JPH02175700A - Production of zinc oxide whisker - Google Patents

Production of zinc oxide whisker

Info

Publication number
JPH02175700A
JPH02175700A JP63332870A JP33287088A JPH02175700A JP H02175700 A JPH02175700 A JP H02175700A JP 63332870 A JP63332870 A JP 63332870A JP 33287088 A JP33287088 A JP 33287088A JP H02175700 A JPH02175700 A JP H02175700A
Authority
JP
Japan
Prior art keywords
zinc oxide
partition plate
zinc
crucible
oxide whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63332870A
Other languages
Japanese (ja)
Other versions
JP2584037B2 (en
Inventor
Minoru Yoshinaka
芳中 實
Eizo Asakura
朝倉 栄三
Takashige Sato
佐藤 隆重
Hideyuki Yoshida
吉田 英行
Motoi Kitano
基 北野
Jun Yagi
順 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63332870A priority Critical patent/JP2584037B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to KR1019900701787A priority patent/KR930007857B1/en
Priority to PCT/JP1989/001246 priority patent/WO1990007022A1/en
Priority to US07/566,475 priority patent/US5158643A/en
Priority to EP90900992A priority patent/EP0407601B1/en
Priority to DE68924646T priority patent/DE68924646T2/en
Priority to CA002005737A priority patent/CA2005737C/en
Publication of JPH02175700A publication Critical patent/JPH02175700A/en
Application granted granted Critical
Publication of JP2584037B2 publication Critical patent/JP2584037B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To separately make ZnO whiskers of small-sized and large-sized tetrapod-like structures on the upper side and the lower side of a partition plate, respectively, in high efficiency and in a short time by sending O2 corresponding to catalyst of zinc vapor accompanying change with time to a crucible at the center of solid-liquid-gas three phase reaction field. CONSTITUTION:A tray 11 comprising a side 10 made of an expand metal having >=20% high opening ratio and a bottom made of a corrosion-resistant stainless steel plate containing no Ni, a member having 0-3% low opening ratio is prepared. Further, a partition plate 12 made of the same member having high opening ratio as the member of rising wall is set at part >=15mm apart above from the bottom and <= the height of the side 10. Them the tray 11 of a high- opening crucible 13 with the partition plate is charged with Zn powder and placed in a muffle furnace 14. Then the Zn powder is heat-treated while introducing a fixed amount of air from the outside to the furnace 14 to give ZnO whiskers of huge crystal having 3-30mum length of needle-like part on the plate 12 and 30-250mum length of needle-like part under the plate 12 and on the bottom. The opening ratio of the plate 12 may have >=20% and does not necessarily require coincidence with that of the side 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は一巨大なテトラボッド状構造を有する酸化亜鉛
ウィスカの製造方法に関し、より詳しくはテトラボッド
状構造の針状部の長さが数ミクロン以上の酸化亜鉛ウィ
スカを製造するための焼成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing zinc oxide whiskers having a gigantic tetrabod-like structure. The present invention relates to a firing method for producing zinc whiskers.

従来の技術 従来−一般的工業素材として使用される酸化亜鉛は、い
わゆるフランス法によるもので、粒子の大きさ−特に形
状がまちまちの団かい状粒子の集合体である。また細く
短い針状結晶粒子を高収率で形成させる方法(例えば特
公昭60−6629号公報)があるが、これは上記フラ
ンス法の改良法で、加熱による金属亜鉛蒸気を急速に冷
却するものであり、このため巨大結晶体は生成せず、微
3  Iトーン 小寸法C針状の長さが1〜1.6ミクロン程度)の針状
結晶となる。このような寸法の針上結晶体は一現在市販
さnている各種の工業用ウィスカと比較すると寸法面で
約2相手さい。このため前記ウィスカの共通的特徴であ
る金属、セラミ、ツク、樹脂等への補強効果は前記間か
い状酸化亜鉛の水準となり、ウィスカとしての顕著な効
果は認めら註ない。
BACKGROUND OF THE INVENTION Zinc oxide used as a general industrial material is produced by the so-called French method, and is an aggregate of aggregated particles of various particle sizes, especially shapes. There is also a method of forming thin and short acicular crystal particles in high yield (for example, Japanese Patent Publication No. 60-6629), but this is an improved method of the above-mentioned French method, in which metal zinc vapor is rapidly cooled by heating. Therefore, a giant crystal is not generated, but a needle-like crystal with a fine 3 I tone (small size C needle-like length of about 1 to 1.6 microns) is formed. A needle-like crystal of such size is about twice as large in size as the various industrial whiskers currently on the market. Therefore, the reinforcing effect on metals, ceramics, wood, resins, etc., which is a common feature of the whiskers, is at the level of the spacing zinc oxide, and there is no noticeable effect as a whisker.

即ち、繊維形状の単結晶性であるウィスカは同じ物質の
団かい状物質より格段と機械的強度が犬で、これを他の
物質中に混入して高い機械的強度を得るための強化物質
として注目されており、今日では金属、金属酸化物、金
属炭化物、金属窒化物等の工業用ウィスカが市販されて
いる。また酸化亜鉛においても長さが調相のウィスカの
例(特公昭60−6697号公報)があるが−これらは
単純な針状体のもので−わざわざ亜鉛の合金を用いるた
め結晶中に不純物をふくんだり一結晶の成長時に基盤を
必要としたり一複雑な装置や操作で長時間を要する等の
実験室的な検討に過き゛ない。
In other words, whiskers, which are monocrystalline in the form of fibers, have much higher mechanical strength than aggregated materials of the same material, and are used as reinforcing substances to obtain high mechanical strength by mixing them into other materials. This has attracted attention, and today industrial whiskers made of metals, metal oxides, metal carbides, metal nitrides, etc. are commercially available. In addition, there are examples of whiskers with phase-matching lengths in zinc oxide (Japanese Patent Publication No. 60-6697), but these are simple needle-shaped whiskers, and since a zinc alloy is used, impurities are added to the crystal. This is no more than a laboratory study, as it requires a substrate to grow a single crystal, requires complicated equipment, and requires a long time to operate.

さらに実際的な酸化亜鉛の製造にあっては、材料となる
亜鉛金属を予め窒素ガス等の非酸化性雰囲気中で高温加
熱することにより5亜鉛蒸気ガスを発生し−この非酸化
性亜鉛蒸気混合ガスを別に酸素を含む酸化性雰囲気で高
温炉に導入することにより5亜鉛蒸気を酸化して酸化亜
鉛粉末を製造する。この場合には製造される酸化亜鉛の
ほとんどが団かい状酸化物、いわゆる亜鉛華となる。
In the practical production of zinc oxide, zinc metal is heated in advance at high temperature in a non-oxidizing atmosphere such as nitrogen gas to generate zinc vapor gas - a mixture of this non-oxidizing zinc vapor. Zinc oxide powder is produced by oxidizing the 5-zinc vapor by introducing gas into a high temperature furnace in an oxidizing atmosphere containing separate oxygen. In this case, most of the zinc oxide produced becomes aggregated oxide, so-called zinc white.

さらに−中心の核部とこの核部から異なる4軸方向に伸
びる針状部寸法が3〜260μmとなるテトラボッド状
巨大結晶体の酸化亜鉛ウィスカの製造方法′として、通
常の高温酸化反応に用いるセラミックルツボ内に亜鉛粉
末を入れ、酸素雰囲気下で加熱処理して巨大結晶体の酸
化亜鉛ウィスカを生成する方法を検討したが−セラミソ
クルツボ内の下層部に団かい状酸化亜鉛が多量に生成さ
nたり一焼成時間が長かったりで巨大結晶体の酸化亜鉛
ウススカを効率的に製造するには至−ていない。
Furthermore, as a method for producing zinc oxide whiskers in the form of tetrabod-like giant crystals in which the dimensions of the central core and the acicular portions extending from the core in four different axes directions are 3 to 260 μm, ceramics used in ordinary high-temperature oxidation reactions are used. We investigated a method of placing zinc powder in a crucible and heat-treating it in an oxygen atmosphere to produce giant crystalline zinc oxide whiskers, but a large amount of aggregated zinc oxide was produced in the lower layer of the ceramino crucible. Due to the long firing time, it has not been possible to efficiently produce giant crystalline zinc oxide uska.

さらに、フィルム状樹脂、塗膜等の機械的補強効果を得
るためには針状部の長さが3〜20μm61\−ノ のテトラボッド状酸化亜鉛ウィスカが得策であるが一前
述のセラミックルツボによる製造方法においては3〜2
50μmのものが混在して生成する域のもので3〜30
μmのもののみを選択的に生成するところまでには至っ
ていない。
Furthermore, in order to obtain a mechanical reinforcing effect for film-like resins, coatings, etc., it is advisable to use tetrabod-like zinc oxide whiskers with a needle-like part length of 3 to 20 μm61\-no, but production using the above-mentioned ceramic crucible is recommended. 3-2 in method
3 to 30 in the range where 50 μm particles are mixed.
We have not yet reached the point of selectively producing only micrometer particles.

発明が解決しようとする課題 本発明は一工業用ウィスカとして必要な大きさを有し、
かつ−テトラボッド状構造よりなる酸化亜鉛ウィスカを
高効率に短時間VC3〜30μm。
Problems to be Solved by the Invention The present invention has a size necessary for an industrial whisker,
And - Zinc oxide whiskers consisting of a tetrabod-like structure can be produced at a VC of 3 to 30 μm in a short period of time with high efficiency.

30〜260μmに作り分ける製造方法を提供するもの
である。
The present invention provides a manufacturing method for separately manufacturing 30 to 260 μm.

課題を解決するための手段 本発明においては−ルツボは第1図に示すように、20
%以上の高開口率のエキスバンドメタル。
Means for Solving the Problems In the present invention - the crucible has 20 parts as shown in FIG.
Expanded metal with a high aperture ratio of over %.

金網、パンチングメタルで側面1oを構成し一底面を0
〜3%の低開口率部材である磁器−またはニッケルを含
まない耐食ステンレス鋼板とし一酸化皮膜を有する亜鉛
粉末を置く皿11とする。さらにこの底面から少なくと
も16朋以上上方に離し−かつ一側面の高さ以下の所に
立上り壁部材と6、−ノ 同一の高開口率部材の仕切り板12を設ける。このよう
な仕切り板付冨開口率ルツボ13の皿11に酸化皮膜を
有する亜鉛粉末を入れ、第2図のようなマツフル炉14
内に置き、炉外から定量の空気を人?L、なから5加熱
処理して一仕切板上に3〜30μm、仕切板下で底部上
に30〜260μmの巨大結晶体の酸化亜鉛ウィスカを
得るものである。
Wire mesh and punching metal make up 1 side surface and 1 bottom surface.
The plate 11 is made of porcelain, which is a member with a low aperture ratio of ~3%, or a corrosion-resistant stainless steel plate that does not contain nickel, and on which zinc powder having a monoxide film is placed. Furthermore, a partition plate 12 made of the same high aperture ratio member as the rising wall member is provided at least 16 mm above the bottom surface and below the height of one side. Zinc powder having an oxide film is placed in the dish 11 of such a deep aperture crucible 13 with a partition plate, and a Matsufuru furnace 14 as shown in FIG.
Place it inside the furnace and supply a fixed amount of air from outside the furnace? L, 5 heat-treated to obtain giant crystalline zinc oxide whiskers of 3 to 30 μm on one partition plate and 30 to 260 μm on the bottom under the partition plate.

なお−前記の仕切り板の開口率は2o%以上であれば良
く、側面とは必ずしも一致させる必要はない。
Note that the aperture ratio of the partition plate may be 20% or more, and does not necessarily have to match the side surface.

ここに用いるニッケルを含まないステンレス鋼としては
−クロム18匈20 〜3%.残部鉄のものが好ましい。
The nickel-free stainless steel used here is - 18 to 3% chromium. Preferably, the remainder is iron.

作用 本発明では一焼成段階で材料として亜鉛粉末を使用する
。ここで亜鉛粉末の粒子径は0.1〜600μmのもの
が可能でありーなかでも1〜300μmのものが良い結
果となる。これは本発明の焼成過程における亜鉛蒸気の
発生速度に極めて重大7 ・\−7 な影響を及ぼす要因の一つとなるからである。即ち一粒
子径が極端に小さい時には亜鉛蒸気の蒸発速度は亜鉛金
属の蒸発温度点以上の定温度で同一金属量では極めては
やく、以下に説明する雰囲気中の酸素量の制御が実質的
に不可症となり、はとんどが金属蒸気のままで結晶生成
系の外(最も一般的には焼成炉のそと)に排出するか−
たとえ生成系の内に止まっても雰囲気条件によっては金
属状態で凝集したり、また団かい状の亜鉛酸化物となる
。また粒子径が大き過ぎると亜鉛蒸気の発生速度は遅く
なり一発生量に見合う雰囲気中の酸素量の制御が困難と
なって、この場合もまた団かい状や凝集金属状となり目
的とするテトラボ・ラド状ウィスカはほとんど生成しな
い。
Function: In the present invention, zinc powder is used as a material in the first firing step. Here, the particle size of the zinc powder can be from 0.1 to 600 .mu.m, and preferably from 1 to 300 .mu.m gives good results. This is because this is one of the factors that has a very significant effect on the rate of zinc vapor generation during the firing process of the present invention. In other words, when the particle size is extremely small, the evaporation rate of zinc vapor is extremely fast at a constant temperature above the evaporation temperature point of zinc metal and the same amount of metal, making it virtually impossible to control the amount of oxygen in the atmosphere as described below. Therefore, most of the metal vapor is discharged outside the crystal formation system (most commonly outside the kiln).
Even if it remains in the production system, depending on the atmospheric conditions, it may aggregate in a metallic state or become aggregated zinc oxide. In addition, if the particle size is too large, the rate of generation of zinc vapor becomes slow and it becomes difficult to control the amount of oxygen in the atmosphere commensurate with the amount of zinc vapor generated. Radoid whiskers are rarely produced.

この亜鉛蒸気の蒸発量の制御をより容易に行なうために
、本発明では焼成時の材料なる亜鉛粉末として予め表面
が酸化皮膜で覆われているものを用いる。こ几は前記の
粒子径によ−て蒸発速度の速くなることを酸化の進行度
によって緩和することができるためである。これは亜鉛
金属粒子の表面が酸化皮膜で覆わnているため、粒子内
部の亜鉛金属が雰囲気中に蒸気拡散するのを抑制する効
果を持つことと、粒子全体としての熱容量の増加、また
蒸発温度の見かけ上の上昇のためと考えら几る。
In order to more easily control the amount of evaporation of zinc vapor, the present invention uses zinc powder whose surface is previously covered with an oxide film as a material for firing. This is because the increase in the evaporation rate due to the above-mentioned particle size can be moderated by the degree of progress of oxidation. This is because the surface of the zinc metal particles is covered with an oxide film, which has the effect of suppressing vapor diffusion of the zinc metal inside the particles into the atmosphere, increases the heat capacity of the particles as a whole, and increases the evaporation temperature. This is thought to be due to the apparent increase in

上記のように粉末材料を用いることにより、亜鉛蒸気の
蒸発量を制御すると共に一焼成炉内の雰囲気−特に酸素
分圧を制御して一炉内の亜鉛蒸気分圧と酸素分圧の相対
比率を一酸化亜鉛(ZnO)f形成するに必要である化
学量論比率に対しである幅に収めることにより一本発明
のテトラボッド状酸化亜鉛ウィスカを生成できることが
実験の結果明らかになった。ここでより大きなウィスカ
を形成するには一化学放論値に大してかなりの亜鉛蒸気
過多と酸素不足の状態に結晶生成系の雰囲気を制御する
必要があり一一方より小さいウィスカを形成するには5
先とは逆に、亜鉛蒸気不足で酸素過多とする必要がある
By using the powder material as described above, the amount of evaporation of zinc vapor can be controlled, and the atmosphere in one firing furnace, especially the oxygen partial pressure, can be controlled, and the relative ratio of zinc vapor partial pressure and oxygen partial pressure in one furnace can be controlled. Experiments have revealed that the tetrabod-like zinc oxide whiskers of the present invention can be produced by adjusting the stoichiometric ratio of zinc monoxide (ZnO) f within a certain range. Here, in order to form larger whiskers, it is necessary to control the atmosphere of the crystal formation system to a state of considerable zinc vapor excess and oxygen deficiency, while to form smaller whiskers. 5
Contrary to the above, there is a lack of zinc vapor and it is necessary to provide an excess of oxygen.

本発明は5以上のような雰囲気の下に亜鉛金属を焼成酸
化することに特徴がある。反応炉内の雰9I\−7 囲気を制御するための手段として、予め亜鉛蒸気を発生
するゾーンを独立して設は一搬送ガス(具体的には窒素
などの非酸化性ガス)を用いて亜鉛蒸気を後段に設けた
酸化反応ゾーンに移送し一外部より導入した含酸素ガス
によって酸化する、いわゆる気相反応的な方法がとられ
るのが常である。
The present invention is characterized in that zinc metal is fired and oxidized in an atmosphere of 5 or more. Atmosphere inside the reactor 9I\-7 As a means to control the atmosphere, a zone for generating zinc vapor may be set up in advance using a carrier gas (specifically, a non-oxidizing gas such as nitrogen). A so-called gas phase reaction method is usually used in which zinc vapor is transferred to an oxidation reaction zone provided at a later stage and oxidized by an oxygen-containing gas introduced from outside.

この場合、搬送ガスが不可欠のため、亜鉛蒸気分圧と酸
素分圧の相対的な比を、上記のような巨大ウィスカ形成
に必要な領域にすることは極めて困難で、しかも工業的
な収率を考慮するならばほとんど不可能であるといえる
In this case, since a carrier gas is essential, it is extremely difficult to achieve a relative ratio of zinc vapor partial pressure and oxygen partial pressure in the range required for the formation of giant whiskers as described above, and it is difficult to achieve an industrial yield. Considering this, it can be said that it is almost impossible.

本発明では、このような巨大なウィスカを形成するため
の雰囲気を、亜鉛粉末(固体)、亜鉛蒸気(液体)−亜
鉛ガス(気体)と酸素(気体)を同−場に混在させるこ
とにより形成しえたものであって−いわゆる5−L−G
三相反応場を形成することにより一酸化亜鉛の核形成、
テトラボ・ンド状結晶の晶癖の引き出し−これに続くテ
トラポ、。
In the present invention, the atmosphere for forming such giant whiskers is created by mixing zinc powder (solid), zinc vapor (liquid), zinc gas (gas), and oxygen (gas) in the same place. The so-called 5-L-G
Nucleation of zinc monoxide by forming a three-phase reaction field,
Derivation of the crystal habit of tetrabo-nd-like crystals - followed by tetrapo.

ド状ウィスカ結晶の巨大成長が極めてスムーズに行なわ
れることから、収率の高い製造が可能と彦10ベーl った。つまり亜鉛粉末固体を供給源とした極めて濃い亜
鉛蒸気分圧城陽とウィスカ形成終了を促す濃い酸素分圧
制御とが連続的に形成された場であることが本発明の核
心である。
Since the huge growth of do-shaped whisker crystals occurs extremely smoothly, Hiko concluded that production with high yields is possible. In other words, the core of the present invention is a place where an extremely high partial pressure of zinc vapor using solid zinc powder as a supply source and a high partial pressure control of oxygen that promotes the completion of whisker formation are continuously formed.

以上のような雰囲気を形成するための具体的な炉構成と
して、亜鉛粉末の蒸気場への含酸素雰囲気の導入方法と
して、通常の流通炉を用い一導入する含酸素雰囲気の酸
素分圧制御とその時間的制御(亜鉛蒸気の発生量に対応
した雰囲気中の酸素分圧及びその時間的制御)をする方
法と5炉の壁材を多孔質な通気性材料で構成した焼成炉
を用いることにより5炉内部での亜鉛蒸気の蒸発と−こ
几に続く酸化反応により雰囲気中の酸素の固定に伴う雰
囲気全体の減圧によって、この減圧相当分のみの新気が
自然に炉外より多孔質の壁材を流通して炉内に導入され
る方法とがあるが−そのどちらの場合においてもセラミ
ックルツボにおいては炉内は亜鉛蒸気分圧と酸素分圧と
の比が適正であっても前記のS−I、G三相反応場の中
心であるルツボ内の比が時間とともに変化する。すなわ
ち−11・\− セラミックルツボ内への酸素流通が不足となる。
As a specific furnace configuration for forming the above-mentioned atmosphere, as a method for introducing an oxygen-containing atmosphere into the zinc powder vapor field, a normal flow furnace is used. By using a method of temporal control (oxygen partial pressure in the atmosphere and its temporal control corresponding to the amount of zinc vapor generated) and a firing furnace whose wall material is made of porous and breathable material. 5. Due to the evaporation of zinc vapor inside the furnace and the subsequent oxidation reaction, the entire atmosphere is depressurized due to the fixation of oxygen in the atmosphere, and fresh air corresponding to this depressurization is naturally drawn from outside the furnace through the porous walls. There is a method in which materials are introduced into the furnace through a flow of material.In either case, in a ceramic crucible, even if the ratio of zinc vapor partial pressure to oxygen partial pressure is appropriate, the S -The ratio in the crucible, which is the center of the I, G three-phase reaction field, changes with time. In other words, -11.\- Oxygen flow into the ceramic crucible becomes insufficient.

しかるに本発明の高開口率ルツボにおいては亜鉛蒸気分
圧の変化に容易に追従してルツボ内に酸素を流通するこ
とができる。その容易なるルツボ内への酸素流通を行な
い得るルツボの開口率は、実験の結果−開口率20%以
上であり−また生成したウィスカが炉外に取出すのに都
合が良いように、ルツボ内に収まるためには開口率60
%以下とすることが望ましい。すなわち60%以上では
開口部からあふれ出る部分が多くなる。
However, in the high aperture ratio crucible of the present invention, oxygen can flow into the crucible easily following changes in the zinc vapor partial pressure. As a result of experiments, the opening ratio of the crucible that allows oxygen to flow easily into the crucible is 20% or more. Opening ratio 60 to fit
% or less. In other words, when it is 60% or more, the portion overflowing from the opening increases.

i!たーその容易なるルツボ内への酸素流通の作用を実
証する実験として一亜鉛蒸発速度の早いより純亜鉛に近
い酸化皮膜の少ない亜鉛粉末においても一テトラポ・7
ド状の酸化亜鉛ウィスカを高収率で生成できることを確
認し、本発明のルツボの容易なる酸素流通作用を実証で
きた。
i! As an experiment to demonstrate the effect of the easy flow of oxygen into the crucible, one tetrapo.7
It was confirmed that hydrogen-shaped zinc oxide whiskers could be produced in high yield, and the easy oxygen distribution effect of the crucible of the present invention was demonstrated.

さらに−前述の仕切板の上部においては亜鉛蒸気の発生
源から遠く一シかも5高開口率部材とはいえ仕切板で仕
切られていて−かつ一上部が大気であるため、亜鉛蒸気
濃度は低く酸素過多となるため仕切り板上では3〜30
μmのテトラボッド状酸化亜鉛ウィスカが生成され−そ
れが仕切り板上にたまる。また−仕切り板の下部におい
ては亜鉛蒸気の発生源に近く、しかも仕切り板があるた
め亜鉛蒸気濃度は高く一酸素不足となるため30〜26
0μmのテトラボッド状酸化亜鉛ができること[なる。
Furthermore, the above-mentioned upper part of the partition plate may be far away from the source of zinc vapor.Although it is a high aperture ratio member, it is partitioned by the partition plate-and the upper part is exposed to the atmosphere, so the concentration of zinc vapor is low. 3 to 30 on the partition plate due to excess oxygen.
Zinc oxide whiskers in the form of tetrabods of .mu.m are formed - which accumulate on the partition plate. In addition, the lower part of the partition plate is close to the source of zinc vapor, and since there is a partition plate, the concentration of zinc vapor is high and there is a lack of oxygen.
0 μm tetrabod-like zinc oxide can be produced.

実施例 実施例1 第1〜2図に示すルツボを用いる。このルツボの側面1
0は幅IE50〜280朋−奥行260〜36(Mξ高
さ130〜1801ffffであり一側面の中央部に仕
切り板12を設は−それぞれ、開口率20〜60%のニ
ッケルを含まない耐食ステンレス鋼製エキスバンドメタ
ルで構成した。耐食ステンレス鋼として5木実施例では
クロム18.6%。
Examples Example 1 A crucible shown in Figs. 1 and 2 was used. Side of this crucible 1
0 is width IE50~280 mm, depth 260~36 (Mξ height 130~1801ffff, and partition plate 12 is installed in the center of one side) - each is made of nickel-free corrosion-resistant stainless steel with an aperture ratio of 20~60%. Constructed of extracted band metal made of corrosion-resistant stainless steel with 18.6% chromium in the 5 wood example.

アルミニウム2.4%、残部を鉄とした。また−底面は
上記と同材質とし、上記側面の寸法に比べて幅、奥行を
そ几ぞf″L1o〜20mM小さくし、高さが1omm
の6面で構成される開口率零のボックス13八−〕 とした。
2.4% aluminum and the balance iron. In addition, the bottom surface is made of the same material as above, and the width and depth are smaller by 20mm compared to the side dimensions above, and the height is 1omm.
A box 138-] with an aperture ratio of zero consisting of six sides.

この高開口本ルツボの底面に酸化皮膜を有する亜鉛粉末
80〜120gを均一にまき、内容積が幅200〜3o
OIIM−奥行220〜380111111−高さ20
0〜300Mのマツフル炉に入れ一外部から2〜41/
分の空気を供給する中で900〜1060°Cに加熱処
理した。
80 to 120 g of zinc powder with an oxide film is uniformly sprinkled on the bottom of this high-opening main crucible, and the internal volume is 200 to 3 o in width.
OIIM-Depth 220~380111111-Height 20
Place it in a Matsufuru furnace of 0-300M and heat it from the outside with 2-41/
Heat treatment was carried out at 900 to 1060°C while supplying 100% air.

ここに用いたマツフル炉14は第3図に示すような構造
のもので、多孔質炉壁16の内部に通気性のない金属マ
・メタル1dを設け、扉17との間にシール材18を介
在して気密性を保つようにしである。19は給気口、2
0はヒータである。
The Matsufuru furnace 14 used here has a structure as shown in FIG. This is done to maintain airtightness. 19 is an air supply port, 2
0 is a heater.

20分の加熱処理後−ルツボを取り出したところ、仕切
り板12の上部(A部)に3〜30μmのテトラボッド
状酸化匪鉛つノスカが生成さfl−仕切り板12の下部
08部)に3〜30μmのものを数%含む30〜260
μmのテトラボッド状酸化亜鉛ウィスカが選択的に生成
した。A部に生成した酸化亜鉛ウィスカを電子顕微鏡で
観察したところ、第6図に示すように一生成物の100
%14、\−ノ が巨大結晶体の酸化亜鉛ウィスカとなっており、その針
状部の長さは20μmを中心に3〜30μmであった。
After 20 minutes of heat treatment, when the crucible was taken out, 3 to 30 μm of tetrabod-like sulfur oxide was formed on the upper part of the partition plate 12 (part A). 30-260 including several % of 30 μm
Tetrabod-like zinc oxide whiskers of μm size were selectively generated. When the zinc oxide whiskers formed in part A were observed using an electron microscope, it was found that 100% of the product was
%14, \-no was a giant crystalline zinc oxide whisker, and the length of the needle-like part was 3 to 30 μm, with the center being 20 μm.

また−生成した酸化亜鉛ウィスカの96%はテトラボッ
ド形状であった。
Furthermore, 96% of the zinc oxide whiskers produced were in the form of tetrabods.

一方−B部に生成した酸化亜鉛ウィスカも同様に電子顕
微鏡で観察したところ、生成物全重量に対して80%の
3〜30μmを数%含む30〜260μmのテトラボッ
ド状酸化亜鉛ウィスカを得た。残部は団かい状粒子の黄
色亜鉛であった。
On the other hand, when the zinc oxide whiskers generated in the -B part were similarly observed with an electron microscope, tetrabod-shaped zinc oxide whiskers of 30 to 260 μm containing several % of 3 to 30 μm, which is 80% of the total weight of the product, were obtained. The remainder was yellow zinc in cluster-like particles.

80%の酸化亜鉛ウィスカはその86%以上がテトラボ
ッド形状であった。A部、B部それぞ几の電子顕微鏡写
真(倍率200)を第6図及び第6図に示す。
More than 86% of the 80% zinc oxide whiskers were in the form of tetrabods. Electron micrographs (magnification: 200) of parts A and B are shown in FIGS. 6 and 6, respectively.

実施例2 第4図に示すように一平面状仕切り板をピッチ6o〜6
omm、ウェーブ扁さ40〜60朋の波形仕切り板12
′とした。このルツボに亜鉛粉末を入れ5加熱処理した
ところ5波形仕切り板の上部CC部)で山部分(E部)
には酸化亜鉛ウィスカはほとんど生成せず一谷部分CF
部)に集中して16 、−。
Example 2 As shown in FIG.
omm, wave-shaped partition plate 12 with a wave width of 40 to 60 mm
'. When zinc powder was put in this crucible and heat treated 5, the peak part (E part) appeared at the upper part CC of the corrugated partition plate.
Almost no zinc oxide whiskers are generated in the Ichitani part CF.
16, -.

生成した。必然的に波形仕切り板の下部(D部)に生成
した酸化亜鉛ウノスカは前記のE部から空気をとりこみ
−D部の酸化亜鉛ウィスカは第7図に示すように、前記
例よりもテトラボッド状酸化能鉛ウィスカ比率の高いも
のが得られた。
generated. The zinc oxide whiskers inevitably formed at the lower part of the corrugated partition plate (part D) take in air from the above-mentioned part E, and the zinc oxide whiskers in part D are more tetrabod-like oxidized than in the previous example, as shown in Figure 7. A product with a high lead whisker ratio was obtained.

すなわち−0部の生成物は100%が巨大結晶体の酸化
亜鉛ウィスカとなっており−その針状部の長さは20μ
mを中心に3〜30μmであった。
In other words, -0 part of the product is 100% giant crystalline zinc oxide whiskers - the length of the needle-like part is 20μ
It was 3 to 30 μm centering on m.

また−生成した酸化亜鉛ウィスカの96%はテトラボッ
ド形状であり、平面状仕切り板上のA部酸化亜鉛つメス
カと同じであ−た。
Furthermore, 96% of the generated zinc oxide whiskers were in the shape of tetrabods, which was the same as the zinc oxide whiskers in Part A on the planar partition plate.

しかるに、第7図に示すように−D部は86%が酸化亜
鉛ウィスカであり−その94%がテトラボッド状酸化亜
鉛ウィスカとなりえた。
However, as shown in FIG. 7, part D was 86% zinc oxide whiskers and 94% thereof could be tetrabod-like zinc oxide whiskers.

比較例1 第1図と同一寸法、同材質で立上り部も底部と同様のニ
ッケルを含まない耐食ステンレス鋼板のルツボで前記と
同じように加熱処理したところ、ルツボ内の生成物は表
面部分においては仕切り板のない高開口率ルツボと同じ
であるが、底部はど板状および不定形の酸化亜鉛となり
〜生成物全重量に対する酸化亜鉛ウメスヵの割合は67
%、その内のテトラボッド状酸化亜鉛ウィスカの割合は
76%であった。テトラボッド状酸化亜鉛ウィスカの針
状部長さは3〜260μmであり、混在して生成した。
Comparative Example 1 A crucible made of a corrosion-resistant stainless steel plate that does not contain nickel and has the same dimensions and the same material as in Fig. 1, and the rising part is the same as the bottom part, was heat-treated in the same manner as above. It is the same as a high aperture ratio crucible without a partition plate, but the bottom is plate-shaped and irregularly shaped zinc oxide ~ The ratio of zinc oxide to the total weight of the product is 67
%, of which the proportion of tetrabod-like zinc oxide whiskers was 76%. The needle-like length of the tetrabod-like zinc oxide whiskers was 3 to 260 μm, and they were generated in a mixed manner.

比較例2 比較例1で説明したニッケルを含まない耐食ステンレス
鋼板のルツボに高開口率平面仕切り板。
Comparative Example 2 A high aperture ratio flat partition plate was added to the crucible made of the nickel-free corrosion-resistant stainless steel plate described in Comparative Example 1.

波形仕切り板を取り付けて同様の加熱処理をしたところ
一仕切り板上に生成した酸化亜鉛ウィスカは表面部分に
おいては実施例と同様の3〜3゜μmのテトラボッド状
酸化亜鉛ウィスカとなったが一仕切り板上に近い所およ
び仕切り板下は酸素不足となり−テトラボッド状酸化亜
鉛ウィスカの生成比率は40%以下とな−た。
When a corrugated partition plate was attached and subjected to the same heat treatment, the zinc oxide whiskers that formed on the partition plate became tetrabod-like zinc oxide whiskers with a size of 3 to 3 μm on the surface, similar to those in the example, but the zinc oxide whiskers that formed on the partition plate became tetrabod-like zinc oxide whiskers with a diameter of 3 to 3 μm as in the example. There was a lack of oxygen near the top of the plate and under the partition plate, and the production ratio of tetrabod-like zinc oxide whiskers was less than 40%.

比較例3 前記の立上り部が高開口率部材であっても一開口率が2
0%以下においては前記のセラミックルツボとほぼ同様
に生成物全重量に対して82%の17 ・\−7 巨大結晶体の酸化亜鉛ウメスカとなり−その内の88、
%がテトラボッド状酸化亜鉛ウィスカであった。
Comparative Example 3 Even if the rising portion is a high aperture ratio member, the aperture ratio is 2.
At 0% or less, almost the same as in the ceramic crucible described above, 82% of the total weight of the product becomes 17.
% was tetrabod-like zinc oxide whiskers.

20%開口率ルツボに高開口率平面仕切り板。High aperture ratio flat partition plate for 20% aperture ratio crucible.

波形仕切り板を取り付けて同様の加熱処理をしたところ
一比較fl12と同様−仕切り板上に近い所−仕切り板
下は酸素不足となリーチトラボッド状酸化亜鉛ウィスカ
の生成比率は48%となり5実用的でない。
When a corrugated partition plate was attached and the same heat treatment was performed, the comparison was the same as fl12 - near the top of the partition plate - under the partition plate there is a lack of oxygen. The formation rate of leech-trabod-like zinc oxide whiskers was 48%, which was 5 Practical. Not on point.

比較例4 前記の立上り部材の開口率が60%以上においては前記
の仕切り板の有無にかかわらず生成した巨大テトラボッ
ド状酸化亜鉛ウィスカがルツボ外へ飛び出し、生成物の
収納に支障をきたした。
Comparative Example 4 When the aperture ratio of the rising member was 60% or more, the giant tetrabod-shaped zinc oxide whiskers that were generated flew out of the crucible regardless of the presence or absence of the partition plate, causing problems in storing the product.

比較例6 前記のルツボ材料の材質をクロム18.6%、ニッケル
8.0%、残部鉄である耐食ステンレス鋼で前記と同様
の加熱処理を行なったが、亜鉛粉末とニッケルが反応し
て、ルツボ材に大きな熱歪、金属割れ、金属の腐蝕が発
生し5実用に耐えることができなかった。
Comparative Example 6 The crucible was made of corrosion-resistant stainless steel with 18.6% chromium, 8.0% nickel, and the balance iron, and was subjected to the same heat treatment as above, but the zinc powder and nickel reacted. Large thermal distortion, metal cracking, and metal corrosion occurred in the crucible material, making it unsuitable for practical use.

以上の結果を次表に1とめて示す。The above results are summarized in the following table.

(以下 余 白) 18 〆\−/ 2 1 、、−> 発明の効果 本発明の効果は実施例、比較例で説明したように5−L
−G三相反応場の中心であるルツボ内に5経時変化の伴
う亜鉛蒸気濃度に見合った酸素をスムーズに送り込み、
仕切り板の上側に3〜30μm、下側に30〜260μ
mのテトラボッド状酸化亜鉛ウィスカを選択的に作り分
けることができるルツボを提供することにある。
(Hereinafter, blank) 18 〆\-/ 2 1 ,,-> Effects of the invention As explained in the examples and comparative examples, the effects of the present invention are 5-L
-G Smoothly sends oxygen commensurate with the zinc vapor concentration that changes over time into the crucible, which is the center of the three-phase reaction field,
3-30μm on the top side of the partition plate, 30-260μm on the bottom side
An object of the present invention is to provide a crucible that can selectively produce m tetrabod-like zinc oxide whiskers.

ルツボを使っての加熱処理においては必要な酸素を送り
込めず一生成物全重量に対して80%の巨大結晶体の酸
化亜鉛ウィスカとなり5全酸化亜鉛のテトラポ・ノド形
状比率は87%であった。
In heat treatment using a crucible, the necessary oxygen could not be delivered, resulting in giant crystalline zinc oxide whiskers that accounted for 80% of the total weight of the product.5The tetrapo-nod shape ratio of total zinc oxide was 87%. Ta.

サラニ、開口亭主の耐食ステンレス鋼板ルツボ、開口率
20%以下の高開口率ルツボおよび開口率60%以上の
高開口率ルツボについても仕切り板によるテトラボッド
状酸化亜鉛つノスカの斜状部寸法を選択的に作り分ける
ことができるか否がを検討したが、その酸化亜鉛ウメス
カ生成率、テトラボッド状酸化亜鉛ウィスカ生成率とも
に本発明のルツボが効果あることが判った。
Sarani, selectively adjust the dimensions of the diagonal part of the tetrabod-shaped zinc oxide Tsunoska using a partition plate for corrosion-resistant stainless steel plate crucibles with open ends, high aperture ratio crucibles with an aperture ratio of 20% or less, and high aperture ratio crucibles with an aperture ratio of 60% or more. The crucible of the present invention was found to be effective in terms of both the production rate of zinc oxide whiskers and the production rate of tetrabod-shaped zinc oxide whiskers.

22 へ−7 また−亜鉛粉末100gの加熱処理時間を外部からの空
気供給量3(1/分−加熱温度960″Cの条件下で比
較したところ−アルミナルツボにおいテtri e o
 分、開口亭主の耐食ステンレス鋼板ルツボlCj、−
いては仕切り板のあるものが46分−ないものが36分
−さらに、開口率20〜60%の仕切り板のないものが
、その開口率に対応して一26〜20分となり、テトラ
ボッド状酸化亜鉛ウィスカの針状部長さを選択的に作り
分けのできる開口率20〜60%で仕切り板のある実施
例1のもので27〜22分〜実施例2のもので26〜2
1分となり、該選択的作り分けの効果とともに短時間生
成が可能となった。さらに、高開口半部材、底面の材質
を種々検討したが、熱容量の少ない配食ステンレス鋼板
としてはニッケルを含まないものが良く5実用耐久時間
の比較においては、実施例に示したニッケルを含むステ
ンレス鋼の6〜6倍にもなリークロム18〜20%、ア
ルミニウム2〜3%、残部鉄の耐食ステンレス鋼板は有
効であった。。
22 To-7 In addition, - Comparing the heat treatment time of 100 g of zinc powder under the conditions of an external air supply rate of 3 (1/min) and a heating temperature of 960''C - Aluminium crucible odor test
minute, opening host corrosion-resistant stainless steel plate crucible lCj, -
46 minutes for those with partition plates, 36 minutes for those without partitions, and 126 to 20 minutes for those without partition plates with an aperture ratio of 20 to 60%, and tetrabod-like oxidation 27-22 minutes for Example 1 with a partition plate and an aperture ratio of 20-60% that allows the length of the needle-shaped part of the zinc whisker to be selectively created - 26-22 minutes for Example 2
1 minute, which made it possible to generate in a short time with the effect of selectively dividing. Furthermore, we investigated various materials for the high aperture half member and the bottom surface, but it is preferable to use a stainless steel plate that does not contain nickel because it has a low heat capacity. A corrosion-resistant stainless steel plate containing 18 to 20% chromium, 2 to 3% aluminum, and the balance iron, which is 6 to 6 times more than steel, was effective. .

23 ・\23・\

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた仕切り板付の高開口率
ルツボの斜視図、第2図はその縦断面略図−第3図は同
ルツボをマツフル炉に配置した状態を示す断面図、第4
図はルツボの他の実施例を示す縦断面略図−第6〜7図
は酸化亜鉛ウィスカの結晶構造を示す電子顕微鏡写真で
ある。 10・・・・・・側面、11・・・・・・皿−12,1
2’・・・・・・仕切り板、13・・・・・・ルツボ。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名10
−一一暫垢 I3−一一ルヅ丞パ
FIG. 1 is a perspective view of a high aperture ratio crucible with a partition plate used in an example of the present invention, FIG. 2 is a schematic vertical cross-sectional view thereof, and FIG. 3 is a cross-sectional view showing the crucible placed in a Matsufuru furnace. Fourth
Figures 6 and 7 are electron micrographs showing the crystal structure of zinc oxide whiskers. 10...Side, 11...Dish-12,1
2'... Partition plate, 13... Crucible. Name of agent: Patent attorney Shigetaka Awano and 1 other person10
-11 Shikaku I3-11 Rudujopa

Claims (4)

【特許請求の範囲】[Claims] (1)容器が一面の開放面を有し、この面の対面が0〜
3%の低開口率部材であり、側面の壁部材が20%以上
の高開口率部材であり、この底面から少なくとも15m
m以上離し、かつ側面の高さ以下の所に同じ高開口率部
材の仕切り板を底面に対面して設け、前記底面に酸化皮
膜を有する亜鉛粉末を置き、酸素を含む雰囲気下で加熱
処理して仕切り板の上側に小形酸化亜鉛ウィスカ、下側
に大形酸化亜鉛ウィスカを選択的に生成させることを特
徴とする酸化亜鉛ウィスカの製造方法。
(1) The container has one open surface, and the facing side of this surface is from 0 to
It is a member with a low aperture ratio of 3%, and the side wall member is a member with a high aperture ratio of 20% or more, and the distance from the bottom is at least 15m.
A partition plate made of the same high aperture ratio member is provided facing the bottom surface at a distance of at least m or more and below the height of the side surface, and zinc powder having an oxide film is placed on the bottom surface, and heat treated in an atmosphere containing oxygen. A method for producing zinc oxide whiskers, which comprises selectively producing small zinc oxide whiskers on the upper side of a partition plate and large zinc oxide whiskers on the lower side.
(2)仕切り板の形状が平面状である特許請求の範囲第
1項記載の酸化亜鉛ウィスカの製造方法。
(2) The method for producing zinc oxide whiskers according to claim 1, wherein the partition plate has a planar shape.
(3)仕切り板の形状が底面に対面して波形にウェーブ
している特許請求の範囲第1項記載の酸化亜鉛ウィスカ
の製造方法。
(3) The method for manufacturing zinc oxide whiskers according to claim 1, wherein the shape of the partition plate is wavy in a waveform facing the bottom surface.
(4)低開口率部材の底面が磁器、またはニッケルを含
まない耐食ステンレス鋼板で構成された特許請求の範囲
第1項記載の酸化亜鉛ウィスカの製造方法。
(4) The method for manufacturing zinc oxide whiskers according to claim 1, wherein the bottom surface of the low aperture ratio member is made of porcelain or a corrosion-resistant stainless steel plate that does not contain nickel.
JP63332870A 1988-12-16 1988-12-27 Method for producing zinc oxide whiskers Expired - Lifetime JP2584037B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63332870A JP2584037B2 (en) 1988-12-27 1988-12-27 Method for producing zinc oxide whiskers
PCT/JP1989/001246 WO1990007022A1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
US07/566,475 US5158643A (en) 1988-12-16 1989-12-13 Method for manufacturing zinc oxide whiskers
EP90900992A EP0407601B1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
KR1019900701787A KR930007857B1 (en) 1988-12-16 1989-12-13 Production method of zinc-oxide whisker
DE68924646T DE68924646T2 (en) 1988-12-16 1989-12-13 METHOD FOR PRODUCING ZINCOXIDE WHISKERS.
CA002005737A CA2005737C (en) 1988-12-16 1989-12-15 Manufacturing method of zinc oxide whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332870A JP2584037B2 (en) 1988-12-27 1988-12-27 Method for producing zinc oxide whiskers

Publications (2)

Publication Number Publication Date
JPH02175700A true JPH02175700A (en) 1990-07-06
JP2584037B2 JP2584037B2 (en) 1997-02-19

Family

ID=18259724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332870A Expired - Lifetime JP2584037B2 (en) 1988-12-16 1988-12-27 Method for producing zinc oxide whiskers

Country Status (1)

Country Link
JP (1) JP2584037B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596078B2 (en) 2000-09-21 2003-07-22 Canon Kabushiki Kaisha Method of producing oxide whiskers, oxide whiskers, and photoelectric conversion apparatus
CN112853488A (en) * 2021-01-08 2021-05-28 四川省又飞新材料有限责任公司 Equipment and method for preparing tetrapod-like zinc oxide whiskers by using modified montmorillonite catalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596078B2 (en) 2000-09-21 2003-07-22 Canon Kabushiki Kaisha Method of producing oxide whiskers, oxide whiskers, and photoelectric conversion apparatus
CN112853488A (en) * 2021-01-08 2021-05-28 四川省又飞新材料有限责任公司 Equipment and method for preparing tetrapod-like zinc oxide whiskers by using modified montmorillonite catalyst
CN112853488B (en) * 2021-01-08 2024-02-06 四川祺又飞新材料科技有限责任公司 Equipment and method for preparing tetrapod-like zinc oxide whisker by modified montmorillonite catalyst

Also Published As

Publication number Publication date
JP2584037B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
Liu et al. An improved design of TRISO particle with porous SiC inner layer by fluidized bed-chemical vapor deposition
JPS61201607A (en) Product consisting of pyrolytically prepared boron nitride and its preparation
JP6445283B2 (en) Method for producing gallium nitride crystal
JPH02175700A (en) Production of zinc oxide whisker
KR930007857B1 (en) Production method of zinc-oxide whisker
JP2697431B2 (en) Zinc oxide crystal and method for producing the same
Kuo et al. Crystallization kinetics of lanthanum monoaluminate (LaAlO3) nanopowders prepared by co-precipitation process
Lim et al. Crystallization kinetics and phase transformation characteristics in seeded monophasic cordierite gel
Guo et al. Five-fold twinned β-PbF 2 nanocrystals in oxyfluoride glass ceramics
JPH02175699A (en) Production of zinc oxide whisker
JP2584034B2 (en) Manufacturing method of zinc oxide whisker
El-Shall et al. Characterization of Nanoscale Particles Produced by Laser Vaporization/Condensation in a Diffusion Cloud Chamber
JPS6278217A (en) Vapor-phase production of carbon fiber
JPS61158804A (en) Production of silicon nitride
JP3900695B2 (en) Crucible for firing silicon nitride powder
JP6742868B2 (en) Method for producing gallium nitride crystal
JP3900696B2 (en) Crucible for firing silicon nitride powder
JPS57177963A (en) Manufacture of ternary titanium-cobalt alloy for occluding hydrogen
Varma et al. Influence of Processing on Microstructures of Ti-44Al-llNb Alloy
JP3921539B2 (en) Method for producing zinc nanosheets by reduction of zinc sulfide
JPS59107911A (en) Manufacture of gallium phosphide
Onay et al. IN-SITU OBSERVATION OF COPPER OXIDATION IN A HOT-STAGE ENVIRONMENTAL SEM.
CN116081695A (en) Perovskite nano particle and preparation method and application thereof
JP4061378B2 (en) Potassium niobate crystal and method for producing the potassium niobate crystal
JPS62123100A (en) Rhenium oxide whisker and production thereof