JPH02176487A - Underwater ultrasonic marker - Google Patents

Underwater ultrasonic marker

Info

Publication number
JPH02176487A
JPH02176487A JP32929288A JP32929288A JPH02176487A JP H02176487 A JPH02176487 A JP H02176487A JP 32929288 A JP32929288 A JP 32929288A JP 32929288 A JP32929288 A JP 32929288A JP H02176487 A JPH02176487 A JP H02176487A
Authority
JP
Japan
Prior art keywords
bimorph
ceramic vibrator
resonance
resonant
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32929288A
Other languages
Japanese (ja)
Inventor
Etsuji Hamada
浜田 悦之
Michio Hara
原 通夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koden Electronics Co Ltd
Original Assignee
Koden Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koden Electronics Co Ltd filed Critical Koden Electronics Co Ltd
Priority to JP32929288A priority Critical patent/JPH02176487A/en
Publication of JPH02176487A publication Critical patent/JPH02176487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable realization of a light-weight underwater ultrasonic marker and to enable investigation of the ecology of smaller fishes than usual by using a bimorph resonance-tupe ceramic vibrator. CONSTITUTION:A bimorph resonance-type ceramic vibrator 1 of a resonance frequency 50kHz, which is fixed to a container by a rubber elastic body 4, is connected to an electric circuit 8 by a lead wire 6 and a matching transformer 7. The electric circuit 8 makes the bimorph resonance-type ceramic vibrator 1 vibrate by a battery 9. An ultrasonic signal generated by the vibration of the bimorph resonance-type ceramic vibrator 1 is emitted outside through the rubber elastic body 4, and the ultrasonic signal is emitted in the direction of an arrow as a whole, since it is reflected by the container 5 accommodating the electric circuit 8, the matching transformer 7, etc.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は水中における目標位置や移動体、例えば魚類等
に取付けて、その所在と位置を知るために使用する水中
超音波標識に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to an underwater ultrasonic beacon that is attached to a target position underwater or to a moving object, such as a fish, and is used to know the location and location of the object.

(発明の技術的背景) 従来から水中の目標物を探知するには、通常、目標物に
超音波を利用した発振器を取付け、これに対応した受信
装置で目標物の発信器からの信号を受信することにより
、目標物の存在を確認している。 魚類の生態調査を行
う場合も、魚体に小型の超音波発信器即ち、水中超音波
標識を取付けその超音波信号の追跡受信を行う、 従フ
て、魚体に取付ける水中超音波標識はできるだけ小さい
物であることが望ましい。
(Technical Background of the Invention) Conventionally, in order to detect an underwater target, an oscillator that uses ultrasonic waves is usually attached to the target, and a corresponding receiving device receives the signal from the target's transmitter. By doing this, the existence of the target object is confirmed. When conducting ecological surveys of fish, a small ultrasonic transmitter, that is, an underwater ultrasonic beacon, is attached to the fish body to track and receive the ultrasonic signals. Therefore, the underwater ultrasonic beacon attached to the fish body should be as small as possible. It is desirable that

この水中超音波標識の大きさは、電池、電気回路および
超音波振動子の寸法によって決まる。
The size of this underwater ultrasound beacon is determined by the dimensions of the battery, electrical circuitry, and ultrasound transducer.

また、電池の大きさは超音波信号の出力の大きさおよび
使用時間によって決り、電気回路は使用する素子によっ
てほぼ決定される。 超音波振動子の寸法は、同様の型
式の場合その共振周波数で決まり、高い周波数はど小さ
くできる。 使用周波数を高くして超音波素子の小型化
を計ることはできるが、周波数を高くすると超音波信号
の水中における伝搬損失が増し、到達距離が減るので望
ましくない、 本発明は従来からの性能を損なうことな
く、小型化を可能にするバイモルフ共振型セラミック振
動子を使用した水中超音波標識を提供するものである。
Furthermore, the size of the battery is determined by the magnitude of the output of the ultrasonic signal and the usage time, and the electric circuit is approximately determined by the elements used. The dimensions of an ultrasonic transducer are determined by its resonant frequency for similar types, and can be made smaller at higher frequencies. Although it is possible to miniaturize the ultrasonic element by increasing the frequency used, increasing the frequency increases the propagation loss of the ultrasonic signal in water and reduces the reach distance, which is not desirable. An object of the present invention is to provide an underwater ultrasonic beacon using a bimorph resonant ceramic transducer that enables miniaturization without damage.

(発明の概要) 第1図(a)は従来から使用されている円柱型振動子で
、中心軸に沿った厚み撮動モードを利用する。 これは
共振周波数を50kHzとしたとき、約26 m mの
厚さを必要とする。  第1図(b)はリング型振動子
でこれは径振動モードを利用する。 共振周波数50k
Hzでは直径的16mmを必要とする。 第1図(C)
はバイモルフ共振型セラミック振動子を示したもので、
これは屈曲撮動モードを利用する。 この振動子は小型
の割には低い周波数で共振し、共振周波数が50kHz
の場合、厚さ1.4mmで直径を7.3mmとすること
ができる。
(Summary of the Invention) FIG. 1(a) shows a conventionally used cylindrical vibrator, which utilizes a thickness imaging mode along the central axis. This requires a thickness of about 26 mm when the resonant frequency is 50 kHz. FIG. 1(b) shows a ring-type vibrator that utilizes a radial vibration mode. Resonance frequency 50k
Hz requires a diameter of 16 mm. Figure 1 (C)
shows a bimorph resonant ceramic resonator.
This uses the bending imaging mode. This vibrator resonates at a low frequency considering its small size, and the resonant frequency is 50kHz.
In this case, the thickness can be 1.4 mm and the diameter can be 7.3 mm.

第2図はバイモルフ共振型セラミック振動子の固定方法
を示したもので、第2図(a)はバイモルフ共振型セラ
ミック振動子1を固定する場合、その振動に影響を与え
ないように振動子の振動節2の部分を利用して固定台3
に固定している。
Fig. 2 shows a method of fixing a bimorph resonant ceramic resonator. Fig. 2 (a) shows how to fix a bimorph resonant ceramic resonator 1 so as not to affect its vibration. Fixing base 3 using the vibration node 2 part
It is fixed at

この方法は構造が複雑で生産コストが高い欠点がある。This method has the disadvantage of a complicated structure and high production cost.

 本発明は第2図(b) Iこ示すように、共振型セラ
ミ・ツク振動子lの振動にできるだけ影響を与えないよ
うな、例えばゴム状弾性体4でバイモルフ共振型セラミ
ック振動子l全体を覆い、容器5に固定する方法を取っ
ている。 バイモルフ共振型セラミック振動子l全体を
覆うに当たっては、超音波信号を放出しようとする方向
の部分をできるだけ薄くし、容器側の部分の厚さは振動
子の共振周波数の波長のほぼ4分の1になるようにする
。 この方法によれば、特に固定用の構造物を使わない
で容易に振動子を容器に固定させることができ、生産コ
ストを下げる事ができる。
As shown in FIG. 2(b), the present invention is to mount the entire bimorph resonant ceramic resonator l using a rubber-like elastic body 4, for example, so as to have as little influence on the vibrations of the resonant ceramic resonator l as shown in FIG. 2(b). The method is to cover it and fix it to the container 5. In order to cover the entire bimorph resonant ceramic transducer, the part in the direction in which the ultrasonic signal is to be emitted is made as thin as possible, and the thickness of the part on the container side is approximately one quarter of the wavelength of the resonant frequency of the transducer. so that it becomes According to this method, the vibrator can be easily fixed to the container without using any particular fixing structure, and production costs can be reduced.

(発明の実施例) 第3図は本発明による共振周波数50kHzのバイモル
フ共振型セラミック振動子を使用した、実施例の構造図
を示したものである。
(Embodiment of the Invention) FIG. 3 shows a structural diagram of an embodiment using a bimorph resonant ceramic resonator having a resonance frequency of 50 kHz according to the present invention.

ゴム状弾性体4(実際には東芝シリコンTSE38 B
−W、硬さJIS  A  19を使用)によって容器
に固定された共振周波数50kHzのバイモルフ共振型
セラミック振動子lは、リード線6および整合トランス
7によって電気回路8に接続される。 電気回路8は電
池9によってδ0kHzを発振し、バイモルフ共振型セ
ラミック振動子lを駆動する。 バイモルフ共振型セラ
ミック振動子1の撮動によって発生した超音波信号は、
ゴム状弾性体4を介して外部に放射されるが、電気回路
8、整合トランス7等を収納する容器5によって反射さ
れるため、超音波信号は全体として主に第3図に示す矢
印方向へ放射される。 実施例におけるゴム状弾性体4
の厚さはバイモルフ共振型セラミック振動子lの矢印方
向即ち、第3図のtlが0.5mm、容器側即ちt2が
3mmである。 また、これに使用したバイモルフ共振
型セラミック振動子の厚さは1.4mmである。
Rubber-like elastic body 4 (actually Toshiba silicon TSE38 B
A bimorph resonant ceramic vibrator l with a resonant frequency of 50 kHz is fixed to the container by a wire (using hardness JIS A 19) and is connected to an electric circuit 8 by a lead wire 6 and a matching transformer 7. The electric circuit 8 oscillates at δ0kHz using the battery 9, and drives the bimorph resonant ceramic resonator l. The ultrasonic signal generated by imaging the bimorph resonant ceramic transducer 1 is
Although it is radiated to the outside via the rubber-like elastic body 4, it is reflected by the container 5 that houses the electric circuit 8, matching transformer 7, etc., so the ultrasonic signal as a whole is mainly directed in the direction of the arrow shown in FIG. radiated. Rubber-like elastic body 4 in the example
The thickness is 0.5 mm in the direction of the arrow of the bimorph resonant ceramic vibrator l, ie, tl in FIG. 3, and 3 mm on the container side, ie, t2. Further, the thickness of the bimorph resonant ceramic vibrator used in this was 1.4 mm.

(発明の効果) 従来の水中超音波標識で、小型のものは殆どリング型振
動子を使用しており、共振周波数50kHzの場合容器
全体の大きさは、直径が約20mm長さが約110mr
n、その水中重量は約7gであった。 本発明によれば
、直径が8 m m、長さが30mm、水中!量が1.
8gとなり、体積にして約20分の1、水中重量で約4
分の1にすることができる。 超音波信号の出力レベル
を犠牲にせず、到達距離も殆ど同等の性能を得る事がで
きるばかりか、連続使用時間も同等以上の試験結果を得
ている。
(Effect of the invention) Most of the conventional small underwater ultrasonic markers use a ring-shaped vibrator, and when the resonant frequency is 50kHz, the overall size of the container is approximately 20mm in diameter and approximately 110mr in length.
n, its weight in water was about 7 g. According to the invention, the diameter is 8 mm, the length is 30 mm, and it is underwater! The amount is 1.
8g, about 1/20th of the volume, about 4% of the weight in water
It can be reduced to 1/2. Test results have shown that not only can the performance be almost the same in terms of reach without sacrificing the output level of the ultrasonic signal, but the continuous usage time is also the same or longer.

以上のように、本発明によれば今迄にない小型軽量な水
中超音波標識が実現可能で、従来に比較してより小さな
魚類の生態調査も可能にすることができる。
As described above, according to the present invention, it is possible to realize an underwater ultrasonic marker that is unprecedentedly small and lightweight, and it is also possible to conduct ecological surveys of smaller fish than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波振動子の構造を説明したもので(&)は
円柱型、(b)はリング型、(c)はバイモルフ型を夫
々示す、 第2図はバイモルフ共振型セラミック振動子
の固定方法を説明し、(a)は撮動の節を利用する方法
、(b)はゴム状弾性体で振動子全体を覆って固定する
方法を夫々示す。 第3図は本発明の実施例を示す。 l・ ・バイモルフ共振型セラミック振動子2・ ・振
動子の振動節 3・ ・固定台 4・ ・ゴム状弾性体 5・・・容器 6・  ・リード線 7・・・整合トランス 8・ ・電気回路 9・ ・電池
Figure 1 illustrates the structure of an ultrasonic transducer; (&) shows a cylindrical type, (b) a ring type, and (c) a bimorph type. Figure 2 shows a bimorph resonant ceramic vibrator. The fixing method will be explained, and (a) shows a method using a shooting node, and (b) shows a method of fixing the vibrator by covering the entire vibrator with a rubber-like elastic body. FIG. 3 shows an embodiment of the invention.・Bimorph resonant ceramic resonator 2 ・Vibration node 3 ・Fixed base 4 ・Rubber-like elastic body 5 ・Container 6 ・Lead wire 7 ・Matching transformer 8 ・Electrical circuit 9. ・Battery

Claims (1)

【特許請求の範囲】 イ.バイモルフ共振型セラミック振動子を使用した水中
超音波標識。 ロ.バイモルフ共振型セラミック振動子全体をゴム状弾
性体等によって覆い、このゴム状弾性体等を容器に装着
して、バイモルフ共振型セラミック振動子を容器に固定
した水中超音波標識。 ハ.バイモルフ共振型セラミック振動子全体を覆つたゴ
ム状弾性体の厚さは、超音波信号を送出しようとする方
向の部分は薄くなるようにし、電池を含む電気回路を収
納した容器に固定する方向の部分は、上記バイモルフ共
振型セラミック振動子の共振周波数の波長の4分の1程
度になるようにして固定した水中超音波標識。
[Claims] A. Underwater ultrasound beacon using bimorph resonant ceramic transducer. B. An underwater ultrasonic beacon in which the entire bimorph resonant ceramic vibrator is covered with a rubber-like elastic body, the rubber-like elastic body is attached to a container, and the bimorph resonant ceramic vibrator is fixed to the container. C. The thickness of the rubber-like elastic body that covers the entire bimorph resonant ceramic vibrator should be thinner in the direction in which the ultrasonic signal is to be transmitted, and thicker in the direction in which it is fixed to the container containing the electric circuit including the battery. The part is an underwater ultrasonic beacon fixed at a wavelength of about one-fourth of the resonant frequency of the bimorph resonant ceramic vibrator.
JP32929288A 1988-12-28 1988-12-28 Underwater ultrasonic marker Pending JPH02176487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32929288A JPH02176487A (en) 1988-12-28 1988-12-28 Underwater ultrasonic marker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32929288A JPH02176487A (en) 1988-12-28 1988-12-28 Underwater ultrasonic marker

Publications (1)

Publication Number Publication Date
JPH02176487A true JPH02176487A (en) 1990-07-09

Family

ID=18219829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32929288A Pending JPH02176487A (en) 1988-12-28 1988-12-28 Underwater ultrasonic marker

Country Status (1)

Country Link
JP (1) JPH02176487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170989A (en) * 2005-12-22 2007-07-05 Fisheries Research Agency Small-sized stereo ultrasonic receiving device, and position measuring method of underwater object using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947184A (en) * 1972-06-24 1974-05-07
JPS5250788U (en) * 1975-10-08 1977-04-11
JPS61251399A (en) * 1985-04-30 1986-11-08 Oki Electric Ind Co Ltd Manufacture of ultrasonic wave transmitter-receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947184A (en) * 1972-06-24 1974-05-07
JPS5250788U (en) * 1975-10-08 1977-04-11
JPS61251399A (en) * 1985-04-30 1986-11-08 Oki Electric Ind Co Ltd Manufacture of ultrasonic wave transmitter-receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170989A (en) * 2005-12-22 2007-07-05 Fisheries Research Agency Small-sized stereo ultrasonic receiving device, and position measuring method of underwater object using the same

Similar Documents

Publication Publication Date Title
US2014411A (en) Apparatus for electromagnetostrictive transmission and reception
GB2035009A (en) Transducer horns
WO2012060046A1 (en) Electronic equipment
JPH08195998A (en) Portable ultrasonic underwater sensor
JPH02176487A (en) Underwater ultrasonic marker
US3538494A (en) Acoustic conversion apparatus
US2963681A (en) Dual magnetostrictive microphone
SU777851A1 (en) Hydroacoustic transducer
JP3528491B2 (en) Ultrasonic transducer
JP3538817B2 (en) Underwater transmitter / receiver capable of emitting multiple frequencies
US6259245B1 (en) Electric-current sensing device
JPS58193475A (en) Ultrasonic reflection type detector
JP2947115B2 (en) Broadband low frequency underwater transmitter and driving method thereof
SU618869A1 (en) Acoustic oscillation irradiator/receiver
KR0152458B1 (en) Ultrasonic finger
JPS62147317A (en) Remote measuring apparatus
SU1413728A1 (en) Electroacoustic transducer
SU1577874A1 (en) Electroacoustic transducer of flexural vibrations
JPS6133318B2 (en)
RU2032276C1 (en) Electroacoustic capacitance transducer
SU1470354A1 (en) Ultrasonic piezoelectric transducer of flexing oscillations
SU613523A1 (en) Throat microphone
JPS59105799A (en) Bimorph type sound wave transceiver
SU1534332A1 (en) Method of determining acoustical impedance of acoustical-electric transducer
RU1827723C (en) Underwater radiator