JPH02177310A - Electric insulating material and capacitor - Google Patents

Electric insulating material and capacitor

Info

Publication number
JPH02177310A
JPH02177310A JP33142088A JP33142088A JPH02177310A JP H02177310 A JPH02177310 A JP H02177310A JP 33142088 A JP33142088 A JP 33142088A JP 33142088 A JP33142088 A JP 33142088A JP H02177310 A JPH02177310 A JP H02177310A
Authority
JP
Japan
Prior art keywords
film
capacitor
average
particles
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33142088A
Other languages
Japanese (ja)
Other versions
JP2663597B2 (en
Inventor
Shizu Kimura
木村 志津
Takahiro Nakawa
孝宏 名川
Nobuaki Ito
伸明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63331420A priority Critical patent/JP2663597B2/en
Publication of JPH02177310A publication Critical patent/JPH02177310A/en
Application granted granted Critical
Publication of JP2663597B2 publication Critical patent/JP2663597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain an insulator whose dielectric property is stable by using a film-shaped substance consisting of mixture of at least one kind, which is selected between titanium oxide and titanic acid metallic salt, and resin, whose glass transition point is specified, for electric insulating material used for a capacitor, and further prescribing the thickness, flatness, etc., of the film-shaped substance. CONSTITUTION:One kind or two kinds of titanic acid metallic salts such as titanium oxide, barium titanate, lead titanate, etc., of rutile-type, anatase-type, or the like are mixed. Hereupon, the average grain diameter of these particles should be preferably 1mum or less and the particles above 30mum shall be within 30%. Next, they are mixed with resin whose glass transition point is 65 deg.C or more, for example, polyethylene telephthalate, polystyrene, aliphatic polyamide, etc., and this is made into film shape. At this time, the thick of this film-shaped substance as 0.1-30mum, the depth of the center line at the surface as 0.01-5.0mum, and the average sectional flatness of surface projections as 0.005-0.3, are prescribed, respectively. By doing it this way, an insulator having high permittivity, which is fit for practical use even if thin, can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気絶縁材料及びコンデンサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to electrical insulating materials and capacitors.

[従来の技術] 従来から電気絶縁材料の比誘電率を高めるために、ポリ
マーに高誘電率材料の粒子を混入する方法が試みられて
来た。たとえば合成樹脂にチタン酸バリウム系磁気粒子
を混合するもの(特開昭52−6966 ) 、単層ま
たは複数層の熱可塑性ポリマーに高誘電体物質配合物を
混合するもの(特開昭58−149928.58−85
514) 、ポリエステルに高誘電体物質配合物を混合
するもの(特開昭58−185225 )などがある。
[Prior Art] In order to increase the dielectric constant of an electrically insulating material, attempts have been made to incorporate particles of a high dielectric constant material into a polymer. For example, synthetic resin is mixed with barium titanate magnetic particles (Japanese Patent Laid-Open No. 52-6966), and single-layer or multi-layer thermoplastic polymer is mixed with a high dielectric material compound (Japanese Patent Laid-Open No. 58-149928). .58-85
514), and one in which a high dielectric material compound is mixed with polyester (Japanese Patent Application Laid-Open No. 58-185225).

この結果、比誘電率は高誘電率粒子の含量と共に高くな
ることが明らかになっている。
As a result, it has been revealed that the relative dielectric constant increases with the content of high dielectric constant particles.

またそれらの混合物を支持体に塗布して用いたものもあ
る(特開昭61−59714.63−216323 )
。さらにそれらを用いたフィルムコンデンサについても
特開昭54−48064.60−170224.61−
59714等がある。
In addition, there are also products in which a mixture of these is applied to a support (Japanese Patent Application Laid-Open No. 61-59714.63-216323).
. Furthermore, regarding film capacitors using them, Japanese Patent Application Laid-Open No. 54-48064.60-170224.61-
59714 etc.

[発明が解決しようとする課題] しかし、いずれのポリマーについてもより高い誘電率を
得るために高誘電率粒子をより多く添加すると、膜状物
の機械特性が悪くなり、実用に適した薄い物が得られず
、たとえばコンデンサ用の誘電体フィルムとして用いる
場合、コンデンサの外形寸法が大きくなるなどの欠点が
あった。また塗布によって薄い膜状物を得る方法もある
が、フィルムの表面に着目しているものは見られず、例
えばコンデンサの誘電体に用いる場合、誘電率のばらつ
きが発生し、誘電特性安定性にかけるという欠点があっ
た。
[Problem to be solved by the invention] However, adding more high-permittivity particles to obtain a higher dielectric constant for any polymer deteriorates the mechanical properties of the film-like material, making it difficult to form a thin film suitable for practical use. For example, when used as a dielectric film for a capacitor, the capacitor's external dimensions become large. There is also a method to obtain a thin film-like material by coating, but there is no method that focuses on the surface of the film.For example, when used as a dielectric for a capacitor, variations in the dielectric constant occur and the stability of the dielectric properties is affected. There was a drawback that it was expensive.

本発明の目的は上記の課題を解決すべく、高誘電でかつ
薄くても実用に耐え、また表面特性をコントロールして
、誘電特性の安定な電気絶縁体を提供すること、及びそ
れを用いた容量の大きな外形寸法の小さい、また特性安
定に優れたコンデンサを提供することにある。
The purpose of the present invention is to solve the above-mentioned problems by providing an electrical insulator that is highly dielectric, can be put into practical use even if it is thin, and has stable dielectric properties by controlling the surface properties, and an electrical insulator using the same. The object of the present invention is to provide a capacitor with large capacity, small external dimensions, and excellent stable characteristics.

[課題を解決するための手段] 本発明は、酸化チタンおよびチタン酸金属塩から選ばれ
た少なくとも一種と、ガラス転移点Tgが65℃以上の
樹脂との混合物からなる膜状物であって、該膜状物の厚
みが0.1〜30μmで、かつ表面の中心線深さRpが
0.01〜5. 0μm1表面突起の平均断面扁平度P
が0.005〜0.3であることを特徴とする電気絶縁
材料及び該電気絶縁材料を用いてなることを特徴とする
コンデンサに関するものである。
[Means for Solving the Problems] The present invention provides a film-like material comprising a mixture of at least one selected from titanium oxide and metal titanate and a resin having a glass transition point Tg of 65° C. or higher, The thickness of the film-like material is 0.1 to 30 μm, and the center line depth Rp of the surface is 0.01 to 5. Average cross-sectional flatness P of 0μm1 surface protrusion
The present invention relates to an electrically insulating material characterized in that the electrical insulating material is 0.005 to 0.3, and a capacitor formed using the electrically insulating material.

ここでガラス転移点Tgが65℃以上の樹脂とは、ポリ
エチレンテレフタレート、ポリブチレンテレフタレート
、ポリエチレンナフタレートなどのポリエステル類、ポ
リスチレン、ポリカーボネート、ポリスルホン、ポリ弗
化ビニリデン、ポリアクリレート、ポリフェニレンサル
ファイド、ポリエーテルスルホン、ポリエーテルイミド
、ポリエーテルエーテルケトン、脂肪族ポリアミド、芳
香族ポリアミド、芳香族ポリイミドあるいはこれらの混
合物や共重合物や混合物などが挙げられるがこれらに限
定されるものではない。また粒子との親和性の特に良い
ことから、好ましくは芳香族ポリアミド、芳香族ポリイ
ミド、ポリカーボネート、ポリアクリルニトリルが好ま
しく、さらに好ましくは芳香族ポリアミドである。Tg
が65°Cより低いと耐熱性に劣る。
Here, resins with a glass transition point Tg of 65°C or higher include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polysulfone, polyvinylidene fluoride, polyacrylate, polyphenylene sulfide, and polyether sulfone. Examples include, but are not limited to, polyetherimide, polyetheretherketone, aliphatic polyamide, aromatic polyamide, aromatic polyimide, or mixtures, copolymers, and mixtures thereof. Moreover, aromatic polyamide, aromatic polyimide, polycarbonate, and polyacrylonitrile are preferable, and aromatic polyamide is more preferable because of their particularly good affinity with particles. Tg
If the temperature is lower than 65°C, the heat resistance will be poor.

また本発明の酸化チタンとは、ルチル型、アナターゼ型
等があるがこれらに限定されるものでなく、またその形
状にも限定されない粒子である。
Furthermore, the titanium oxide of the present invention is a particle that includes, but is not limited to, rutile type, anatase type, etc., and is not limited to its shape.

またチタン酸金属塩とは、例えばチタン酸バリウム、チ
タン酸鉛、チタン酸ストロンチウム、あるいはチタン酸
バリウムのバリウムの1部が他の金属に置き換えられた
ものやチタンの1部が他の金属に置き換えられたもの、
具体的には(Bait−−+  S r−)  (T 
1 (1−yl  3n、 ) 03  (ここで0<
x<1.0<y<1)などの粒子である。また水熱合成
法、固相反応合成法などの合成法があるがこれらに限定
されるものでなく、またその形状にも限定されない。
Metal titanates are, for example, barium titanate, lead titanate, strontium titanate, or barium titanate in which part of the barium is replaced with another metal, or in which part of the titanium is replaced with another metal. what was given,
Specifically, (Bait--+ S r-) (T
1 (1-yl 3n, ) 03 (where 0<
x<1.0<y<1). In addition, there are synthesis methods such as hydrothermal synthesis and solid phase reaction synthesis, but the method is not limited to these, and the shape is not limited either.

上記の、酸化チタンおよびチタン酸金属塩から選ばれた
少なくとも一種の粒子(以下無機粒子という)は、高誘
電性を示すもので、平均粒径は10μm以下で、粒径3
0μm以上のものが30%以内であることが好ましく、
より好ましくは平均粒径が1μm以下で、粒径30μm
以上のものが10%以内である。平均粒径が10μmよ
り大きければ本発明の効果を生かすような厚さの膜状物
で、表面特性をコントロールすることが困難となるため
好ましくない。また粒径の違う粒子を2種類以上用いて
も良い。
The above-mentioned at least one particle selected from titanium oxide and metal titanate (hereinafter referred to as inorganic particles) exhibits high dielectric properties, has an average particle size of 10 μm or less, and has a particle size of 3
It is preferable that the proportion of 0 μm or more is within 30%,
More preferably, the average particle size is 1 μm or less, and the particle size is 30 μm.
The above is within 10%. If the average particle size is larger than 10 μm, it is not preferable because it becomes difficult to control the surface properties of a film-like material having a thickness that takes advantage of the effects of the present invention. Furthermore, two or more types of particles having different particle sizes may be used.

さらに膜状物の機械特性を向上する目的で、これらの混
合物に、シラン系、チタネート系、アルミ系等のカップ
リング剤を添加することは何等差し支えない。
Furthermore, for the purpose of improving the mechanical properties of the film-like material, a coupling agent such as a silane type, titanate type, or aluminum type may be added to the mixture.

また得られた膜状物に対する無機粒子の平均含有率は3
容量%以上であるのが好ましい。3容量%より少ないと
、含有しない樹脂との誘電率の明確な差が現われず、本
発明の効果が不十分となる。
In addition, the average content of inorganic particles in the obtained film-like material was 3
It is preferable that it is at least % by volume. If it is less than 3% by volume, no clear difference in dielectric constant will appear between the resin and the resin not containing it, and the effect of the present invention will be insufficient.

この時の誘電率は、4以上好ましくは8以上さらに好ま
しくは10以上であることが望ましい。
The dielectric constant at this time is desirably 4 or more, preferably 8 or more, and more preferably 10 or more.

本発明の膜状物の厚みは0.1〜30μmであり好まし
くは0.2〜10μm1さらに好ましくは0.5〜5μ
mである。薄い捏水発明の効果は大きくなるが、0.1
μmより薄いと電気絶縁性に劣る。また30μmより厚
いと本発明の効果が十分にいかせられず、例えばコンデ
ンサの誘電体として用いる時、外形寸法の小さい物が得
られない。
The thickness of the film-like material of the present invention is 0.1 to 30 μm, preferably 0.2 to 10 μm, and more preferably 0.5 to 5 μm.
It is m. The effect of thin water-sprinkling invention is greater, but 0.1
If it is thinner than μm, the electrical insulation is poor. Moreover, if the thickness is more than 30 μm, the effects of the present invention cannot be fully utilized, and for example, when used as a dielectric material for a capacitor, a product with small external dimensions cannot be obtained.

また本発明の膜状物は表面の中心線深さRpが0.01
〜5.0μmであることが必要である。0.01μm未
満では膜状物の取り扱い性が落ち、膜状物同士の擦れに
よって表面が傷つき、絶縁欠陥が増大する。これによっ
て例えばコンデンサにした時の耐電圧不良率が増大する
。5.0μmより大きければ同一膜状物における誘電特
性の安定性が悪くなり、例えばコンデンサに用いた時の
容量のばらつきが大きくなる。Rpのさらに好ましい範
囲は01〜2.0μmである。
Further, the film-like material of the present invention has a center line depth Rp of 0.01 on the surface.
It is necessary that the thickness is 5.0 μm. If the thickness is less than 0.01 μm, the ease of handling the film-like material deteriorates, and the surface is damaged due to friction between the film-like materials, increasing insulation defects. This increases the failure rate of withstand voltage when used as a capacitor, for example. If it is larger than 5.0 μm, the stability of the dielectric properties of the same film-like material deteriorates, and, for example, when used in a capacitor, variations in capacitance increase. A more preferable range of Rp is 01 to 2.0 μm.

さらに本発明の膜状物の表面突起の平均断面扁平度Pは
0.005〜0.3であることが必要である。
Furthermore, it is necessary that the average cross-sectional flatness P of the surface protrusions of the film-like material of the present invention is 0.005 to 0.3.

0.005未満では突起が扁平過ぎ、 膜状物の取り扱
い性が落ち、膜状物同士の擦れによって表面が傷つき、
絶縁欠陥が増大する。これによって例えばコンデンサに
した時の耐電圧不良率が増大する。
If it is less than 0.005, the protrusions will be too flat, making it difficult to handle the film-like materials, and the surface will be damaged due to friction between the film-like materials.
Insulation defects increase. This increases the failure rate of withstand voltage when used as a capacitor, for example.

0.3より大きければ突起が尖り過ぎ、突起の削れなど
によって、同一膜状物における誘電特性の安定性が悪く
なり、例えばコンデンサに用いた時の容量のばらつきが
大きくなる。平均断面扁平度Pのさらに好ましい範囲は
0.05〜0.15であ、る。
If it is larger than 0.3, the protrusions will be too sharp and the protrusions will be scraped, resulting in poor stability of dielectric properties in the same film-like material and, for example, increased variation in capacitance when used in a capacitor. A more preferable range of the average cross-sectional flatness P is 0.05 to 0.15.

また本発明の膜状物は、表面のRa(中心線平均粗さ)
は0.005〜0850μmが好ましく、より好ましく
は0.O1〜0.3μmである。
In addition, the film-like material of the present invention has a surface Ra (center line average roughness) of
is preferably 0.005 to 0850 μm, more preferably 0.005 to 0.850 μm. O1 to 0.3 μm.

さらに本発明の膜状物の表面のRz (10点平均粗さ
)は0.05〜5.0μmが好ましく、より好ましくは
0.1〜3.011mである。この場合に、上記の効果
が一層現われるので特に好ましい。
Furthermore, Rz (10 point average roughness) of the surface of the film-like material of the present invention is preferably 0.05 to 5.0 m, more preferably 0.1 to 3.011 m. This case is particularly preferable because the above-mentioned effects are even more pronounced.

次に本発明の膜状物の製造方法について述べるがこれら
に限定されるものではない。
Next, the method for producing the film-like material of the present invention will be described, but the method is not limited thereto.

樹脂と無機粒子の混合は、樹脂の重合前、重合中、重合
後のいずれに行なってもよい。例えば重合後に混合する
場合には、溶液製膜が汎用される樹脂であれば、ポリマ
ー原液に溶媒分散した無機粒子を練り込む方法があり、
溶融製膜が汎用される樹脂であれば、重合されたポリマ
ーに二軸押出機等を使用して直接ブレンドする方法など
があるが特にこれらに限定されるものではない。
The resin and the inorganic particles may be mixed before, during, or after polymerization of the resin. For example, when mixing after polymerization, if the resin is commonly used for solution casting, there is a method of kneading inorganic particles dispersed in a solvent into the polymer stock solution.
For resins that are widely used for melt film formation, methods include direct blending with polymerized polymers using a twin-screw extruder or the like, but are not particularly limited thereto.

本発明の膜状物を得るには膜状物単体(以下フィルムと
言う)を得る通常の製膜法と、支持体上に樹脂と無機粒
子の混合物を塗布する方法がある。
To obtain the film-like product of the present invention, there are two methods: a normal film-forming method for producing a single film-like product (hereinafter referred to as a film), and a method of coating a mixture of resin and inorganic particles on a support.

通常の製膜法とは、溶液製膜と溶融製膜に大別される。Ordinary film forming methods are broadly divided into solution film forming and melt film forming.

前者には、乾湿式法、乾式法、湿式法などがあり、乾湿
式法、乾式法が表面性の良い膜状物を得るには好ましい
。 湿式法では該原液を口金から直接製膜用浴中に押し
出すか、または−旦ドラム等の支持体上に押し出し、支
持体ごと湿式浴中に導入する方法が採用される。この浴
は一般に水系媒体からなるものであり、水の他に有機溶
媒や無機塩等を含有しても良い。湿式浴を通すことでポ
リマー中に含有された塩類、有機溶媒等の抽出が行なわ
れ、さらに延伸、乾燥、熱処理が行なわれる。
The former method includes a wet-dry method, a dry method, a wet method, etc., and the wet-dry method and dry method are preferable in order to obtain a film-like material with good surface properties. In the wet method, the stock solution is directly extruded from a die into a film-forming bath, or is first extruded onto a support such as a drum, and then introduced together with the support into a wet bath. This bath generally consists of an aqueous medium, and may contain an organic solvent, an inorganic salt, etc. in addition to water. By passing the polymer through a wet bath, salts, organic solvents, etc. contained in the polymer are extracted, and further stretching, drying, and heat treatment are performed.

乾湿式法では該原液を口金からドラム、エンドレスベル
ト等の支持体上に押し出して薄膜とし、次いでかかる薄
膜層から溶媒を飛散させ薄膜が自己支持性を持つまで乾
燥する。乾式1程を終えたフィルムは支持体から剥離さ
れて湿式1程に導入され、上記の湿式法と同様に脱塩、
脱溶媒などが行なわれ、さらに延伸、乾燥、熱処理が行
なわれてフィルムとなる。
In the dry-wet method, the stock solution is extruded from a die onto a support such as a drum or an endless belt to form a thin film, and then the solvent is scattered from the thin film layer and the thin film is dried until it has self-supporting properties. After completing the first stage of the dry process, the film is peeled off from the support and introduced into the first stage of the wet process, where it is desalted and desalted in the same way as in the wet process described above.
Solvent removal etc. are performed, and further stretching, drying, and heat treatment are performed to form a film.

乾式法のプロセスを採用した場合は、ドラム、あるいは
エンドレスベルト等の上で乾燥され、自己支持性を持っ
たフィルムをこれら支持体から剥離し、延伸を行なう。
When a dry process is employed, the film is dried on a drum or an endless belt, and the self-supporting film is peeled off from the support and stretched.

さらに残存溶媒を除去するための乾燥や延伸、熱処理を
行なう。
Furthermore, drying, stretching, and heat treatment are performed to remove residual solvent.

また溶融製膜法とはポリエステルフィルムの製膜法がそ
の代表例としてあげられる。Tダイ等から該混合物を連
続的に押し出し、冷却された金属ドラム上にキャストし
、さらに延伸、熱処理をして膜状物を得ることができる
Further, a typical example of the melt film forming method is a method for forming a polyester film. The mixture is continuously extruded from a T-die or the like, cast onto a cooled metal drum, and further stretched and heat treated to obtain a film-like product.

支持体上に樹脂と無機粒子の混合物を塗布する方法には
、公知の方法に、グラビアコーター リバースロールコ
ータ−、ロッドコーターあるいはエアドクタコーターな
どがあるが、これらに限定されるものではない。支持体
としてはポリエステル、ポリカーボネート、ポリプロピ
レン、芳香族ポリアミド等のフィルムや、これに金属層
を設けたもの、さらにアルミ箔等の金属箔単体を用いる
ことができるが、これらに限定されるものではない。
Known methods for coating the mixture of resin and inorganic particles on the support include, but are not limited to, gravure coaters, reverse roll coaters, rod coaters, and air doctor coaters. The support may be a film of polyester, polycarbonate, polypropylene, aromatic polyamide, etc., a metal layer provided thereon, or a single metal foil such as aluminum foil, but is not limited to these. .

以上のような膜状物の成形方法において、本発明の表面
特性を達するには、粒子の添加量や粒径、あるいは延伸
温度、延伸倍率を調節したり、圧延方式を採用すること
で可能となる。この圧延方式では圧延ロールの表面性を
変えることで目的とする表面性を得ることができる。
In the method for forming a film-like material as described above, achieving the surface properties of the present invention can be achieved by adjusting the amount of particles added, particle size, stretching temperature, stretching ratio, or by adopting a rolling method. Become. In this rolling method, the desired surface properties can be obtained by changing the surface properties of the rolling rolls.

次にコンデンサの製造方法について述べる。Next, the method for manufacturing the capacitor will be described.

支持体を有さない膜状物を単膜で用いる場合には、真空
蒸着、メツキ、スパッタリング、イオンブレーティング
等の方法によって金属薄膜を膜状物上に形成し、コンデ
ンサ素子となる金属化フィルムを得る。この時の金属と
してはアルミニウム、亜鉛、ニッケル、ニッケルクロム
合金等が挙げられるが、これらのうちアルミニウムが蒸
着性、特性の点で好ましい。
When using a single film material without a support, a metal thin film is formed on the film material by a method such as vacuum evaporation, plating, sputtering, or ion blasting to form a metallized film that becomes a capacitor element. get. Examples of the metal at this time include aluminum, zinc, nickel, nickel-chromium alloy, etc. Among these, aluminum is preferable in terms of vapor deposition properties and characteristics.

また支持体上に塗布して得られる膜状物の場合は、例え
ば支持体を上記と同様に金属化してから混合物を塗布す
る方法、あるいは塗布後上記と同様に金属化する方法、
あるいは支持体に金属箔を用いる方法などによってコン
デンサ素子となる金属化フィルムを得る。
In the case of a film-like product obtained by coating on a support, for example, a method of metallizing the support in the same manner as above and then applying the mixture, or a method of applying the mixture and then metallizing it in the same manner as above;
Alternatively, a metallized film that becomes a capacitor element is obtained by using a metal foil as a support.

次に上記のように金属化したフィルムを巻回あるいは積
層して本発明のコンデンサとする。例えば片面を金属化
したフィルムならば2枚重ねて、巻回あるいは積層した
り、両面を金属化したフィルムならば非金属化フィルム
と巻回あるいは積層してコンデンサ素子とし、さらにこ
れに外部電極、外装を施してコンデンサとする。
Next, the metalized film as described above is wound or laminated to form the capacitor of the present invention. For example, if one side of the film is metallized, two layers are stacked and rolled or laminated, or if the film is metallized on both sides, it is wound or laminated with a non-metalized film to form a capacitor element. Apply an exterior and use it as a capacitor.

[発明の効果] 以上のように膜状物の表面特性が本発明の範囲内にあれ
ば、加工時に擦れによって表面に傷がつくようなことが
なく、また同一膜状物における誘電率のばらつきも少な
い。従って例えばコンデンサに用いた場合、容量のばら
つきの少ない、耐電圧不良率の小さなものが得られる。
[Effects of the Invention] As described above, if the surface properties of the film-like material are within the scope of the present invention, the surface will not be scratched due to rubbing during processing, and the variation in dielectric constant of the same film-like material will be reduced. There are also few. Therefore, when used in a capacitor, for example, a capacitor with little variation in capacitance and a low failure rate withstand voltage can be obtained.

また本発明の膜状物はその他バリコン誘電体、トランス
絶縁体、各種モータの絶縁体、コイル絶縁体、フレキシ
ブルプリント基板のベース等にも有用である。
The film-like material of the present invention is also useful as a variable capacitor dielectric, a transformer insulator, an insulator for various motors, a coil insulator, a base for a flexible printed circuit board, and the like.

[特性の評価法] (1)ガラス転移点Tg パーキンエルマー社製DSC−n型に試料1.Omgを
入れ、雰囲気を窒素置換する。次に昇温速度16℃/分
で280℃まで昇温させ、この状態で5分間保持する。
[Method for evaluating properties] (1) Glass transition point Tg Sample 1. Omg was added and the atmosphere was replaced with nitrogen. Next, the temperature was raised to 280° C. at a heating rate of 16° C./min, and this state was maintained for 5 minutes.

次いで、この試料を素早く液体窒素中で急冷する。常温
まで降温させたDSC−■型に急冷した上記サンプルを
入れ、雰囲気を再び窒素置換する。次いで16℃/分で
昇温させ(2nd RtlN)、Tgを測定する。
The sample is then quickly quenched in liquid nitrogen. The rapidly cooled sample is placed in a DSC-① mold which has been cooled down to room temperature, and the atmosphere is replaced with nitrogen again. Next, the temperature is raised at 16° C./min (2nd RtlN), and Tg is measured.

(2)粒子の平均粒径 電子顕微鏡、あるいは光学顕微鏡などで撮った粒子の画
像を画像処理装置[IBAS2000、カールツアイス
(株)製]に送り、粒子部分を2値化して得られた個々
の粒子面積から円相当径を求めてその粒子の平均径とす
る。この測定を場所を変えて500回繰り返し、測定さ
れた粒子について平均径の平均値を平均粒径とした。
(2) Average particle size of particles An image of particles taken with an electron microscope or an optical microscope is sent to an image processing device [IBAS2000, manufactured by Carl Zeiss Co., Ltd.], and the particle parts are binarized to obtain individual The equivalent circle diameter is determined from the particle area and is taken as the average diameter of the particle. This measurement was repeated 500 times at different locations, and the average value of the average diameters of the measured particles was taken as the average particle diameter.

(3)中心線平均粗さRa、中心線深さRp、10点平
均粗さRz 小板研究所製の高精度薄膜段差測定機ET−10を用い
て測定した。条件は下記の通りであり、20回の測定の
平均値をもって値とした。
(3) Centerline average roughness Ra, centerline depth Rp, and 10-point average roughness Rz Measured using a high-precision thin film step measuring machine ET-10 manufactured by Koita Research Institute. The conditions were as follows, and the average value of 20 measurements was taken as the value.

触針先端半径=0.5μm 触針荷重  : 5mg 測定長   :1mm カットオフ値+0.08mm 尚、中心線平均粗さRa、中心線深さRps 10点平
均粗さRzの定義は、例えば奈良治部著「表面粗さの測
定、評価法」 (総合技術センター1983)に示され
ているものであるが、中心線深さRpとは、粗さ曲線か
ら基準長だけ抜き取り、その抜き取り部分の最高の山頂
から中心線までの間隔のことをいう。
Stylus tip radius = 0.5 μm Stylus load: 5 mg Measurement length: 1 mm Cutoff value + 0.08 mm The definitions of center line average roughness Ra, center line depth Rps, and 10 point average roughness Rz are, for example, given by Osamu Nara. The centerline depth Rp is the maximum value of the reference length extracted from the roughness curve. The distance from the peak of the mountain to the center line.

(4)表面突起の平均断面偏平度P 2検出方式の走査型電子顕微鏡[ESM−3200、エ
リオニクス(株)製]と断面測定装置[PMS−1、エ
リオニクス(株)製コにおいてフィルムの高さ測定値を
画像処理装置[I BAS2000、カールツアイス(
株)製]に送り、画像処理装置上にフィルム表面突起像
を再構築する。
(4) Average cross-sectional flatness of surface protrusions P 2 detection method scanning electron microscope [ESM-3200, manufactured by Elionix Co., Ltd.] and cross-sectional measuring device [PMS-1, manufactured by Elionix Co., Ltd.] The height of the film The measured values were processed using an image processing device [I BAS2000, Carl Zeiss (
Co., Ltd.] to reconstruct the image of the film surface protrusions on an image processing device.

次にこのフィルム表面突起像で突起部分を2値化して得
られた個々の突起の面積から円相当径を求めてこれをそ
の突起の平均径とする。またこの2値化された個々の突
起部分の中で最も高い値をその突起の高さとし、これを
個々の突起について求める。この測定を場所を変えて5
00回繰り返し、測定された突起についてその高さと平
均径の比(高さ/平均径)の平均値を平均断面扁平度P
とした。なお走査型電子顕微鏡の倍率は1000〜80
00倍の間の値を選択する。
Next, the protrusion portion is binarized using this film surface protrusion image, and the equivalent circle diameter is determined from the area of each protrusion obtained, and this is taken as the average diameter of the protrusion. Furthermore, the highest value among the binarized individual protrusions is determined as the height of the protrusion, and this value is determined for each protrusion. Change this measurement location 5
00 times, the average value of the ratio of height and average diameter (height/average diameter) of the measured protrusions is calculated as the average cross-sectional flatness P
And so. The magnification of a scanning electron microscope is 1000-80
Select a value between 00 times.

(5)誘電率 ASTM−D−150−68に準する。(5) Dielectric constant Conforms to ASTM-D-150-68.

(6)コンデンサ耐電圧不良率の評価 同一条件でコンデンサを1000個製造し、個々のコン
デンサの耐電圧を測定し、規定の電圧に達しなかったも
のの割合を算出し%で示し耐電圧不良率とする。尚、電
圧は100V/seeの割合で上昇しながら印加し、コ
ンデンサが破壊し10mA以上の電流が流れた時点の電
圧を耐電圧とした。また規定の電圧はフィルム厚さ1μ
mあたり20Vとした。
(6) Evaluation of capacitor withstand voltage failure rate 1000 capacitors were manufactured under the same conditions, the withstand voltage of each capacitor was measured, and the percentage of capacitors that did not reach the specified voltage was calculated and expressed in % as the withstand voltage failure rate. do. Note that the voltage was applied while increasing at a rate of 100 V/see, and the voltage at which the capacitor was destroyed and a current of 10 mA or more flowed was defined as the withstand voltage. Also, the specified voltage is 1 μm thick for the film thickness.
The voltage was set at 20V per m.

(7)コンデンサ容量のばらつきの評価同一条件でコン
デンサを1000個製造し、個々のコンデンサの静電容
量を自動キャパシタンスブリッジを用いて測定し、その
ばらつき(標準偏差)を%で示し容量のばらつきとした
。この値が小さい程、安定性が良い。
(7) Evaluation of variation in capacitance 1000 capacitors were manufactured under the same conditions, the capacitance of each capacitor was measured using an automatic capacitance bridge, and the variation (standard deviation) was expressed in %. did. The smaller this value is, the better the stability is.

(8)コンデンサ特性 耐電圧不良率、容量ばらつきがいづれも10%以下のも
のをコンデンサ特性は良好(○)とした。
(8) Capacitor characteristics Capacitor characteristics were evaluated as good (◯) if the withstand voltage failure rate and capacitance variation were both 10% or less.

[実施例] 以下本発明を実施例をもって説明するが、これに限定さ
れるものではない。またそれらの例を表にまとめたもの
を表1、表2に示す。
[Example] The present invention will be described below with reference to Examples, but is not limited thereto. Tables 1 and 2 summarize the examples.

実施例1 (1)膜状物の製造 2−クロロ−p−フェニレンジアミンと2−クロロテレ
フタル酸クロリドから合成したポリマのNMP (N−
メチルピロリドン)溶液に、前もってNMPに分散して
おいた平均粒径0.5μmのチタン酸バリウムを最終膜
状物ポリマに対して30容量%になるように添加してポ
リマ濃度9wt%、3000ポイズの溶液とした。 こ
の混合溶液をステンレス製エンドレスベルト上に流延し
、150℃の熱風によって自己支持性を持つまで乾燥し
た。自己支持性を得たゲルフィルムを連続的にベルトか
ら剥離し、次にこれを水槽中へ導入して溶媒の抽出を行
い、さらにステンター内で水分の乾燥と熱処理を行って
厚さ465μmのフィルムを得た。このフィルムを膜状
物1とする。得られた膜状物1の特性は表1のようであ
り、高い誘電率を有していた。
Example 1 (1) Production of film-like product NMP (N-
Barium titanate with an average particle size of 0.5 μm, which had been previously dispersed in NMP, was added to the methylpyrrolidone solution to give a polymer concentration of 9 wt % and 3000 poise to the final film polymer. A solution of This mixed solution was cast onto a stainless steel endless belt and dried with hot air at 150°C until it became self-supporting. The gel film that has achieved self-supporting properties is continuously peeled off from the belt, then introduced into a water tank to extract the solvent, and then dried in a stenter and subjected to heat treatment to form a film with a thickness of 465 μm. I got it. This film is referred to as a film-like material 1. The properties of the obtained film-like material 1 are as shown in Table 1, and it had a high dielectric constant.

(2)金属化 膜状物1に表面抵抗が2Ωになるようにアルミニウムを
真空蒸着した。その際長手方向に走るマージン部を有す
るストライプ状に蒸着した(蒸着部の幅9.0mm、マ
ージン部の幅1.Ommの繰り返し)。次に蒸着部の中
央と各マージン部の中央に刃を入れてスリットし、左も
しくは右に0゜5mmのマージンを有する全幅5.0m
mのテープ状にして巻取った。
(2) Aluminum was vacuum-deposited on the metallized film-like material 1 so that the surface resistance was 2Ω. At that time, the film was deposited in a stripe shape having a margin running in the longitudinal direction (width of the deposited part was 9.0 mm, and width of the margin part was 1.0 mm, repeated). Next, insert a blade into the center of the vapor deposition part and the center of each margin part to make a slit, and make a slit with a total width of 5.0 m with a margin of 0°5 mm on the left or right.
It was rolled up into a tape shape with a length of m.

(3)巻回体の製造 得られたリールの左マージン及び右マージンのもの各1
枚づつを重ねあわせて巻回した。その際幅方向に蒸着部
分がマージン部より0.5rnmはみだすように2枚の
フィルムをずらして巻回した。
(3) Manufacture of the wound body 1 each of the left margin and right margin of the obtained reel
The sheets were stacked one on top of the other and rolled up. At this time, the two films were wound with an offset so that the vapor-deposited portion protruded from the margin portion by 0.5 nm in the width direction.

(4)コンデンサの製造 この巻回体から芯剤を抜いて、そのまま180℃、’ 
Ok g / Crn 2の温度、圧力で5分間プレス
した。これに両端面にメタリコンを溶射して外部電極と
し、メタリコンにリード線を接続して巻回コンデンサを
得た。これをコンデンサ1とする。
(4) Manufacture of capacitors Remove the core material from this wound body and heat it at 180°C.
It was pressed for 5 minutes at a temperature and pressure of Ok g/Crn 2. Metallicon was thermally sprayed on both end faces of this to form external electrodes, and lead wires were connected to the metallicon to obtain a wound capacitor. This is called capacitor 1.

コンデンサ1の容量ばらつき、耐電圧不良評価結果を表
2に示すが良好なコンデンサ特性を有していた。
Table 2 shows the evaluation results of capacitance variations and withstand voltage defects of capacitor 1, and it was found that capacitor 1 had good capacitor characteristics.

実施例2 2−クロロ−p−フェニレンジアミンと2−クロロテレ
フタル酸クロリドから合成したポリマのNMP (N−
メチルピロリドン)溶液に、NMPに分散した平均粒径
0.05μmのチタン酸バリウムを最終膜状物ポリマに
対して40容量%になるように添加してポリマ濃度5w
t%の溶液とした。この混合溶液をアルミニウム蒸着さ
れた厚さ5μmのポリエチレンテレフタレートフィルム
(PETフィルム)上に塗布し、150℃で30分乾燥
した。さらに真空乾燥機中で100℃、24時間加熱し
てNMPを除去した。この膜状物を膜状物2とする。こ
の時のPETフィルム上の膜状物2の厚みは0. 3μ
mであり、表1のような特性を有していた。これを巻回
し実施例1の(4)項と同様の方法で巻回コンデンサを
得た。これをコンデンサ2とする。コンデンサ2の容量
ばらつき、耐電圧不良評価結果を表2に示すが良好なコ
ンデンサ特性を有していた。
Example 2 NMP (N-
Barium titanate with an average particle size of 0.05 μm dispersed in NMP was added to the methylpyrrolidone solution at a concentration of 40% by volume based on the final film polymer to give a polymer concentration of 5w.
It was made into a t% solution. This mixed solution was applied onto a 5 μm thick polyethylene terephthalate film (PET film) coated with aluminum and dried at 150° C. for 30 minutes. Furthermore, NMP was removed by heating at 100° C. for 24 hours in a vacuum dryer. This film-like material is referred to as film-like material 2. At this time, the thickness of the film-like material 2 on the PET film is 0. 3μ
m, and had the characteristics shown in Table 1. This was wound in the same manner as in Section (4) of Example 1 to obtain a wound capacitor. This is called capacitor 2. Table 2 shows the evaluation results of capacitance variations and withstand voltage defects of capacitor 2, and it was found that capacitor 2 had good capacitor characteristics.

実施例3 ポリカーボネートのジクロロメタン溶液に、ジクロロメ
タンに分散した平均粒径5.0μmの酸化チタンを最終
膜状物ポリマに対して25容量%になるように添加して
混合溶液を得た。この混合溶液をアルミニウム箔上に塗
布し、150℃で30分硬化を行なった。この膜状物を
膜状物3とする。この時の膜状物の厚みは8.0μmで
あり、表1のような特性を有していた。スリット工程を
経て実施例1と同様の方法で巻回コンデンサを得た。こ
れをコンデンサ3とする。コンデンサ3の容量ばらつき
と耐電圧不良評価結果を表2に示すが、コンデンサ特性
は良好なものであった。
Example 3 Titanium oxide having an average particle size of 5.0 μm dispersed in dichloromethane was added to a dichloromethane solution of polycarbonate in an amount of 25% by volume based on the final film polymer to obtain a mixed solution. This mixed solution was applied onto aluminum foil and cured at 150° C. for 30 minutes. This film-like material is referred to as a film-like material 3. The thickness of the film-like material at this time was 8.0 μm and had the characteristics shown in Table 1. A wound capacitor was obtained in the same manner as in Example 1 through a slitting process. This is called capacitor 3. Table 2 shows the capacitance variation and withstand voltage defect evaluation results of capacitor 3, and the capacitor characteristics were good.

実施例4 ポリフェニレンスルフィドに粒径O11μmのチタン酸
バリウムを最終膜状物ポリマに対して5容量%になるよ
うに二軸押出機で数回混練し、Tダイから25℃に保っ
たドラム上にキャストして冷却固化し、未延伸フィルム
を得た。さらに延伸、熱処理を経て厚さ2.0μmで表
1に示す特性を有するフィルムを得た(膜状物4)。実
施例1と同様の方法で金属化、巻き取り、スリット工程
を経て巻回コンデンサを得た。
Example 4 Barium titanate with a particle size of 11 μm was kneaded into polyphenylene sulfide using a twin-screw extruder several times in an amount of 5% by volume based on the final film polymer, and the mixture was transferred from a T-die onto a drum kept at 25°C. It was cast and solidified by cooling to obtain an unstretched film. Further, through stretching and heat treatment, a film having a thickness of 2.0 μm and having the characteristics shown in Table 1 was obtained (Membrane-like material 4). A wound capacitor was obtained through metallization, winding, and slitting steps in the same manner as in Example 1.

これをコンデンサ4とする。コンデンサ4の容量ばらつ
き、耐電圧不良評価結果を表2に示すがコンデンサ特性
は良好なものであった。
This will be referred to as capacitor 4. Table 2 shows the results of evaluating capacitance variations and withstand voltage defects of capacitor 4, and the capacitor characteristics were good.

比較例1 実施例1の平均粒径0.5μmのチタン酸バリウムを平
均粒径15.0μmのチタン酸バリウムに変えた以外は
同様の方法で膜状物5を得た。この膜状物5の厚みは2
.0μmであり、表1にしめすようにRpが大きくかつ
誘電率がばらついたものであった。さらに実施例1と同
様の方法で巻回コンデンサを得た。これをコンデンサ5
とする。
Comparative Example 1 A film-like material 5 was obtained in the same manner as in Example 1 except that barium titanate having an average particle size of 15.0 μm was used instead of barium titanate having an average particle size of 0.5 μm. The thickness of this film-like material 5 is 2
.. 0 μm, and as shown in Table 1, Rp was large and the dielectric constant varied. Furthermore, a wound capacitor was obtained in the same manner as in Example 1. This capacitor 5
shall be.

このコンデンサ5の容量ばらつき、耐電圧不良評価結果
を表2に示すがコンデンサ特性の非常に悪いものであっ
た。
Table 2 shows the evaluation results of capacitance variations and withstand voltage defects of this capacitor 5, and the capacitor characteristics were very poor.

比較例2 2−クロロ−p−フェニレンジアミンと2−クロロテレ
フタル酸クロリドから合成したポリマのNMP (N−
メチルピロリドン)溶液に、NMPに分散した平均粒径
0.1μmのチタン酸バリウムを最終膜状物ポリマに対
して40容量%になるように添加してポリマ濃度1 w
 t 96の溶液とした。
Comparative Example 2 NMP (N-
Barium titanate with an average particle size of 0.1 μm dispersed in NMP was added to the methylpyrrolidone solution at a concentration of 40% by volume based on the final film polymer to give a polymer concentration of 1 w.
It was made into a solution of t96.

この混合溶液をアルミニウム蒸着された厚さ5μmのポ
リエチレンテレフタレートフィルム(PETフィルム)
上に塗布し、150℃で30分乾燥した。さらに真空乾
燥機中で100℃、24時間加熱してNMPを除去した
。この膜状物を膜状物6とする。この膜状物6の厚みは
0.08μmと厚みが十分でないため導通を起こしたり
、取り扱い性が悪いなどの問題が起き、誘電率の測定も
不可能であった。
This mixed solution was applied to a polyethylene terephthalate film (PET film) with a thickness of 5 μm on which aluminum was deposited.
It was applied on top and dried at 150°C for 30 minutes. Furthermore, NMP was removed by heating at 100° C. for 24 hours in a vacuum dryer. This film-like material is referred to as a film-like material 6. The film-like material 6 had a thickness of 0.08 .mu.m, which was not sufficient, which caused problems such as conduction and poor handling, and it was also impossible to measure the dielectric constant.

比較例3 実施例3の平均粒径5.0μmの酸化チタンを平均粒径
0.05μmの酸化チタンに変えた以外は同様の方法で
膜状物7を得た。この時の膜状物の厚みは10μmで、
中心線深さ、平均断面偏平度の小さい物であった。さら
に巻き取り、スリット工程を経て実施例1と同様の方法
で巻回コンデンサを得た。これをコンデンサ7とする。
Comparative Example 3 A film-like material 7 was obtained in the same manner as in Example 3 except that the titanium oxide having an average particle size of 5.0 μm was replaced with titanium oxide having an average particle size of 0.05 μm. The thickness of the film-like material at this time was 10 μm,
It had a small centerline depth and average cross-sectional flatness. Further, a wound capacitor was obtained in the same manner as in Example 1 through winding and slitting steps. This will be referred to as capacitor 7.

コンデンサ7の容量ばらつき、耐電圧不良評価結果を表
2に示すが、耐電圧不良率が非常に悪い物であった。こ
れは表面が平滑過ぎてコンデンサに加工する際に擦り傷
が多数発生したことが原因と考えられる。
Table 2 shows the evaluation results of capacitance variations and defective withstand voltages of capacitor 7, and the defective rate of withstand voltages was very poor. This is thought to be because the surface was too smooth and many scratches occurred during processing into capacitors.

table

Claims (2)

【特許請求の範囲】[Claims] (1)酸化チタンおよびチタン酸金属塩から選ばれた少
なくとも一種と、ガラス転移点Tgが65℃以上の樹脂
との混合物からなる膜状物であって、該膜状物の厚みが
0.1〜30μmで、かつ表面の中心線深さRpが0.
01〜5.0μm、表面突起の平均断面扁平度Pが0.
005〜0.3であることを特徴とする電気絶縁材料
(1) A film-like material made of a mixture of at least one selected from titanium oxide and metal titanate and a resin having a glass transition point Tg of 65°C or higher, the film-like material having a thickness of 0.1 ~30 μm, and the center line depth Rp of the surface is 0.
01 to 5.0 μm, and the average cross-sectional flatness P of the surface projections is 0.0 μm.
Electrical insulating material characterized by having a ratio of 0.005 to 0.3
(2)請求項(1)に記載の電気絶縁材料を用いてなる
ことを特徴とするコンデンサ
(2) A capacitor characterized by using the electrically insulating material according to claim (1).
JP63331420A 1988-12-27 1988-12-27 Electrical insulation materials and capacitors Expired - Fee Related JP2663597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63331420A JP2663597B2 (en) 1988-12-27 1988-12-27 Electrical insulation materials and capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331420A JP2663597B2 (en) 1988-12-27 1988-12-27 Electrical insulation materials and capacitors

Publications (2)

Publication Number Publication Date
JPH02177310A true JPH02177310A (en) 1990-07-10
JP2663597B2 JP2663597B2 (en) 1997-10-15

Family

ID=18243473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331420A Expired - Fee Related JP2663597B2 (en) 1988-12-27 1988-12-27 Electrical insulation materials and capacitors

Country Status (1)

Country Link
JP (1) JP2663597B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294447A (en) * 1999-04-09 2000-10-20 Unitika Ltd High-permittivity film for film capacitor and manufacture thereof
JP2007109693A (en) * 2005-10-11 2007-04-26 Toray Ind Inc Capacitor
KR100782223B1 (en) * 2006-02-06 2007-12-05 엘에스전선 주식회사 Insulated electric wire with partial discharge resistance and composition for manufacturing the same
WO2008013048A1 (en) * 2006-07-27 2008-01-31 Daikin Industries, Ltd. Coating composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869252A (en) * 1981-10-21 1983-04-25 Kureha Chem Ind Co Ltd Dielectric film and production thereof
JPS6159714A (en) * 1984-08-30 1986-03-27 松下電器産業株式会社 Composite dielectric capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5869252A (en) * 1981-10-21 1983-04-25 Kureha Chem Ind Co Ltd Dielectric film and production thereof
JPS6159714A (en) * 1984-08-30 1986-03-27 松下電器産業株式会社 Composite dielectric capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294447A (en) * 1999-04-09 2000-10-20 Unitika Ltd High-permittivity film for film capacitor and manufacture thereof
JP2007109693A (en) * 2005-10-11 2007-04-26 Toray Ind Inc Capacitor
KR100782223B1 (en) * 2006-02-06 2007-12-05 엘에스전선 주식회사 Insulated electric wire with partial discharge resistance and composition for manufacturing the same
WO2008013048A1 (en) * 2006-07-27 2008-01-31 Daikin Industries, Ltd. Coating composition
JP2008034189A (en) * 2006-07-27 2008-02-14 Daikin Ind Ltd Coating composition
US8779047B2 (en) 2006-07-27 2014-07-15 Daikin Industries, Ltd. Coating composition

Also Published As

Publication number Publication date
JP2663597B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JPH0571127B2 (en)
JP2932550B2 (en) Biaxially stretched plastic film for capacitor and capacitor using the same
JP2005229104A (en) Biaxial orientation polyester film for capacitor, metallized polyester film, and film capacitor
KR20020081274A (en) Polyester film for capacitors
JPH02177310A (en) Electric insulating material and capacitor
JPH0766896B2 (en) Film capacitor
JP4427766B2 (en) Polyester film for capacitor and film capacitor
JP3018543B2 (en) Polyphenylene sulfide laminated film and capacitor using the same
JPS6288207A (en) Polyester film for dielectric of capacitor
JP2002141246A (en) Polyester film for capacitor and film capacitor
JP3269709B2 (en) Metallized polypropylene film for flat type capacitors
JP3829424B2 (en) Polyester film for capacitors and film capacitors
JP2913779B2 (en) Biaxially stretched film for capacitors
JP3198666B2 (en) Biaxially stretched film
JP3080268B2 (en) Capacitors using polyphenylene sulfide laminated film
JP3243958B2 (en) Film for magnetic recording media
JP4411835B2 (en) Process for producing polyphenylene sulfide film roll and condenser
JPH0456119A (en) Metallized polyester film capacitor
JP2861012B2 (en) Polyphenylene sulfide film and capacitor using the same
JP2003017360A (en) Polyester film for capacitor
KR960016428B1 (en) Polyester film
JPH0259612B2 (en)
KR100256549B1 (en) Biaxially oriented polyester film for capacitor
JPH0839741A (en) Laminated film and capacitor using it
KR100242877B1 (en) Biaxially oriented polyester film for capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees