JPH0217634A - Method of doping impurity to semiconductor - Google Patents

Method of doping impurity to semiconductor

Info

Publication number
JPH0217634A
JPH0217634A JP16820888A JP16820888A JPH0217634A JP H0217634 A JPH0217634 A JP H0217634A JP 16820888 A JP16820888 A JP 16820888A JP 16820888 A JP16820888 A JP 16820888A JP H0217634 A JPH0217634 A JP H0217634A
Authority
JP
Japan
Prior art keywords
layer
film
substrate
impurity
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16820888A
Other languages
Japanese (ja)
Inventor
Akiyoshi Tamura
彰良 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16820888A priority Critical patent/JPH0217634A/en
Publication of JPH0217634A publication Critical patent/JPH0217634A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To make it possible to obtain an impurity added layer which is extremely thin of 500Angstrom or less with excellent control by having an LB film deposition process, an organic substance removal process, and an impurity diffusion process. CONSTITUTION:In the first process, a desired number of LB films containing Cd atom 40 which serves as a dopant are deposited on the surface of a GaAs substrate 7 by a Langmuir-Blodgett's technique. After passing through the second process in which the three molecular layers on the substrate 7 thus obtained are processed in O2 plasma, hydrogen carbonate chains of hydrophobic group are removed. Thus, an atomic layer 8 composed of Cd atom 40 can be formed on the substrate 7. In the third process, after forming a protective layer 9 made of SiO2, an insulation film such as SiO2 or SiN, etc., or a high-melting point metal layer such as WSi on the atomic layer 8, it is annealed in high temperatures and a p-type layer 10 of Cd diffusion is formed. Since the p-type layer 10 thus obtained is formed from impurity atoms of several atom layers, an extremely thin film of 500Angstrom or thinner can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体への不純物添加方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of adding impurities to a semiconductor.

従来の技術 半導体への不純物添加方法として、従来、イオン注入法
、拡散法などがある。特にイオン注入法は、拡散法に比
して、制御性良く不純物を添加でき、薄い不純物添加層
を得ることが可能で現在広く用いられている。
BACKGROUND OF THE INVENTION Conventional methods for adding impurities to semiconductors include ion implantation, diffusion, and the like. In particular, the ion implantation method is currently widely used because, compared to the diffusion method, it is possible to add impurities with better controllability and to obtain a thin impurity doped layer.

発明が解決しようとする課題 こうした従来のイオン注入法でも、注入エネルギーが1
0KV前後と限られているため、たとえば500Å以下
という超極薄の添加層を得ることは、難しかった。
Problems to be solved by the invention Even with these conventional ion implantation methods, the implantation energy is 1
Since it is limited to around 0 KV, it has been difficult to obtain an ultra-thin additive layer of, for example, 500 Å or less.

課題を解決するだめの手段 本発明は上記の課題に鑑みなされたもので、不純物原子
を含んだラングミュア・プロジェット膜(以下LB膜と
呼ぶ)を半導体表面に制御性よく所望の厚さの分子層数
を付着させた後、酸素(02)プラズマを用いて、カー
ボン(C)や水1(H)等の有機物を除去した後、不純
物原子を半導体表面に制御性よく付着させた後、高温で
アニールするものである。
Means for Solving the Problems The present invention has been made in view of the above problems, and it is possible to apply a Langmuir-Prodgett film (hereinafter referred to as LB film) containing impurity atoms onto a semiconductor surface to a desired thickness of molecules with good controllability. After several layers have been deposited, organic substances such as carbon (C) and water 1 (H) are removed using oxygen (02) plasma, and impurity atoms are deposited on the semiconductor surface with good control. It is annealed.

作用 本発明によれば、制御性よく不純物原子を所望の原子数
だけ半導体表面に付着することができ、再現性良く、5
00Å以下の極薄の不純物添加層を得ることが可能であ
る。
According to the present invention, it is possible to attach a desired number of impurity atoms to the semiconductor surface with good controllability, and with good reproducibility.
It is possible to obtain an extremely thin impurity doped layer of 00 Å or less.

実施例 以下、半導体基板としてGaAs を用い、P型層を形
成する例について説明する。
EXAMPLE An example in which a P-type layer is formed using GaAs as a semiconductor substrate will be described below.

第1図に示すように、角型水槽IK、2.5X1o’M
/eのCdCe2を加えた蒸留水を満たす。
As shown in Figure 1, square aquarium IK, 2.5X1o'M
Fill with distilled water with /e of CdCe2 added.

この角型水槽1の内側には、ポリプロピレン製の枠2が
水平につられ、2次元のシリンダとして水面を仕切−で
いる。枠の内側には浮子3があり、2次元のピストンと
して滑らかに左右に動かせるようになっており、この浮
子はおもり4によって右方に引っ張られるが浮子上KI
&り付けられた磁石5は、他の磁石6を近づけ反発力を
及ぼして左方へ押し戻したり停止させたりできるように
なっている。
A frame 2 made of polypropylene is hung horizontally inside the rectangular water tank 1 to partition the water surface as a two-dimensional cylinder. There is a float 3 inside the frame, which can be moved smoothly from side to side as a two-dimensional piston, and this float is pulled to the right by a weight 4, but the float KI
The magnet 5 that is attached to the magnet 5 can bring another magnet 6 close to it and exert a repulsive force to push it back to the left or stop it.

浮子が左いっばいになったところで、直鎖脂肪酸CH,
−(OH2)n、C0OH(以下Onと略す)を6)<
1o’M/gの溶度でクロロホルムに溶かした展開溶液
を数滴(〜0.05me )滴下すると、クロロホルム
が速やかに蒸発し、水面は−様な単分子膜で覆われるの
で、浮子を押し戻している磁石を徐々に右方へ遠ざける
と、浮子は膜を圧縮しながら右へ移動しやがて停止し、
表面圧がかかる。
When the float is all the way to the left, straight chain fatty acids CH,
-(OH2)n, C0OH (hereinafter abbreviated as On) is 6)<
When a few drops (~0.05 me) of a developing solution dissolved in chloroform with a solubility of 1 o'M/g are dropped, the chloroform evaporates quickly and the water surface is covered with a --like monomolecular film, which pushes the float back. When the magnet is gradually moved away to the right, the float moves to the right while compressing the membrane and eventually stops.
Surface pressure is applied.

表面圧としては30X10−’N/mが適している。A suitable surface pressure is 30 x 10-'N/m.

LB単分子膜の展開に先立ってGaAs基板7を下降さ
せ水相に浸し、単分子膜を展開、圧縮した後基板を徐々
に引き上げると、第2図aに示すように、基板表面に第
1層だけ分子膜が形成される。
Prior to the development of the LB monomolecular film, the GaAs substrate 7 is lowered and immersed in the aqueous phase, and after the monomolecular film is developed and compressed, the substrate is gradually pulled up. As shown in FIG. Only the layers form a molecular film.

この分子膜の親水基部分KCd原子が含まれている。引
き続き浸漬、引き上げを繰り返して任意の単分子層を累
積する。(第2図す、c)こうして得られたGaAs基
板T上の3分子層を02 プラズマ中で処理すると疎水
基の炭化水素鎖を除去することができ、第3図ILVc
示すようにCd原子40からなる原子層8をGaAS基
板上に形成することが可能となる。
The hydrophilic group portion of this molecular membrane contains KCd atoms. Subsequently, dipping and pulling are repeated to accumulate an arbitrary monolayer. (Fig. 2, c) When the triple molecular layer thus obtained on the GaAs substrate T is treated in 02 plasma, the hydrocarbon chains of the hydrophobic groups can be removed, and Fig. 3 ILVc
As shown, it becomes possible to form an atomic layer 8 consisting of Cd atoms 40 on the GaAS substrate.

次に同図bK示すように、Cd原子層8上に5in2又
はSiN等の絶縁膜又はWSi等の高融点金属膜よりな
る保護膜9を形成した後、高温でアニール(たとえば、
赤外線ランプ等で、900’C。
Next, as shown in FIG.
900'C with an infrared lamp etc.

10秒程度)を行ない、同図Cに示すようKCa拡散の
P型層1oを形成するものである。こうして形成された
P型層10は、数原子層の不純物原子から形成されるた
め、SOO八以への極薄層を形成することが可能である
。P型層10の厚さは、形成する不純物原子層の数、お
よび、アニール条件を選ぶことにより、所望の厚さに調
節することができる。
10 seconds) to form a KCa-diffused P-type layer 1o as shown in FIG. Since the P-type layer 10 thus formed is formed from several atomic layers of impurity atoms, it is possible to form an extremely thin layer of SOO. The thickness of the P-type layer 10 can be adjusted to a desired thickness by selecting the number of impurity atomic layers to be formed and the annealing conditions.

発明の効果 以上のべたように、ドーパントとなる不純物原子を含ん
だLB膜を所望の分子層だけ半導体表面に付着させた後
、02 プラズマ処理により、有機物(CとH)を除去
して、不純物原子層だけを半導体表面に付着した後、保
護膜を用いて高温でアニールすることにより、制御性良
く600Å以下の極薄の不純物添加層を得ることが可能
である。
Effects of the Invention As described above, after attaching a desired molecular layer of the LB film containing impurity atoms serving as dopants to the semiconductor surface, 02 plasma treatment is performed to remove organic substances (C and H) and remove the impurities. By depositing only an atomic layer on the semiconductor surface and then annealing it at high temperature using a protective film, it is possible to obtain an extremely thin doped layer of 600 Å or less with good controllability.

以上の説明ではGaAs[Cdを添加した場合について
述べたが、他の半導体基板、不純物原子についても同様
であることはいうまでもない。
In the above description, the case where GaAs[Cd is added is described, but it goes without saying that the same applies to other semiconductor substrates and impurity atoms.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はラングミュア・プロジェット法のLB膜作製装
置の概略図、第2図はLB膜の累積状況を示す要部断面
図、第3図はGaAs基板への本発明の一実施例のC(
1不純物添加方法を示す工程断面図である。 7・・・・・・GaAs基板、8・・・・・・Cd 3
原子層、9・・・・・・保護膜、10・・・・・・P型
層。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名第 図 58子 第 図 (a−)
Fig. 1 is a schematic diagram of an LB film manufacturing apparatus using the Langmuir-Prodgett method, Fig. 2 is a cross-sectional view of essential parts showing the accumulation state of the LB film, and Fig. 3 is a C coating of an embodiment of the present invention on a GaAs substrate. (
FIG. 1 is a process cross-sectional view showing a method of adding impurities. 7...GaAs substrate, 8...Cd 3
Atomic layer, 9...protective film, 10...P type layer. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 58 (a-)

Claims (1)

【特許請求の範囲】[Claims] 半導体表面に、ラングミュア・プロジェット法により、
ドーパントとなる不純物原子を含んだラングミュア・プ
ロジェット膜を所望の層数付着する工程と、このラング
ミュア・プロジェット膜に酸素プラズマ処理を施し、有
機物を除去する工程と、保護膜を付着させた後、熱処理
を施して前記不純物原子を半導体中に拡散する工程を含
むことを特徴とする半導体への不純物添加方法。
On the semiconductor surface, by the Langmuir-Prodgett method,
A process of depositing a desired number of layers of Langmuir-Prodgett film containing impurity atoms to serve as dopants, a process of subjecting this Langmuir-Prodgett film to oxygen plasma treatment to remove organic matter, and after depositing a protective film. A method for adding impurities to a semiconductor, comprising the step of performing heat treatment to diffuse the impurity atoms into the semiconductor.
JP16820888A 1988-07-06 1988-07-06 Method of doping impurity to semiconductor Pending JPH0217634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16820888A JPH0217634A (en) 1988-07-06 1988-07-06 Method of doping impurity to semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16820888A JPH0217634A (en) 1988-07-06 1988-07-06 Method of doping impurity to semiconductor

Publications (1)

Publication Number Publication Date
JPH0217634A true JPH0217634A (en) 1990-01-22

Family

ID=15863793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16820888A Pending JPH0217634A (en) 1988-07-06 1988-07-06 Method of doping impurity to semiconductor

Country Status (1)

Country Link
JP (1) JPH0217634A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US10280509B2 (en) 2001-07-16 2019-05-07 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US7732325B2 (en) 2002-01-26 2010-06-08 Applied Materials, Inc. Plasma-enhanced cyclic layer deposition process for barrier layers

Similar Documents

Publication Publication Date Title
US4830983A (en) Method of enhanced introduction of impurity species into a semiconductor structure from a deposited source and application thereof
JP6348801B2 (en) Doping a substrate through a dopant-containing polymer film
JP2001044569A5 (en)
DE69530859D1 (en) METHOD FOR PRODUCING A MULTILAYER SOLAR CELL
JPS58130517A (en) Manufacture of single crystal thin film
CN1799136A (en) Method for forming a SGOI by annealing near the sige alloy melting point
CN109518163A (en) A kind of preparation method, product and its application of zirconium doping hafnium oxide ferroelectric thin film
JPS62500414A (en) 3-V and 2-6 group compound semiconductor coating
JPH0637288A (en) Soi structure, provided with deep and thin oxide layer, manufactured by high-energy ion implantation and by successive heat treatment
JPH04219927A (en) Method and device for diffusing impurity
Lidow et al. A double‐layered encapsulant for annealing ion‐implanted GaAs up to 1100° C
US4818711A (en) High quality oxide on an ion implanted polysilicon surface
JPH0217634A (en) Method of doping impurity to semiconductor
Ogushi et al. Gettering characteristics of heavy metal impurities in silicon wafers with polysilicon back seal and internal gettering
US6251183B1 (en) Rapid low-temperature epitaxial growth using a hot-element assisted chemical vapor deposition process
JPS6227727B2 (en)
US6306212B1 (en) Gallium arsenide semiconductor devices fabricated with insulator layer
WO2009144492A2 (en) Improved physical vapour deposition processes
JP2945234B2 (en) Method of forming semiconductor thin film
JPS6326541B2 (en)
JPS5992997A (en) Method for forming thin film using molecular beam epitaxial growth method
KR102094681B1 (en) DOPING METHOD OF SEMICONDUCTOR STRUCTURE USING iCVD PROCESS
Mäenpää et al. Ge Si heterostructures by crystallization of amorphous layers
Swart et al. The influence of oxygen on cobalt silicide formation
Hasegawa et al. Reactions of monolayer Fe with Si (001)-dihydride and− 2× 1 surfaces