてい
る。
Table 1 shows the evaluation of the appearance and blocking of the powder coating thus produced, and good results were obtained for both.

x]1阻予−(非架橋粉砕樹脂微粒子A−61%添加〉 参考例12で得た粉体粒子A−12100部に、樹脂微
粒子A−6を1部(母体粉体塗料比で1%)加えてヘン
シェルミキサーにて30秒乾式混合し、粉体塗料を得た
x] 1 inhibition (addition of 61% of non-crosslinked pulverized resin particles A) To 100 parts of powder particles A-12 obtained in Reference Example 12, 1 part of resin particles A-6 was added (1% based on the base powder coating ratio) ) and dry mixed for 30 seconds using a Henschel mixer to obtain a powder coating.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが、双方とも良好な結果が得られてい
る。
Table 1 shows the evaluation of the appearance and blocking of the powder coating thus produced, and good results were obtained for both.

え1匠L<非架橋粉砕樹脂微粒子A−71%添加) 参考例12で得た粉体粒子A−12100部に、樹脂微
粒子A−7を1部(母体粉体塗料比で1%)加えてヘン
シェルミキサーにて30秒乾式混合し、粉体塗料を得た
E1 Takumi L<Non-crosslinked pulverized resin fine particles A-71% addition) To 100 parts of powder particles A-12 obtained in Reference Example 12, 1 part of resin fine particles A-7 (1% based on the base powder paint ratio) was added. The mixture was dry mixed for 30 seconds using a Henschel mixer to obtain a powder coating.

こうしてできな粉体塗料の外観とブロッキングの評価を
表−1に記載したが、双方とも良好な結果が得られてい
る。
Table 1 shows the appearance and blocking evaluation of the powder coating obtained in this way, and good results were obtained for both.

比ff1(架橋樹脂微粒子A−820%添加)樹脂微粒
子A−8の添加量を20部(母体粉体塗料比で20%)
とした以外は実施例6と同様にして、粉体塗料を得た。
Ratio ff1 (addition of 20% of cross-linked resin fine particles A-8) Addition amount of resin fine particles A-8 is 20 parts (20% relative to base powder coating)
A powder coating material was obtained in the same manner as in Example 6 except for the following.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが外観は不良な結果が得られている。
The appearance and blocking evaluation of the powder coating thus prepared are shown in Table 1, and the results show that the appearance was poor.

16Jffi (非架橋樹脂微粒子A−25%添加/T
G40パウダー) 参考例15で得た粉体粒子A−15100部に、樹脂微
粒子A−2を5部く母体粉体塗料比で5%)加えてヘン
シェルミキサーにて30秒乾式混合し、粉体塗料を得た
16Jffi (Non-crosslinked resin fine particles A-25% addition/T
G40 powder) To 100 parts of powder particles A-15 obtained in Reference Example 15, 5 parts of resin fine particles A-2 (5% based on the base powder coating ratio) were added and dry mixed for 30 seconds in a Henschel mixer to form a powder. Got the paint.

こうしてできた粉体塗料の外観とブロッキングの評価を
表−1に記載したが双方とも良好な結果が得られている
Table 1 shows the evaluation of the appearance and blocking of the thus produced powder coating, and good results were obtained in both cases.

比Jli(非架橋樹脂粒子O%添加/ TG40パウダー) 樹脂微粒子の量を全く用いなかった以外は、実施例8と
同様にして粉体粒子を得た。
Ratio Jli (Addition of 0% non-crosslinked resin particles/TG40 powder) Powder particles were obtained in the same manner as in Example 8, except that no resin fine particles were used.

こうしてできた粉体塗料の外観とブロッキング性の評価
を表−1に記載したが双方とも良好な結果が得られてい
る。
Table 1 shows the evaluation of the appearance and blocking properties of the powder paint thus produced, and good results were obtained for both.

炙−1 試験方法 1)ブロッキング性試験  粉体塗料を40°Cにて1
力月貯蔵後、粉体塗料の流動性を評価。
Roasted-1 Test method 1) Blocking property test Powder paint was heated to 40°C.
Evaluate the fluidity of powder coating after storage.

[評価方法]○、塊がなく流動性は非常に良好。[Evaluation method] ○: There are no lumps and the fluidity is very good.

△゛少し塊があるものの、すぐほぐ れる。△゛There are some lumps, but they loosen up quickly It will be done.

×:はぐれない塊がある。×: There is a lump that cannot be separated.

2)塗膜外観 ○:良好 △;ツヤが少し低下し、 ラウンドが少し生じる ×:不良(ツヤがほとんどなく、 ラウンドも多い) 特許出願代理人2) Paint film appearance ○: Good △; Gloss is slightly reduced, A few rounds occur ×: Poor (almost no shine, (Many rounds) patent application agent

Claims (2)

【特許請求の範囲】[Claims] (1)ガラス移転温度(Tg)が50℃〜150℃の非
架橋樹脂微粒子を含む粉体塗料。
(1) A powder coating containing non-crosslinked resin fine particles having a glass transition temperature (Tg) of 50°C to 150°C.
(2)非架橋樹脂微粒子の平均粒径が0.001〜10
μで、その含有量が固形分重量比で全粉体塗料の0.0
5〜35重量%である請求項第1項記載の粉体塗料。
(2) The average particle size of non-crosslinked resin fine particles is 0.001 to 10
μ, and its content is 0.0 of the total powder coating in terms of solid content weight ratio.
The powder coating according to claim 1, wherein the amount is 5 to 35% by weight.
JP63333988A 1988-12-29 1988-12-29 Powder paint Expired - Lifetime JP2840953B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63333988A JP2840953B2 (en) 1988-12-29 1988-12-29 Powder paint
CA002006930A CA2006930C (en) 1988-12-29 1989-12-29 Powder coatings
US07/458,542 US5034432A (en) 1988-12-29 1989-12-29 Powder coatings
KR1019890020624A KR0147370B1 (en) 1988-12-29 1989-12-29 Powder coatings
AU47631/90A AU631592B2 (en) 1988-12-29 1990-01-03 Powder coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333988A JP2840953B2 (en) 1988-12-29 1988-12-29 Powder paint

Publications (2)

Publication Number Publication Date
JPH02178360A true JPH02178360A (en) 1990-07-11
JP2840953B2 JP2840953B2 (en) 1998-12-24

Family

ID=18272236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333988A Expired - Lifetime JP2840953B2 (en) 1988-12-29 1988-12-29 Powder paint

Country Status (1)

Country Link
JP (1) JP2840953B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249585A (en) * 1990-12-28 1992-09-04 Somar Corp Epoxy resin powder composition for electrostatic coating
JPH11349867A (en) * 1998-05-26 1999-12-21 Creanova Spezialchem Gmbh Powder coating composition for electrostatic coating
JP2008208377A (en) * 2008-04-07 2008-09-11 Mitsui Chemicals Inc Method of transporting and storing raw material for glycidyl group-containing granular acrylic resin coating
JP2014208753A (en) * 2012-09-28 2014-11-06 積水化学工業株式会社 Methacrylic copolymer for binder, inorganic fine particle dispersion paste composition and inorganic fine particle dispersion sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108136A (en) * 1973-02-16 1974-10-15
JPS50133242A (en) * 1974-04-10 1975-10-22
JPS51145516A (en) * 1975-06-10 1976-12-14 Teijin Ltd Powder paint for coating glasswares
JPS6220569A (en) * 1985-07-17 1987-01-29 インタ−ナシヨナル ペイント パブリツクリミテイド カンパニ− Powder coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108136A (en) * 1973-02-16 1974-10-15
JPS50133242A (en) * 1974-04-10 1975-10-22
JPS51145516A (en) * 1975-06-10 1976-12-14 Teijin Ltd Powder paint for coating glasswares
JPS6220569A (en) * 1985-07-17 1987-01-29 インタ−ナシヨナル ペイント パブリツクリミテイド カンパニ− Powder coating composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04249585A (en) * 1990-12-28 1992-09-04 Somar Corp Epoxy resin powder composition for electrostatic coating
JPH11349867A (en) * 1998-05-26 1999-12-21 Creanova Spezialchem Gmbh Powder coating composition for electrostatic coating
JP2008208377A (en) * 2008-04-07 2008-09-11 Mitsui Chemicals Inc Method of transporting and storing raw material for glycidyl group-containing granular acrylic resin coating
JP2014208753A (en) * 2012-09-28 2014-11-06 積水化学工業株式会社 Methacrylic copolymer for binder, inorganic fine particle dispersion paste composition and inorganic fine particle dispersion sheet

Also Published As

Publication number Publication date
JP2840953B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
JPS62292869A (en) Powder coating
US6531524B2 (en) Powder coating compositions
EP0539385B1 (en) Powder coating compositions
US5470893A (en) Powder coating compositions
JPH02669A (en) Colored metallic flake pigment, its production and coating, ink, cosmetic and plastic molding composition containing same
JPS62101614A (en) Bridged polymer fine grain and manufacture
JP2711036B2 (en) Powder coatings and raw materials for powder coatings
JPH02178360A (en) Powder coating
WO1995025145A1 (en) Powder paint, method of manufacturing the same, and method of painting using the paint
JP2910863B2 (en) Super durable laminate
US20070022907A1 (en) Colored Masterbatch Precursor
US6331581B1 (en) Method for color matching of powder coating composition and process for the preparation thereof
JPH02178361A (en) Powder coating
JPS584743B2 (en) paint composition
JP4484291B2 (en) Toning method and manufacturing method of powder coating
JP6540137B2 (en) Thermosetting powder coating, method of producing thermosetting powder coating, painted article, and method of producing painted article
JPH1180613A (en) Thermosetting acrylic powder coating composition and preparation method thereof
JPS585942B2 (en) Fuck you
JPS6016476B2 (en) Slurry powder coating composition
JP2000063705A (en) Thermosetting powder coating material
JP2000281978A (en) Method for color matching of powder coating
JP2866999B2 (en) Polyolefin resin powder coating composition
JPS6136031B2 (en)
JPS6035383B2 (en) Aqueous dispersion of thermosetting resin powder for paints
JPH02178362A (en) Powder coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11