JPH02176709A - Polarizing film and its manufacture - Google Patents

Polarizing film and its manufacture

Info

Publication number
JPH02176709A
JPH02176709A JP33256488A JP33256488A JPH02176709A JP H02176709 A JPH02176709 A JP H02176709A JP 33256488 A JP33256488 A JP 33256488A JP 33256488 A JP33256488 A JP 33256488A JP H02176709 A JPH02176709 A JP H02176709A
Authority
JP
Japan
Prior art keywords
film
polarizing
conjugated polymer
plastic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33256488A
Other languages
Japanese (ja)
Inventor
Hiromichi Takahashi
広通 高橋
Shinya Goto
伸也 後藤
Hiroyuki Mitobe
裕之 水戸部
Kaoru Tsujii
辻井 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP33256488A priority Critical patent/JPH02176709A/en
Publication of JPH02176709A publication Critical patent/JPH02176709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PURPOSE:To improve moisture resistance and optical characteristics by forming the polarizing film of a conjugate high polymer layer and a nonpolarizing plastic layer. CONSTITUTION:The conjugate high polymer part of a polarizing filter consisting of the nonpolarizing plastic film layer and nonpolarizing plastic layer is a change migration complex, so it has conductivity. Therefore, when the conjugate high polymer layer is present on at least one surface of the nonpolarizing plastic, the surface of an obtained polarizing filter is conductive. Further, the film is superior in thermal, chemical, and mechanical stability because of conjugate structure. Consequently, the optical characteristics and moisture resistance are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液晶表示素子等に用いられる耐湿性、耐候性に
優れた新規な偏光フィルムおよびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a novel polarizing film with excellent moisture resistance and weather resistance for use in liquid crystal display devices, etc., and a method for producing the same.

従来の技術 液晶表示素子は競合する他の電子表示素子の市場を抑え
て、時計や電卓の分野を独占し、最近では各種の計測機
器やボームエレクトロニクス機器をはじめ、パソコンや
ワードプロセッサなどのOA種機器オートバイや自動車
にまで使用されている。それに伴い、偏光フィルムの需
要が飛躍的に増大している。
Conventional technology Liquid crystal display elements have suppressed the market for competing electronic display elements and have dominated the fields of watches and calculators, and have recently been used in various measuring instruments, Baum electronics equipment, and office automation equipment such as personal computers and word processors. It is even used in motorcycles and cars. Along with this, the demand for polarizing films has increased dramatically.

従来の偏光フィルムは次のような方法によって製造され
る3種類のものに大別される。
Conventional polarizing films are roughly divided into three types manufactured by the following methods.

(1)ポリビニルアルコールフィルムにヨウ素を吸着さ
せた後、フィルムをl軸延伸することによって、あるい
は、ポリビニルアルコールフィルムを1軸延伸した後、
ヨウ素を吸着させることによって偏光機能を付与した偏
光フィルム(H膜)。
(1) After adsorbing iodine to a polyvinyl alcohol film, the film is l-axis stretched, or after the polyvinyl alcohol film is uniaxially stretched,
A polarizing film (H film) that has a polarizing function by adsorbing iodine.

(2)透明プラスチックフィルムに二色性染料を吸着さ
せた後、フィルムをl軸延伸することによって、あるい
は、透明プラスチックフィルムを1軸延伸した後、二色
性染料を吸着させることによって偏光機能を付与した偏
光フィルム(L膜)。
(2) The polarizing function can be achieved by adsorbing a dichroic dye on a transparent plastic film and then stretching the film along the l-axis, or by stretching the transparent plastic film uniaxially and then adsorbing the dichroic dye. Applied polarizing film (L film).

(3)透明プラスチックフィルムに1軸延伸する前ある
いは1軸延伸した後に、そのフィルム内部に方向性を有
する二重結合を生じさせて偏光機能を付与した偏光フィ
ルム(K膜)。
(3) A polarizing film (K film) in which a polarizing function is imparted to a transparent plastic film by creating directional double bonds within the film before or after uniaxially stretching the film.

上記の3種類の偏光フィルムのうち、I(膜は光学特性
は優れているものの耐湿性に劣り、L膜は広範囲の色調
を自由に選択できるが光学特性および耐湿性に劣る。ま
た、K膜は耐湿性に優れてはいるが光学特性の満足でき
るものが開発されていない。
Of the three types of polarizing films mentioned above, the I (film) has excellent optical properties but is inferior in moisture resistance, the L film allows a wide range of color tones to be freely selected but is inferior in optical properties and moisture resistance. Although it has excellent moisture resistance, no one with satisfactory optical properties has been developed.

一方、ドーピングされたポリアセチレンが金属導電性を
示すことか見い出されて以来、ポリアセチレンを用いた
導電性に係わる研究と同時に新規な共役系高分子の開発
が活発に行われている。
On the other hand, ever since it was discovered that doped polyacetylene exhibits metallic conductivity, research on conductivity using polyacetylene has been actively conducted, as well as the development of new conjugated polymers.

この共役系高分子を偏光フィルムに応用しようとする試
みが特開昭61−239107号および同62−239
108号に開示されている。これらの技術は共役系高分
子のもつ導電性に着目し、液晶表示素子の偏光フィルム
と電極とを一体化するために偏光フィルムに共役高分子
層を設けたものであり、共役系高分子そのものの偏光能
を利用した偏光フィルムではない。また、この方法によ
って製造される偏光フィルムは偏光フィルムの少なくと
も一方の面に複素5員環式化合物の重合体層を有する構
成をとるため、導電性はあるものの単体透過率が悪くな
り、したがって、光学性能のうち表示の視認性(明るさ
、見やすさ)に劣るという欠点を有している。
Attempts to apply this conjugated polymer to polarizing films were made in JP-A-61-239107 and JP-A-62-239.
No. 108. These technologies focus on the conductivity of conjugated polymers, and provide a conjugated polymer layer on a polarizing film to integrate the polarizing film and electrode of a liquid crystal display element. It is not a polarizing film that utilizes the polarizing ability of In addition, since the polarizing film produced by this method has a polymer layer of a five-membered heterocyclic compound on at least one surface of the polarizing film, although it has electrical conductivity, the single transmittance is poor. Among its optical properties, it has the disadvantage of poor display visibility (brightness, ease of viewing).

を構成する材質のために、耐湿性に劣るとか、光学特性
に劣る等の課題を存している。
Due to the material that constitutes it, there are problems such as poor moisture resistance and poor optical properties.

本発明はこのような課題を解決すべくなされたものであ
る。
The present invention has been made to solve these problems.

課題を解決するための手段 本発明者等は上記の課題を解決するために鋭意検討を行
った結果、共役系高分子が優れた偏光能を有しているこ
とを見い出し、非偏光性プラスチック層と共役系高分子
層からなる複合フィルムを延伸するか、酸化剤を含有す
る非偏光性プラスチックフィルムをl軸延伸した後、共
役系高分子のモノマーとフィルムを接触させて共役系高
分子を重合することにより偏光フィルムを製造し得るこ
とを見い出し、本発明を完成した。
Means for Solving the Problems The present inventors conducted intensive studies to solve the above problems, and found that conjugated polymers have excellent polarizing ability, and developed a non-polarizing plastic layer. After stretching a composite film consisting of a conjugated polymer layer or a non-polarizing plastic film containing an oxidizing agent along the l-axis, the film is brought into contact with a conjugated polymer monomer to polymerize the conjugated polymer. They discovered that a polarizing film could be produced by doing this, and completed the present invention.

本発明の共役系高分子層と非偏光性プラスチック層から
なる偏光フィルムの共役系高分子部分は電荷移動錯体で
あるので導電性を有している。したがって、共役系高分
子層が非偏光性プラスチックの少なくとも一方の面に存
在する時には、得られる偏光フィルムの表面は導電性と
なる。また、共役構造ゆえに熱的、化学的および機械的
安定性に優れた膜であるという特徴をも兼ね備えている
The conjugated polymer portion of the polarizing film comprising the conjugated polymer layer and the non-polarizing plastic layer of the present invention is a charge transfer complex and therefore has electrical conductivity. Therefore, when the conjugated polymer layer is present on at least one surface of the non-polarizing plastic, the surface of the resulting polarizing film becomes conductive. Additionally, due to its conjugated structure, the film has excellent thermal, chemical, and mechanical stability.

本発明の偏光フィルムの構成要素の1つである共役系高
分子としては、主鎖が共役した分子構造を有する一般の
共役系高分子がすべて含まれる。
The conjugated polymer, which is one of the constituent elements of the polarizing film of the present invention, includes all general conjugated polymers having a molecular structure in which the main chain is conjugated.

そのようなものの例としてはポリピロール、ポリチオフ
ェン、ポリフラン、ポリセレノフェン、ポリアニリン、
ポリピリダジン、ポリアゾフェニレン、ポリバラフェニ
レン、ポリナフタレン、ポリアントラセン、ポリアセチ
レン、ポリアセン、ポリバラフェニレンビニレンおよび
これらの置換体であるポリ(3,4〜アルキルピロール
)、ポリ(34−アリールピロール)、ポリ(N−アル
キルピロール)、ポリ(3−アルキルチオフェン)等を
挙げることができる。なかでも、ポリピロール、ポリチ
オフェン、ポリフラン、ポリセレノフェン等複素5員環
式化合物重合体の3位または3.4位に置換基を有する
共役系高分子、例えば、ポリ(3゜4−アルキルピロー
ル)、ポリ(34−アリールピロール)、ポリ(3−ア
ルキルチオフェン)等が好ましい。
Examples of such are polypyrrole, polythiophene, polyfuran, polyselenophene, polyaniline,
Polypyridazine, polyazophenylene, polyparaphenylene, polynaphthalene, polyanthracene, polyacetylene, polyacene, polyparaphenylene vinylene, and their substituted products poly(3,4-alkylpyrrole), poly(34-arylpyrrole), Examples include poly(N-alkylpyrrole) and poly(3-alkylthiophene). Among them, conjugated polymers having a substituent at the 3-position or 3.4-position of a 5-membered heterocyclic compound polymer such as polypyrrole, polythiophene, polyfuran, polyselenophene, etc., such as poly(3゜4-alkylpyrrole) , poly(34-arylpyrrole), poly(3-alkylthiophene), and the like are preferred.

また、本発明のもう一つの構成要素である非偏光性プラ
スチックとしては、ポリエステル系、ポリカーボネート
系、ポリエーテルスルホン系、ポリイミド系、ポリアミ
ド系、ノ\ロゲン化ビニル重合体系、ハロゲン化ビニリ
デン重合体系、エチレン−酢酸ビニル共重合体系、セル
ロース系、ポリビニルブチラール系あるいは液晶ポリマ
ー系のものを挙げることができ、特に延伸した時の透明
度の高いものが好ましい。また、耐湿性や耐候性を特に
要求されない場合にはポリビニルアルコール系のものが
好ましい。
In addition, the non-polarizing plastic which is another component of the present invention includes polyester-based, polycarbonate-based, polyethersulfone-based, polyimide-based, polyamide-based, halogenated vinyl polymer system, halogenated vinylidene polymer system, Examples include those based on ethylene-vinyl acetate copolymer, cellulose, polyvinyl butyral, and liquid crystal polymer, and those with high transparency when stretched are particularly preferred. Furthermore, if moisture resistance or weather resistance is not particularly required, polyvinyl alcohol-based materials are preferred.

本発明の偏光フィルムは次のような方法により製造する
とかできる。(1)酸化剤を含有する非偏光性プラスチ
ックフィルムをl軸延伸した後、そのフィルムを共役系
高分子のモノマーと接触させて共役系高分子を重合する
。(2)酸化剤を含有する非偏光性プラスチックフィル
ムに共役系高分子のモノマーを接触させて共役系高分子
を重合した後、そのフィルムをl軸延伸する。(3)共
役系高分子が溶媒に溶ける場合には、電解酸化重合ある
いは化学酸化重合で得られた共役系高分子を適当な溶媒
に溶解し、その溶液を非偏光性プラスチックフィルム上
にキャストし、そのフィルムをl軸延伸する。(4)共
役系高分子が溶媒に溶ける場合には、共役系高分子を非
偏光性プラスチックフィルム用接着剤に溶解させ、その
接着剤を用いて2枚の非偏光性プラスチックフィルムを
接着し、そのフィルムを1軸延伸する。上記の製造法の
うち(1)、(2)および(3)の方法で製造される偏
光フィルムは表面層に共役系高分子層を有しているため
、導電性の偏光フィルムとなるが、その上に共役系高分
子層を保護する目的で、別の透明フィルムを重ね合わせ
ても良い。(1)および(2)の製法で使用し得る酸化
剤の例としては塩化第2鉄、重クロム酸カリウム、過マ
ンガン酸カリウム、過硫酸カリウム、塩化第二鉄、塩化
ルテニウム、塩化白金等が挙げられる。酸化剤を非偏光
性プラスチック中に配合する方法は公知である。酸化剤
の配合量は0.1〜10重量%程度が好適である。共役
系高分子を溶解し得る溶媒の例としてはトルエン等が挙
げられる。
The polarizing film of the present invention can be manufactured by the following method. (1) After a non-polarizing plastic film containing an oxidizing agent is stretched along the l-axis, the film is brought into contact with a conjugated polymer monomer to polymerize the conjugated polymer. (2) A non-polarizing plastic film containing an oxidizing agent is brought into contact with a conjugated polymer monomer to polymerize the conjugated polymer, and then the film is stretched along the l-axis. (3) If the conjugated polymer is soluble in a solvent, dissolve the conjugated polymer obtained by electrolytic oxidative polymerization or chemical oxidative polymerization in an appropriate solvent, and cast the solution on a non-polarizing plastic film. , the film is oriented in the l-axis. (4) When the conjugated polymer is soluble in a solvent, the conjugated polymer is dissolved in an adhesive for non-polarizing plastic films, and the adhesive is used to adhere two non-polarizing plastic films; The film is uniaxially stretched. Of the above manufacturing methods, the polarizing films manufactured by methods (1), (2), and (3) have a conjugated polymer layer on the surface layer, so they are conductive polarizing films. Another transparent film may be superposed thereon for the purpose of protecting the conjugated polymer layer. Examples of oxidizing agents that can be used in the production methods (1) and (2) include ferric chloride, potassium dichromate, potassium permanganate, potassium persulfate, ferric chloride, ruthenium chloride, and platinum chloride. Can be mentioned. Methods of incorporating oxidizing agents into non-polarizing plastics are known. The amount of the oxidizing agent blended is preferably about 0.1 to 10% by weight. Examples of solvents that can dissolve conjugated polymers include toluene and the like.

また、偏光フィルムの製造法(4)に使用し得るグラス
チックフィルム用接着剤としては、フェノール系、エポ
キシ系、ビニル系、アクリル酸系、イソシアン酸エステ
ル系のものあるいはホットメルト型のものを使用するこ
とができるが、熱安定性あるいは耐衝撃性が必要な場合
はフェノール系やエポキシ系といった熱硬化性接着剤を
使用するのが好ましい。また、使用する非偏光性プラス
チックによって溶剤セメント、ドープセメント、モノマ
ーセメントも使用できる。
In addition, as adhesives for glass films that can be used in polarizing film manufacturing method (4), phenol-based, epoxy-based, vinyl-based, acrylic acid-based, isocyanate-based adhesives or hot-melt adhesives are used. However, if thermal stability or impact resistance is required, it is preferable to use a thermosetting adhesive such as a phenolic or epoxy adhesive. Additionally, depending on the non-polarizing plastic used, solvent cement, dope cement, and monomer cement can also be used.

上記のように共役系高分子は、電解酸化重合法あるいは
化学酸化重合法によって得ることができる。電解酸化重
合法では、共役系高分子のモノマーと支持電解質とを適
当な極性溶媒に溶解又は分散させ電解液とし、その電解
液に浸漬した2枚の電極板間に電圧を印加して共役系高
分子を作製する。この時に使用する電極の材質や形は特
に制限されず、金属、半導体をはじめとして、通常の導
電性物質が用いられる。印加電圧は通常0.230v1
好ましくは0.2−10Vである。電解反応の支持電解
質としては、通常の電解反応に使用される従来公知の電
解質を用いることができる。
As mentioned above, the conjugated polymer can be obtained by electrolytic oxidation polymerization method or chemical oxidation polymerization method. In the electrolytic oxidation polymerization method, a conjugated polymer monomer and a supporting electrolyte are dissolved or dispersed in a suitable polar solvent to form an electrolytic solution, and a voltage is applied between two electrode plates immersed in the electrolytic solution. Create a polymer. The material and shape of the electrode used at this time are not particularly limited, and ordinary conductive substances such as metals and semiconductors can be used. Applied voltage is usually 0.230v1
Preferably it is 0.2-10V. As the supporting electrolyte for the electrolytic reaction, conventionally known electrolytes used for normal electrolytic reactions can be used.

一方、化学酸化重合法では、共役系高分子のモノマーと
酸化剤とを適当な極性溶媒に溶解又は分散させ、複素5
員環式化合物を酸化重合する。この際に用いられる酸化
剤としては、含酸素系酸化剤やルイス酸として知られて
いる遷移金属化合物であり、例えば、重クロム酸カリウ
ム、過マンガン酸カリウム、過硫酸カリウム、塩化第二
鉄、塩化ルテニウム、塩化白金酸等を挙げることができ
る。
On the other hand, in the chemical oxidative polymerization method, a conjugated polymer monomer and an oxidizing agent are dissolved or dispersed in a suitable polar solvent, and the complex
Oxidative polymerization of membered cyclic compounds. The oxidizing agent used in this case is an oxygen-containing oxidizing agent or a transition metal compound known as a Lewis acid, such as potassium dichromate, potassium permanganate, potassium persulfate, ferric chloride, Examples include ruthenium chloride and chloroplatinic acid.

発明の効果 本発明の偏光フィルムは共役高分子層の偏光性を利用し
ている点で従来のものと大きく異なる。
Effects of the Invention The polarizing film of the present invention is significantly different from conventional films in that it utilizes the polarizing properties of a conjugated polymer layer.

また、共役高分子層が存在するので熱的、化学的および
機械的安定性に優れている。また、共役高分子層が表面
に出ている場合は偏光フィルムの表面が導電性となり、
使用用途が広がる。
In addition, due to the presence of the conjugated polymer layer, it has excellent thermal, chemical, and mechanical stability. In addition, when the conjugated polymer layer is exposed on the surface, the surface of the polarizing film becomes conductive,
Expands the range of uses.

[実施例] 以下に実施例を挙げて本発明を具体的に説明するが、本
発明はこれら実施例にのみ限定されるものではない。
[Examples] The present invention will be specifically described below with reference to Examples, but the present invention is not limited only to these Examples.

実施例1 化学酸化重合法で作製したポリ−3−ヘキシルチオフェ
ン0.19をトルエン100dに溶解した。
Example 1 0.19 g of poly-3-hexylthiophene prepared by a chemical oxidative polymerization method was dissolved in 100 d of toluene.

このトルエン溶液をポリ塩化ビニルフィルム上にポリ−
3−へキシルチオフェンの厚さが約0.5μlとなるよ
うに流延し、フィルムを乾燥した。
This toluene solution was applied to a polyvinyl chloride film.
3-hexylthiophene was cast to a thickness of about 0.5 μl, and the film was dried.

得られたフィルムを10%塩化第二鉄アセトニトリル溶
液に10分間浸漬し、フィルムをイオン交換水で洗浄、
乾燥し、ポリ−3−へキシルチオフェンをドープ状態に
した。
The obtained film was immersed in a 10% ferric chloride acetonitrile solution for 10 minutes, and the film was washed with ion-exchanged water.
It was dried and doped with poly-3-hexylthiophene.

このフィルムを90℃で一方向に4倍延伸し、黒縁色に
着色したフィルムを得た。このフィルムの吸収スペクト
ルを第1図に示す。第1図の曲線lは本実施例で得られ
たフィルム単体の吸収スベクトノ区曲線2はフィルムの
延伸方向が平行になるようにフィルムを2枚重ねたとき
の吸収スペクトル、曲線3はフィルムの延伸方向が互い
に垂直になるようにフィルムを2枚重ねたときの吸収ス
ペクトルである。図から明らかなように本実施例で得ら
れたフィルムは40 (1−1000nmの可視光およ
び近赤外領域において高い偏光能を示す。
This film was stretched 4 times in one direction at 90°C to obtain a film colored with black edges. The absorption spectrum of this film is shown in FIG. Curve 1 in Figure 1 is the absorption spectrum of the single film obtained in this example.Curve 2 is the absorption spectrum when two films are stacked so that the stretching directions of the films are parallel to each other.Curve 3 is the absorption spectrum of the film obtained in this example. This is an absorption spectrum obtained when two films are stacked so that the directions are perpendicular to each other. As is clear from the figure, the film obtained in this example exhibits high polarization ability in the visible light and near-infrared regions of 40 (1 to 1000 nm).

また、このフィルムの電導塵を4端子法で測定したとこ
ろ、0.]S/amであった。
Also, when the conductive dust on this film was measured using a four-probe method, it was found to be 0. ]S/am.

なお、光学特性は大塚電子株式会社製MCPD110A
型瞬間マルチ測光システムを用いて測定した。
The optical characteristics are MCPD110A manufactured by Otsuka Electronics Co., Ltd.
Measurements were made using a type instantaneous multi-photometering system.

比較例 ポリビニルアルコールを基材とするヨウ素を含んだ偏光
フィルム(日東電気工業(株)製NPFF1225DU
)の表面に実施例1で用いたポリ3−へキシルチオフェ
ンのトルエン溶液を流延し、フィルムを乾燥した。この
際に、ポリ−3へキシルチオフェンの厚さが約Olμ肩
となるように調製した。得られたフィルムを10%塩化
第二鉄アセトニトリル溶液に10分間浸漬し、フィルム
をイオン交換水で洗浄、乾燥し、ポリ−3へキシルチオ
フェンをトープ状態にした。この偏光フィルムの表面の
電導塵は2S/cmであった。
Comparative Example Polarizing film containing iodine and using polyvinyl alcohol as a base material (NPFF1225DU manufactured by Nitto Electric Industry Co., Ltd.)
) The toluene solution of poly-3-hexylthiophene used in Example 1 was cast on the surface of the film, and the film was dried. At this time, the thickness of the poly-3-hexylthiophene was adjusted to be approximately Olμ. The obtained film was immersed in a 10% ferric chloride acetonitrile solution for 10 minutes, and the film was washed with ion-exchanged water and dried to bring poly-3-hexylthiophene into a taupe state. The conductive dust on the surface of this polarizing film was 2 S/cm.

このフィルムの吸収スペクトルを第2図に示す。The absorption spectrum of this film is shown in FIG.

第2図の曲線1は本比較例で得られたフィルム単体の吸
収スペクトル、曲線2は実施例1で得られたフィルムの
吸収スペクトル、曲線3はNPF−F’1225DUフ
ィルムの吸収スペクトルである。
Curve 1 in FIG. 2 is the absorption spectrum of the film obtained in this comparative example, curve 2 is the absorption spectrum of the film obtained in Example 1, and curve 3 is the absorption spectrum of the NPF-F'1225DU film.

図から明らかなように、本比較例で得られたフィルムは
単体透過率が悪く、表示の視認性(明るさ、見やすさ)
に劣るものである。
As is clear from the figure, the film obtained in this comparative example had poor single transmittance and poor display visibility (brightness, ease of viewing).
It is inferior to

実施例2 電解酸化重合法で作製したポリ−3−ヘキシルチオフェ
ン0.1gをトルエン100村に溶解した。
Example 2 0.1 g of poly-3-hexylthiophene produced by electrolytic oxidation polymerization method was dissolved in 100 ml of toluene.

このトルエン溶液を塩化第二鉄を1%含むポリビニルア
ルコールフィルム上にポリ−3−へキシルチオフェンの
厚さが約0.5μ肩となるように流延し、エタノール、
イオン交換水で洗浄し、余分の塩化第二鉄を除いた。
This toluene solution was cast onto a polyvinyl alcohol film containing 1% ferric chloride so that the thickness of poly-3-hexylthiophene was approximately 0.5 μm, and ethanol and
It was washed with ion-exchanged water to remove excess ferric chloride.

フィルムを乾燥した後、フィルムを70℃で一方向に5
倍延伸し、黒縁色に着色したフィルムを得た。このフィ
ルムの光学特性は第1図とほぼ同じであった。
After drying the film, heat the film at 70°C in one direction for 5
A film with a black edge color was obtained by stretching the film twice. The optical properties of this film were almost the same as those shown in FIG.

実施例3 塩化第二鉄を1%含むポリ塩化ビニルフィルムを10%
の3−ヘキシルチオフェンアセトニトリル溶液中に浸漬
し、ポリ−3−へキシルチオフェンを含むポリ塩化ビニ
ルフィルムを得た。この際に、浸漬時間を調整してポリ
−3−へキシルチオフェンの厚さが約0.5μm程度と
なるようにした。
Example 3 10% polyvinyl chloride film containing 1% ferric chloride
3-hexylthiophene acetonitrile solution to obtain a polyvinyl chloride film containing poly-3-hexylthiophene. At this time, the dipping time was adjusted so that the thickness of the poly-3-hexylthiophene was approximately 0.5 μm.

また、余分の塩化第二鉄をアセトニトリル、イオン交換
水で洗浄することによって除いた。
Further, excess ferric chloride was removed by washing with acetonitrile and ion-exchanged water.

このフィルムを90℃で一方向に4倍延伸し、黒縁色に
着色したフィルムを得た。このフィルムの光学特性は第
1図と同じであった。
This film was stretched 4 times in one direction at 90°C to obtain a film colored with black edges. The optical properties of this film were the same as in FIG.

実施例4 塩化第二鉄を1%含むポリ塩化ビニルフィルムを90℃
で一方向に4倍延伸し、その後、10%の3−ヘキシル
チオフェンアセトニトリル溶液中に浸漬し、ポリ−3−
ヘキシルチオフェンを含む黒縁色に着色したフィルムを
得た。この際に、浸漬時間を調整してポリ−3−ヘキン
ルチオフエンの厚さが約05μ尻程度となるようにした
。また、余分の塩化第二鉄をアセトニトリル、イオン交
換水で洗浄することによって除いた。
Example 4 A polyvinyl chloride film containing 1% ferric chloride was heated to 90°C.
The poly-3-
A film colored with a black edge color containing hexylthiophene was obtained. At this time, the immersion time was adjusted so that the thickness of the poly-3-hekylene thiophene was approximately 0.5 μm. Further, excess ferric chloride was removed by washing with acetonitrile and ion-exchanged water.

このフィルムの光学特性は第1図とほぼ同じであった。The optical properties of this film were almost the same as those shown in FIG.

実施例5 化学酸化重合法で作製したポリ−3−へキシルチオフェ
ン0.1gをトルエン100x(!に溶解した。
Example 5 0.1 g of poly-3-hexylthiophene produced by a chemical oxidative polymerization method was dissolved in 100× toluene (!).

このトルエン溶液をポリエチレンテレフタレートフィル
ム上にポリ−3−へキシルチオフェンの厚さが約0.5
μmとなるように流延し、フィルムを乾燥した。得られ
たフィルムを10%塩化第二鉄アセトニトリル溶液に1
0分間浸漬し、フィルムをイオン交換水で洗浄、乾燥し
、ポリ−3−ヘキ 7ンルチオフエンをドープ状態にし
た。
This toluene solution was applied onto a polyethylene terephthalate film so that the thickness of poly-3-hexylthiophene was approximately 0.5 mm.
The film was cast to a thickness of μm and dried. The obtained film was dissolved in 10% ferric chloride acetonitrile solution for 1 hour.
After immersion for 0 minutes, the film was washed with ion-exchanged water, dried, and doped with poly-3-hexene-ruthiophene.

このフィルムを180℃で一方向に3倍延伸し、黒縁色
に着色したフィルムを得た。
This film was stretched 3 times in one direction at 180°C to obtain a film colored with black edges.

フィルムの光学特性は第1図と同じであった。The optical properties of the film were the same as in FIG.

この偏光フィルムを150°Cの恒温機中に12時間放
置し、その後、フィルムの光学特性を調べたところ、第
1図と同じ特性が得られた。また、この偏光フィルムを
水中に12時間放置し、その後、フィルムの光学特性を
調べたところ、やはり第1図と同じ特性が得られた。し
たがって、本発明による偏光フィルムは耐湿性に優れた
ものであり、非偏光性プラスチックの熱変形温度以下の
耐熱性を有するものである。
This polarizing film was left in a thermostat at 150° C. for 12 hours, and then the optical properties of the film were examined, and the same properties as shown in FIG. 1 were obtained. Furthermore, when this polarizing film was left in water for 12 hours and the optical properties of the film were examined, the same properties as shown in FIG. 1 were also obtained. Therefore, the polarizing film according to the present invention has excellent moisture resistance and has heat resistance below the heat distortion temperature of non-polarizing plastic.

実施例6 電解酸化重合法で作製したポリ−3−へキシルチオフェ
ン0.1gをトルエン100xCに溶解した。
Example 6 0.1 g of poly-3-hexylthiophene produced by electrolytic oxidation polymerization method was dissolved in toluene at 100×C.

このトルエン溶液をlO%ポリ塩化ビニルフィルムテト
ラヒドロフラン溶液中に加え、混合した。
This toluene solution was added to the 10% polyvinyl chloride film tetrahydrofuran solution and mixed.

この混合溶液をポリ−3−ヘキシルチオフェンの厚さが
約0.5μ屑となるようにポリ塩化ビニルフィルム上に
流延し、その上から別のポリ塩化ビニルフィルムを重ね
て、2枚のフィルムを接着乾燥した。
This mixed solution was cast onto a polyvinyl chloride film so that the thickness of poly-3-hexylthiophene was approximately 0.5μ, and another polyvinyl chloride film was placed on top of it to form two films. Glue and dry.

このフィルムを90℃で一方向に3倍延伸し、黒褐色に
着色したフィルムを得た。このフィルムの吸収スペクト
ルを第3図に示す。第3図の曲線1は本実施例で得られ
たフィルム単体の吸収スペクトル、曲線2はフィルムの
延伸方向が平行になるようにフィルムを2枚重ねたとき
の吸収スペクトル、曲線3はフィルムの延伸方向が互い
に垂直にフィルムを2枚重ねたときの吸収スペクトルで
ある。図から明らかなように本実施例で得られたフィル
ムは400〜11000nの可視光および近赤外領域に
おいて高い偏光能を示す。
This film was stretched 3 times in one direction at 90°C to obtain a dark brown film. The absorption spectrum of this film is shown in FIG. Curve 1 in Figure 3 is the absorption spectrum of the single film obtained in this example, Curve 2 is the absorption spectrum of two films stacked so that the stretching directions of the films are parallel, and Curve 3 is the absorption spectrum of the film obtained by stretching the film. This is an absorption spectrum obtained when two films are stacked with the directions perpendicular to each other. As is clear from the figure, the film obtained in this example exhibits high polarization ability in the visible light range of 400 to 11,000 nm and in the near-infrared region.

実施例7 塩化第二鉄を1%含むポリ塩化ビニルフィルムを10%
のビロールアセトニトリル溶液中に浸漬し、ポリピロー
ルを含むポリ塩化ビニルフィルムを得た。この際に、浸
漬時間を調整してポリピロールの厚さが約0.5μ肩程
度となるようにした。
Example 7 10% polyvinyl chloride film containing 1% ferric chloride
A polyvinyl chloride film containing polypyrrole was obtained. At this time, the dipping time was adjusted so that the thickness of the polypyrrole was approximately 0.5 μm.

また、余分の塩化第二鉄をアセトニトリル、イオン交換
水で洗浄することによって除いた。
Further, excess ferric chloride was removed by washing with acetonitrile and ion-exchanged water.

このフィルムを90℃で一方向に4倍延伸し、黒縁色に
着色したフィルムを得た。このフィルムの光学特性は第
1図とほぼ同じであった。
This film was stretched 4 times in one direction at 90°C to obtain a film colored with black edges. The optical properties of this film were almost the same as those shown in FIG.

実施例8 塩化第二鉄を1%含むポリ塩化ビニルフィルムを90℃
で一方向に4倍延伸し、その後、10%のビロールアセ
トニトリル溶液中に浸漬し、ポリピロールを含む黒縁色
に着色したフィルムを得た。
Example 8 A polyvinyl chloride film containing 1% ferric chloride was heated to 90°C.
The film was stretched 4 times in one direction, and then immersed in a 10% pyrolacetonitrile solution to obtain a film containing polypyrrole and colored with a black edge color.

この際に、浸漬時間を調整してポリピロールの厚さが約
0.5μ尻程度となるようにした。また、余分の塩化第
二鉄をアセトニトリル、イオン交換水で洗浄することに
よって除いた。
At this time, the dipping time was adjusted so that the thickness of the polypyrrole was about 0.5 μm. Further, excess ferric chloride was removed by washing with acetonitrile and ion-exchanged water.

このフィルムの光学特性は第1図とほぼ同じであった。The optical properties of this film were almost the same as those shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第り図は本発明の共役系高分子と非偏光性プラスチック
からなる偏光フィルムの1例の光学特性を示す図である
。ただし、共役系高分子は酸化された状態である。なお
、測定波長範囲を300nmとし、400nm〜700
nmと700nm〜11000nを別個に測定して、両
者を後ではりあわせた。 第2図は日東電気工業(株)架側光フィルムNPF−F
’l 225DU、そのフィルムの表面に共役系高分子
層を有する偏光フィルムの1例および本発明の共役系高
分子と非偏光性プラスチックからなる偏光フィルムの1
例の単体の吸収スペクトルである。 第3図は本発明の共役系高分子と非偏光性プラスチック
からなる偏光フィルムの1例の光学特性を示す図である
。ただし、共役系高分子は中性の状態である。なお、測
定波長範囲を300nmとし、400nm〜700ロm
と700nm〜IO00nmを別個に測定して両者を後
ではりあわせた。
Figure 3 is a diagram showing the optical properties of an example of a polarizing film made of a conjugated polymer and a non-polarizing plastic according to the present invention. However, the conjugated polymer is in an oxidized state. Note that the measurement wavelength range is 300 nm, and the wavelength range is 400 nm to 700 nm.
nm and 700 nm to 11000 nm were measured separately, and the two were later glued together. Figure 2 is Nitto Electric Industry Co., Ltd.'s frame side optical film NPF-F.
'l 225DU, an example of a polarizing film having a conjugated polymer layer on the surface of the film, and an example of a polarizing film made of a conjugated polymer and a non-polarizing plastic of the present invention
This is an example absorption spectrum of a simple substance. FIG. 3 is a diagram showing the optical properties of an example of a polarizing film made of a conjugated polymer and a non-polarizing plastic according to the present invention. However, the conjugated polymer is in a neutral state. In addition, the measurement wavelength range is 300 nm, and the wavelength range is 400 nm to 700 nm.
and 700 nm to IO00 nm were measured separately, and both were later bonded together.

Claims (1)

【特許請求の範囲】 1、共役系高分子層と非偏光性プラスチック層とからな
る偏光フィルム。 2、共役系高分子層が3位または3、4位に置換基を有
する複素5員環式化合物重合体である請求項1記載の偏
光フィルム。 3、共役系高分子層と非偏光性プラスチック層とからな
る複合フィルムを1軸延伸することを特徴とする偏光フ
ィルムの製造法。 4、酸化剤を含有する非偏光性プラスチックフィルムを
1軸延伸した後、そのフィルムを共役系高分子のモノマ
ーと接触させて共役系高分子を重合するか、あるいは、
酸化剤を含有する非偏光性プラスチックフィルムに共役
系高分子のモノマーを接触させて共役系高分子を重合し
た後、そのフィルムを1軸延伸することを特徴とする偏
光フィルムの製造法。 5、共役系高分子を非偏光性プラスチックフィルム用接
着剤に溶解させ、その接着剤を用いて2枚の非偏光性プ
ラスチックフィルムを接着し、そのフィルムを1軸延伸
することを特徴とする偏光フィルムの製造法。
[Claims] 1. A polarizing film comprising a conjugated polymer layer and a non-polarizing plastic layer. 2. The polarizing film according to claim 1, wherein the conjugated polymer layer is a 5-membered heterocyclic compound polymer having substituents at the 3-position or at the 3- and 4-positions. 3. A method for producing a polarizing film, which comprises uniaxially stretching a composite film comprising a conjugated polymer layer and a non-polarizing plastic layer. 4. After uniaxially stretching a non-polarizing plastic film containing an oxidizing agent, the film is brought into contact with a conjugated polymer monomer to polymerize the conjugated polymer, or
A method for producing a polarizing film, which comprises bringing a conjugated polymer monomer into contact with a non-polarizing plastic film containing an oxidizing agent to polymerize the conjugated polymer, and then uniaxially stretching the film. 5. Polarized light characterized by dissolving a conjugated polymer in a non-polarizing plastic film adhesive, bonding two non-polarizing plastic films using the adhesive, and uniaxially stretching the film. Film manufacturing method.
JP33256488A 1988-12-28 1988-12-28 Polarizing film and its manufacture Pending JPH02176709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33256488A JPH02176709A (en) 1988-12-28 1988-12-28 Polarizing film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33256488A JPH02176709A (en) 1988-12-28 1988-12-28 Polarizing film and its manufacture

Publications (1)

Publication Number Publication Date
JPH02176709A true JPH02176709A (en) 1990-07-09

Family

ID=18256334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33256488A Pending JPH02176709A (en) 1988-12-28 1988-12-28 Polarizing film and its manufacture

Country Status (1)

Country Link
JP (1) JPH02176709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201436A (en) * 2005-01-20 2006-08-03 Nitto Denko Corp Polarizing plate, manufacturing method of the polarizing plate, optical film and image display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187504A (en) * 1988-01-22 1989-07-26 Mitsui Toatsu Chem Inc Polarizable element and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187504A (en) * 1988-01-22 1989-07-26 Mitsui Toatsu Chem Inc Polarizable element and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201436A (en) * 2005-01-20 2006-08-03 Nitto Denko Corp Polarizing plate, manufacturing method of the polarizing plate, optical film and image display device

Similar Documents

Publication Publication Date Title
Moon et al. Multicolored, low-power, flexible electrochromic devices based on ion gels
De Keersmaecker et al. All polymer solution processed electrochromic devices: a future without indium tin oxide?
Lu et al. Fabricating conducting polymer electrochromic devices using ionic liquids
Zheng et al. Toward easy-to-assemble, large-area smart windows: all-in-one cross-linked electrochromic material and device
Sonmez et al. Polymeric electrochromics for data storage
Liu et al. Electrochromic properties of organic-inorganic composite materials
Zhang et al. Ultrastable viologen ionic liquids-based ionogels for visible strain sensor integrated with electrochromism, electrofluorochromism, and strain sensing
Brooke et al. Electrochromic displays manufactured by a combination of vapor phase polymerization and screen printing
Ghosh et al. Ambipolar all-organic solid-state electrochromic device using electrodeposited polyaniline: improving performance by design
Medrano-Solís et al. Study of dual electrochromic devices based on polyaniline and poly (3-hexylthiophene) thin films
JP2003512647A (en) Liquid crystal alignment layer
JPH02176709A (en) Polarizing film and its manufacture
JPH0520723B2 (en)
Verge et al. Electroactive polymers with semi-IPN architectures for electrochromic devices
Onoda et al. Properties and applications for electronics of poly (isothianaphthene)
JPH0535843B2 (en)
Guillerez et al. In situ spectroscopic evidence for the existence of electronic gates in metal-modified polythiophenes
JPH03152183A (en) Electrochromic element
JPH0535842B2 (en)
JPS62295031A (en) Electrochromic display device
Fu et al. Electrochromic Microgel-Based Etalon Devices
JPS6337119A (en) Novel electrolytic polymer and electrochromic display element obtained by using said polymer
JPH02102289A (en) Electrochromic element
CN117683268A (en) Triphenylamine-based polyionic liquid crosslinked porous electrochromic film and preparation method thereof
JPH03241322A (en) Electrochromic material and display element