JPH02175657A - Ceramic composition, production thereof and forming assistant - Google Patents

Ceramic composition, production thereof and forming assistant

Info

Publication number
JPH02175657A
JPH02175657A JP63332044A JP33204488A JPH02175657A JP H02175657 A JPH02175657 A JP H02175657A JP 63332044 A JP63332044 A JP 63332044A JP 33204488 A JP33204488 A JP 33204488A JP H02175657 A JPH02175657 A JP H02175657A
Authority
JP
Japan
Prior art keywords
formula
polysilazane
group
silicon nitride
formulas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63332044A
Other languages
Japanese (ja)
Other versions
JP2733675B2 (en
Inventor
Kyoichi Ayama
亨一 阿山
Norio Noaki
野明 周夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP63332044A priority Critical patent/JP2733675B2/en
Publication of JPH02175657A publication Critical patent/JPH02175657A/en
Application granted granted Critical
Publication of JP2733675B2 publication Critical patent/JP2733675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a high-density ceramic composition with hardly any shrinkage in calcining without requiring a degreasing step by kneading silicon nitride powder with calcining assistant therefor and polysilazane capable of producing silicon nitride by calcining, forming the kneaded mixture and subsequently calcining the kneaded mixture. CONSTITUTION:Silicon nitride powder and a calcining assistant therefor are blended with a polysilazane capable of producing silicon nitride in an atmosphere at 1650-2200 deg.C calcining temperature in a pressurized state of nitrogen and/or ammonia and the resultant blend is kneaded and then formed. The obtained compact is subsequently calcined. For example, the following are cited as the above-mentioned polysilazane. That is a polysilazane, having a skeletal structure consisting of recurring units expressed by formula I and plural precursor residues having units expressed by formula II partially converted into structural units expressed by formula III, partially and mutually connected with structural units expressed by formula IV. In formulas I to IV, R1 to R4 represent hydrogen, lower alkyl group, (substituted) vinyl group, (substituted) allyl group, (substituted) lower aryl group, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐熱性、耐食性に優れたファインセラミック
スである窒化珪素(Si3N4)を含んだ焼成体の製造
方法ならびにその焼結体に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a sintered body containing silicon nitride (Si3N4), which is a fine ceramic with excellent heat resistance and corrosion resistance, and the sintered body. be.

[従来技術及び発明が解決しようとする課題]一般に、
窒化珪素焼結晶は粉体処理、成形、脱脂、焼成、加工の
各工程を経て製造される。そして成形工程では、一般に
成形助剤および焼結助剤を加えて調製された原料粉体を
型に充填して行うことになるが、これらの成形法には乾
式加圧成形法、揺動成形法、ろくろ成形法、泥漿鋳込み
成形法、射出成形法、押出成形法等の各方法が実施され
ている。
[Prior art and problems to be solved by the invention] Generally,
Sintered silicon nitride crystals are manufactured through the following steps: powder treatment, molding, degreasing, firing, and processing. In the molding process, raw material powder prepared by adding molding aids and sintering aids is generally filled into a mold, and these molding methods include dry pressure molding, rocking molding, etc. Methods such as molding, potter's wheel molding, slurry casting, injection molding, and extrusion molding are being practiced.

一方、成形助剤は、セラミックス粉体に成形性を付与し
、成形体に強度を持たせるために使用されるものであり
、成形方法、技術により使用量や組成は異なるが、成形
後これら使用した成形助剤を除去するため焼成前に脱脂
する必要がある。この脱脂方法としては、一般に加熱脱
脂法が実施されているが、これは成形体中の成形助剤を
分解気化させるものであるため、かなり長時間の脱脂処
理が必要であり、そしてその処理時間は、助剤使用量が
太いほど長く、しかも脱脂条件が厳しくなる。例えば成
形助剤使用量は、機械プレス法で4〜8重量%、ドクタ
ーブレード法で8〜14重量%、押出し法で8〜25重
量%、射出法で10〜25重量%も必要であり、これら
はいずれにしても脱脂工程が不可欠のものであり、しか
も形状が複雑化するほど脱脂処理時間が長くなるという
傾向にある。
On the other hand, molding aids are used to impart moldability to ceramic powder and give strength to molded bodies.The amount and composition used vary depending on the molding method and technology, but these agents are used after molding. It is necessary to degrease before firing to remove molding aids. As a degreasing method, a heating degreasing method is generally carried out, but since this decomposes and vaporizes the molding aid in the molded object, it requires a considerably long degreasing treatment, and the processing time is The larger the amount of auxiliary agent used, the longer the length, and the more severe the degreasing conditions. For example, the amount of molding aid used is 4 to 8% by weight in the mechanical press method, 8 to 14% by weight in the doctor blade method, 8 to 25% by weight in the extrusion method, and 10 to 25% by weight in the injection method. In any case, a degreasing process is essential for these, and the more complex the shape, the longer the degreasing time tends to be.

また、焼成方法としては、反応焼結法、常圧焼結法、雰
囲気焼結法等の方法があるが、反応焼結法は、焼結収縮
率が小さく寸法精度は比較的高いものの、焼結体中に1
5体積%以上の気孔が残り、緻密な焼結体が得られない
。また常圧焼結法は、比較的緻密な焼結体が得られるが
、体積収縮率が30〜50体積%に達し、焼結中に割れ
、亀裂、歪み等を生じ易い。しかも焼結温度を高くする
と、窒化珪素が珪素と窒素に解離するため、1650℃
〜1700℃の比較的低温で焼結助剤を用いて焼結する
必要がある。さらに雰囲気加圧焼結は、より高温で少な
い焼結助剤での焼結ができ、そして高温強度に優れた緻
密な焼結体が得られるが、体積収縮を避けることができ
ず、30〜50重量%の収縮がおこるという問題がある
In addition, firing methods include reaction sintering, normal pressure sintering, and atmosphere sintering, but reactive sintering has a small sintering shrinkage rate and relatively high dimensional accuracy, but 1 during consolidation
Pores of 5% by volume or more remain, and a dense sintered body cannot be obtained. In addition, although the pressureless sintering method allows a relatively dense sintered body to be obtained, the volumetric shrinkage rate reaches 30 to 50% by volume, and cracks, cracks, distortions, etc. are likely to occur during sintering. Moreover, when the sintering temperature is increased, silicon nitride dissociates into silicon and nitrogen, so
It is necessary to sinter at relatively low temperatures of ~1700°C using sintering aids. Furthermore, atmospheric pressure sintering allows sintering at higher temperatures and with less sintering aid, and produces a dense sintered body with excellent high-temperature strength, but volume shrinkage cannot be avoided, and There is a problem in that a shrinkage of 50% by weight occurs.

この様に、セラミックス成形体を得るためには成形助剤
を必要とし、その除去を行うため、場合によっては2〜
8日の長時間の脱脂処理工程が必要とされ、使用する成
形助剤の量が多いほど、また形状が複雑であるほど脱脂
処理に時間がかかり、しかも割れ、脹れ、気孔、変形等
の欠陥が発生する。これを防止するため、成形助剤の種
類及び組合せ、成形助剤の量等の検討が行われているが
、容易ではない。さらに成形体は、脱脂後において、充
填率が100%のものでは成形助剤の占有体積分だけの
空孔が残り、充填率の低い成形体については、その分も
含めた多量の空孔が残ることになる。そしてこれら脱脂
後の成形体を焼成工程で高密度に焼締めると、脱脂工程
での変形と合わせて大きな収縮、歪み、変形が起きた焼
結体となる。
In this way, in order to obtain a ceramic molded body, a molding aid is required, and in order to remove it, depending on the case, two or more molding aids are required.
A long degreasing process of 8 days is required, and the larger the amount of molding aid used and the more complex the shape, the longer the degreasing process takes, and the more likely it is that cracks, swelling, pores, deformation, etc. Defects occur. In order to prevent this, studies have been made on the types and combinations of molding aids, the amount of molding aids, etc., but this is not easy. Furthermore, after degreasing, a molded product with a filling rate of 100% will have pores equal to the volume occupied by the molding aid, and a molded product with a low filling rate will have a large amount of pores including the volume occupied by the molding aid. It will remain. When these degreased molded bodies are sintered to a high density in a firing process, the sintered bodies undergo large shrinkage, distortion, and deformation as well as deformation in the degreasing process.

そこでポリシラザンを使用した窒化珪素焼結体を成形す
ることに関し、先行技術として、圧粉成形体から焼結体
を得る手法が特開昭63−25276号公報において知
られている。しかしながらこのものは、使用するポリシ
ラザンが、(CN3SiHNH)。、45・(CN3 
SIHN CN3 )。、。3・(CN3SiN)。、
、2であり、この様なポリシラザンを用いた場合には、
焼成雰囲気におけるN2圧が10気圧以下では良好な焼
結体を得ることができず、さらに解決すべき課題がある
Regarding the molding of a silicon nitride sintered body using polysilazane, a method of obtaining a sintered body from a compacted powder body is known as a prior art in Japanese Patent Laid-Open No. 63-25276. However, in this case, the polysilazane used is (CN3SiHNH). , 45・(CN3
SIHN CN3). ,. 3.(CN3SiN). ,
, 2, and when such polysilazane is used,
If the N2 pressure in the firing atmosphere is less than 10 atm, a good sintered body cannot be obtained, and there are further problems to be solved.

[課題を解決するための手段] 本発明は、上記の如き実情に鑑み、焼結時の収縮が少な
く、かつ脱脂工程を必要としない窒化珪素成形体用成形
助剤および成形体の焼成方法ならびにこれらから得られ
る高密度のセラミック組成物を得ることができるよう鋭
意検討を行った結果、ここに完成するに至ったものであ
る。
[Means for Solving the Problems] In view of the above-mentioned circumstances, the present invention provides a molding aid for a silicon nitride molded body, which causes less shrinkage during sintering and does not require a degreasing process, and a method for firing the molded body. As a result of extensive research into the possibility of obtaining a high-density ceramic composition obtained from these materials, we have finally completed this work.

そこで本発明は、窒化珪素粉末と窒化珪素焼結助剤とに
、窒素または/およびアンモニア加圧状態で1650〜
2200℃の焼結温度雰囲気下にて窒化珪素を生成する
ポリシラザンを混練させて成形体を形成し、該成形体を
焼成してなることを特徴とするセラミック組成物の製造
方法に関するものである。
Therefore, the present invention provides silicon nitride powder and a silicon nitride sintering aid with nitrogen or/and ammonia under pressure at a temperature of 1650 to
The present invention relates to a method for producing a ceramic composition, which comprises kneading polysilazane that produces silicon nitride in an atmosphere at a sintering temperature of 2200°C to form a molded body, and firing the molded body.

そしてこの様なポリシラザンとしては、式(イ)(ロ)
(ハ)で示されるポリシラザンがある。
And as such polysilazane, formulas (a) and (b)
There is a polysilazane represented by (c).

式(イ)のポリシラザンとしては、 の繰返し単位からなる骨格構造を有し、式:  R□ なる単位を有する複数の先廃体残基が、一部は式: %式% なる構造単位となり、一部は −N−3i−R1 なる構造単位により互いに連結しているポリシラザンで
ある。
The polysilazane of formula (A) has a skeleton structure consisting of repeating units, and a plurality of pre-waste residues having units of formula: R□ partially become structural units of formula: %formula%, Some of them are polysilazane that are connected to each other by structural units of -N-3i-R1.

[尚、式中、R工、R2、R3、R4は、水素(但し、
水素はR1、R2、R3は含むことができ、R4は含ま
ない。以下同じ。)、メチル基、エチル基、n−プロピ
ル基、イソプロピル基等の1から6個までの炭素原子を
有する低級アルキル基、置換または非置換のビニル基、
置換または非置換のアリル基、フェニル基、トリル基、
キシリル基等の6から10個までの炭素原子を有する置
換または非置換の低級アリール基、トリメチル−、ジメ
チル、メチルエチル−、トリエチル−シリル基等のトリ
(低級)アルキル−またはジ(低級)アルキルシリル基
、若しくはジメチル−、ジエチル−メチルエチル−、ジ
イソプロピル−アミノ基等のジ(低級)アルキルアミノ
基(但し、ジ(低級)アルキルアミノ基はR1、R2、
R1は含むことができ、R4は含まない。以下同じ。)
であって。
[In the formula, R, R2, R3, and R4 are hydrogen (however,
Hydrogen can include R1, R2, and R3, but not R4. same as below. ), lower alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, substituted or unsubstituted vinyl group,
Substituted or unsubstituted allyl group, phenyl group, tolyl group,
Substituted or unsubstituted lower aryl groups having 6 to 10 carbon atoms such as xylyl, tri(lower)alkyl or di(lower)alkyl such as trimethyl, dimethyl, methylethyl, triethylsilyl; Silyl group, or di(lower) alkylamino group such as dimethyl-, diethyl-methylethyl-, diisopropyl-amino group (however, di(lower) alkylamino group is R1, R2,
R1 can be included and R4 is not included. same as below. )
And.

しかもR□、R2、R3、R4は同じでも異なっていて
も良いものである。コ 式(ロ)のポリシラザンとしては、 の繰返し単位から成る骨格構造を有し、先訃体における
式: なる単位の繰返しである残基が、 式: %式% なる構造単位で互いに連結してなるポリシラザンであっ
て、前記先駆体は、 式: %式% および式:R5 i −N R,H なる単位から構成されていることを特徴とするポリシラ
ザンである。
Furthermore, R□, R2, R3, and R4 may be the same or different. The polysilazane of the formula (B) has a skeleton structure consisting of repeating units, and residues that are repeating units of the formula: in the antecedent form are connected to each other by structural units of the formula: %formula% The precursor is a polysilazane characterized in that it is composed of units of the formula: % formula % and the formula: R5 i -NR,H.

[尚、式中、R1については第1請求項に記載されたも
のに準じ、またR5、R6については、メチル基、エチ
ル基、n−プロピル基、イソプロピル基等の1から6個
までの炭素原子を有する低級アルキル基、置換または非
置換のビニル基、置換または非置換のアリル基、フェニ
ル基、トリル基、キシリル基等の6から10個までの炭
素原子を有する置換または非置換の低級アリール基、ト
リメチル−、ジメチル−、メチルエチル−、トリエチル
−シリル基等のトリ(低級)アルキル−またはジ(低級
)アルキルシリル基、若しくはジメチル、ジエチル−、
メチルエチル−、ジイソプロピル−アミノ基等のジ(低
級)アルキルアミノ基であって、しかもR1、R5、R
6は同じでも異なっていても良いものである]。
[In the formula, R1 is as described in the first claim, and R5 and R6 are 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, etc. Substituted or unsubstituted lower aryl having 6 to 10 carbon atoms, such as substituted or unsubstituted vinyl group, substituted or unsubstituted allyl group, phenyl group, tolyl group, xylyl group, etc. group, tri(lower)alkyl- or di(lower)alkylsilyl group such as trimethyl-, dimethyl-, methylethyl-, triethyl-silyl group, or dimethyl-, diethyl-,
A di(lower) alkylamino group such as methylethyl-, diisopropyl-amino group, and R1, R5, R
6 may be the same or different].

また式(ハ)のポリシラザンとしては、の繰返し単位か
らなる骨格構造を有し、式:  R□ なる単位を有する複数の先駆体残基が、一部は式: なる構造単位となり、一部は式: なる構造単位により互いに連結しているポリシラザンで
あって、さらにその先駆体の一部H および式:R5 G H なる単位から構成されていることを特徴とするポリシラ
ザンである。
In addition, the polysilazane of formula (c) has a skeleton structure consisting of repeating units, and a plurality of precursor residues having a unit of the formula: R□, some of which become structural units of the formula: It is a polysilazane that is connected to each other by structural units of the formula: and is further composed of a portion of its precursor H and units of the formula: R5 GH.

[尚、R□、R2、R3、R4,RS、 R,について
は、前記第2、第3請求項に記載されたものに準じ、か
つR□、R2、R3、R4,R,、R6は同じでも異な
っていても良い(以下同じ)。コまた本発明は、窒化珪
素粉末、窒化珪素焼結助剤、および窒素または/および
アンモニア加圧状態で、1650〜2200℃の焼結温
度雰囲気下にて窒化珪素を生成するポリシラザンを混練
させて成形体を形成し、該成形体を焼成して生成してな
ることを特徴とするセラミックス組成物に関するもので
ある。
[Note that R□, R2, R3, R4, RS, and R are as described in the second and third claims, and R□, R2, R3, R4, R, and R6 are They may be the same or different (the same applies below). Additionally, the present invention provides a method of kneading silicon nitride powder, a silicon nitride sintering aid, and a polysilazane that produces silicon nitride in an atmosphere with a sintering temperature of 1650 to 2200° C. under nitrogen or/and ammonia pressure. The present invention relates to a ceramic composition produced by forming a molded body and firing the molded body.

この場合に用いられるポリシラザンとしては、前記式(
イ)(ロ)(ハ)で示されるポリシラザンのうちの少な
くとも一種類を含んだものがあげられる。
The polysilazane used in this case has the above formula (
Examples include those containing at least one of the polysilazane shown in (a), (b), and (c).

さらに本発明は、窒化珪素粉末、窒化珪素焼結助剤と混
練され、脱脂工程のない状態での成形を可能とするため
に用いる成形助剤であって、該成形助剤は、窒素または
/およびアンモニア加圧状態で、1650〜2200℃
の焼結温度雰囲気下にて窒化珪素を生成するポリシラザ
ンであることを特徴とするセラミックス組成物の成形助
剤に関するものである。
Furthermore, the present invention provides a molding aid that is kneaded with silicon nitride powder and a silicon nitride sintering aid and is used to enable molding without a degreasing step, the molding aid comprising nitrogen or/and a silicon nitride sintering aid. and 1650-2200℃ under ammonia pressure
The present invention relates to a molding aid for ceramic compositions, which is a polysilazane that produces silicon nitride under a sintering temperature atmosphere of .

この場合のポリシラザンとしても、前記式(イ)(ロ)
(ハ)で示されるポリシラザンのうちの少なくとも一種
類を含んだものがあげられる。
In this case, polysilazane may also be represented by the formulas (a) and (b) above.
Examples include those containing at least one type of polysilazane shown in (c).

このポリシラザン(Polysilazane)をSi
3N4粉末、A1□03粉末およびY2O3粉末に成形
助剤として混練することにより、良好な成形性を付与し
また充分な成形体強度を与えかつ脱脂工程が不要でしか
も窒素雰囲気の10気圧以下という低い圧力下で焼成収
縮の小さい高密度窒化珪素焼結体を得ることができるも
のである。
This polysilazane (Polysilazane) is
By kneading 3N4 powder, A1□03 powder, and Y2O3 powder as a molding aid, it gives good moldability and sufficient strength to the molded product, does not require a degreasing process, and has a low temperature of 10 atm or less in a nitrogen atmosphere. It is possible to obtain a high-density silicon nitride sintered body with small firing shrinkage under pressure.

[以下余白] 前記ポリシラザンはN2または/およびNH3雰囲気下
で1650〜2200℃の温度で焼成すると高収率でS
i 3N 4を生成するため、一般に使用されている有
機成形助剤の様に、成形後脱脂除去する必要がなく、ま
たSi、N、とじて成形体中に残るため、上述の一般の
有機成形助剤を除去した場合に発生するものに対して抑
えられた空孔率となる。
[Left below] When the polysilazane is fired at a temperature of 1650 to 2200°C in an N2 or/and NH3 atmosphere, it can be converted to S in high yield.
Since it generates i3N4, there is no need to degrease it after molding, unlike commonly used organic molding aids, and it remains in the molded product as Si and N, so it can be used for the general organic molding mentioned above. This results in a reduced porosity compared to what would occur if the auxiliary agent were removed.

従って最終焼結体の収縮、変形率が小さく、分解気化す
るガスも少ないので亀裂、脹れ等の欠陥も生じにくい。
Therefore, the shrinkage and deformation rate of the final sintered body is small, and there is little gas to decompose and vaporize, so defects such as cracks and bulges are less likely to occur.

尚、本発明を実施するにあたり、反応雰囲気として、N
2または/およびNH,にアルゴン、ヘリウム等の不活
性ガスを混在させても良いことは言うまでもない。
In carrying out the present invention, N is used as the reaction atmosphere.
It goes without saying that an inert gas such as argon or helium may be mixed with 2 and/or NH.

例えばポリシラザンを成形助剤として50vo1%用い
た場合と有機成形助剤を50vo1%用いた場合の高密
度焼結体の収縮率を比較すると、本発明のポリシラザン
を用いた場合においては、密度1.0のポリシラザンが
成形体中で加熱されて密度3.2のSi、N4に変化し
約70%の重量減少があることから、成形体収縮率は4
0vo1%となるが、従来のように有機成形助剤を用い
た場合の収縮率は50vo1%となる。本発明における
成形助剤としてのポリシラザンならびにそれを用いた窒
化珪素焼結体の製造方法は、10気圧以下のN2または
NH3加圧下においても良好な高密度窒化珪素焼結体が
得られ、しかも本発明におけるポリシラザンは一般の有
機高分子と同様に有機溶媒に可溶であり、また加熱軟化
するなどの性質を合わせ持っており、他の有機物を添加
することなしにセラミックスの一般的成形法、例えば押
出し成形、射出成形、泥漿鋳込み成形、ドクターブレー
ド等の一般的な成形法を用いて、脱脂工程無くして成形
体を製造することが可能であり、また得られた成形体は
高寸法精度、高密度であって、強度が大きく機械加工に
も適するなど極めて重要なものである。
For example, when comparing the shrinkage rates of high-density sintered bodies when using 50vol% of polysilazane as a molding aid and when using 50vol% of an organic molding aid, it is found that when the polysilazane of the present invention is used, the density is 1. 0 polysilazane is heated in the molded body and changes to Si and N4 with a density of 3.2, resulting in a weight loss of approximately 70%, so the molded body shrinkage rate is 4.
The shrinkage rate is 0vo1%, but when an organic molding aid is used as in the conventional case, the shrinkage rate is 50vo1%. The polysilazane as a forming aid in the present invention and the method for producing a silicon nitride sintered body using the same can produce a good high-density silicon nitride sintered body even under N2 or NH3 pressure of 10 atmospheres or less, and the present invention The polysilazane in the invention is soluble in organic solvents like general organic polymers, and also has properties such as being softened by heating, and can be used in general ceramic forming methods without adding other organic substances, for example. Using general molding methods such as extrusion molding, injection molding, slurry casting, and doctor blade molding, it is possible to produce molded bodies without a degreasing process, and the molded bodies obtained have high dimensional accuracy and high quality. It is extremely important because it has high density, high strength, and is suitable for machining.

反応主剤として用いるSi、N、粉末は、従来使用して
いるものでよいが、粒が小さく、粒径がそろっているも
のが好ましい。焼結助剤はBe、Mg、A1、Yおよび
希土類元素の酸化物や窒化物である。これら焼結助剤の
添加量は10重量%以下が好ましく、これは焼結可能な
範囲で少ない方が好ましい。さらに加圧は、Si3N4
が解離を生じない圧力を選択する必要がある。そして焼
成昇温速度は700℃までは15℃/min以下が好ま
しく、5℃/min以下がより好ましい。焼成温度は1
650℃〜2200℃であり、1800℃〜1900℃
が好ましい。
The Si, N, and powder used as the main reaction ingredients may be those conventionally used, but those with small particles and uniform particle sizes are preferable. Sintering aids include oxides and nitrides of Be, Mg, A1, Y, and rare earth elements. The amount of these sintering aids added is preferably 10% by weight or less, and it is preferably as small as possible within the range that allows sintering. Furthermore, the pressurization is Si3N4
It is necessary to select a pressure that does not cause dissociation. The firing temperature increase rate is preferably 15°C/min or less up to 700°C, more preferably 5°C/min or less. The firing temperature is 1
650℃~2200℃, 1800℃~1900℃
is preferred.

本発明に使用されるポリシラザンは主鎖骨格がSiとN
からなる重合体であって、分子式あるいは分子構造は製
造方法により異なり、またセラミックス収率も様々であ
る。本発明においては以下に示すセラミック収率が高く
加熱軟化性のものが好適に使用できる。これら本発明の
ポリシラザンの添加量は概略5〜70vo1%が好まし
く、成形方法により異なる。
The polysilazane used in the present invention has a main chain skeleton of Si and N.
The molecular formula or molecular structure differs depending on the manufacturing method, and the ceramic yield also varies. In the present invention, the following ceramics having a high yield and heat softening properties can be suitably used. The amount of the polysilazane of the present invention added is preferably approximately 5 to 70 vol%, and varies depending on the molding method.

本発明に用いるポリシラザンの製造方法についてである
が、前記(イ)のポリシラザンについては、例えば、無
水アンモニアを、オルガノジハロシランR□SiHX 
2と溶液中で反応させて環状または直鎖状のシラザン先
駆体を形成させ、該先II体混合物に対し、式: %式% で表されるシラザンまたはシリルアミン化合物を先駆体
中に共存させつつ、珪素原子に隣接する窒素原子から水
素を脱プロトン化する能力のある塩基性触媒の存在下で
反応させ、脱水素環化架橋せしめて高分子化することに
より生成することができる。
Regarding the method for producing polysilazane used in the present invention, for example, for the polysilazane (a), anhydrous ammonia is mixed with organodihalosilane R□SiHX
2 in a solution to form a cyclic or linear silazane precursor, and to the mixture of the former II compound, while coexisting in the precursor a silazane or silylamine compound represented by the formula: can be produced by reacting in the presence of a basic catalyst capable of deprotonating hydrogen from a nitrogen atom adjacent to a silicon atom, resulting in dehydrogenated cyclization crosslinking and polymerization.

尚、各式中、R□、R2、R3、R4は、水素(但し、
水素はR1、R2、R3の場合は含むことができ、R4
は含まない。以下同じ。)、メチル基、エチル基、n−
プロピル基、イソプロピル基等の1から6個までの炭素
原子を有する低級アルキル基、置換または非置換のビニ
ル基、置換または非置換のアリル基、フェニル基、トリ
ル基、キシリル基等の6から10個までの炭素原子を有
する置換または非置換の低級アリール基、トリメチル−
ジメチル−、メチルエチル−11−リエチルーシリル基
等のトリ(低級)アルキル−またはジ(低級)アルキル
シリル基、若しくはジメチル−、ジエチル−、メチルエ
チル−、ジイソプロピル−アミノ基等のジ(低級)アル
キルアミノ基(但しジ(低級)アルキルアミノ基はRよ
、R2、R3は含むことができ、R4は含まない。以下
同じ。)であって、しかもR1、R2、R3、R4は同
じでも異なっていても良いものである。また、Xは塩素
、臭素等のハロゲンである(以下同じ)。
In each formula, R□, R2, R3, and R4 are hydrogen (however,
Hydrogen can be included in the case of R1, R2, R3, and R4
is not included. same as below. ), methyl group, ethyl group, n-
Lower alkyl groups having 1 to 6 carbon atoms such as propyl group, isopropyl group, substituted or unsubstituted vinyl group, substituted or unsubstituted allyl group, phenyl group, tolyl group, xylyl group, etc. 6 to 10 Substituted or unsubstituted lower aryl group having up to 3 carbon atoms, trimethyl-
Tri(lower)alkyl- or di(lower)alkylsilyl groups such as dimethyl-, methylethyl-11-liethylsilyl groups, or di(lower)alkylamino groups such as dimethyl-, diethyl-, methylethyl-, diisopropyl-amino groups (However, a di(lower) alkylamino group may include R, R2, and R3, but does not include R4. The same applies hereinafter.), and R1, R2, R3, and R4 may be the same or different. is also good. Moreover, X is a halogen such as chlorine or bromine (the same applies hereinafter).

また式(ロ)で示されるポリシラザンの製法については
、無水アンモニアを、R,5iHX2およびR3RGS
iX2のオルガノハロシラン混合物と溶液中で反応させ
、これによって環状または直鎖状のシラザン先駆体を形
成させ、該先駆体を、珪素原子に隣接する窒素原子から
水素を脱プロトン化する能力を有する塩基性触媒の存在
下で脱プロ)・ン環化架橋せしめることにより重合体を
製造することができる。
In addition, regarding the method for producing polysilazane represented by formula (b), anhydrous ammonia is mixed with R, 5iHX2 and R3RGS.
iX2 in solution with an organohalosilane mixture, thereby forming a cyclic or linear silazane precursor, which has the ability to deprotonate the hydrogen from the nitrogen atom adjacent to the silicon atom. The polymer can be produced by crosslinking through depro-cyclization in the presence of a basic catalyst.

さらに式(ハ)のポリシラザンについては、無水アンモ
ニアを、R1Si HX2およびR6R6SiX 2の
オルガノハロシラン混合物と溶液中で反応させて環状ま
たは直鎖状のシラザン先駆体を形成させ、該先駆体混合
物に対し、式: %式%() で表されるシラザンまたはシリルアミン化合物を先駆体
中に共存させつつ、珪素原子に隣接する窒素原子から水
素を脱プロトン化する能力のある塩基性触媒の存在下で
反応させ、脱水素環化架橋せしめることにより高分子量
化すること得ることができる。そしてこのものにおいて
、特に前記(A)の含有率は1〜60モル%、Rg R
G SiX 2の含有率は1〜60モル%、であって(
A)とRsR,5iX2を加えた含有率は2〜60モル
%であることが好ましい。
Furthermore, for the polysilazane of formula (c), anhydrous ammonia is reacted in solution with an organohalosilane mixture of R1Si HX2 and R6R6SiX2 to form a cyclic or linear silazane precursor; , the reaction is carried out in the presence of a basic catalyst capable of deprotonating hydrogen from the nitrogen atom adjacent to the silicon atom while coexisting in the precursor a silazane or silylamine compound represented by the formula %(). The molecular weight can be increased by dehydrogenation and crosslinking. In this product, the content of (A) is 1 to 60 mol%, Rg R
The content of GSiX2 is 1 to 60 mol%, and (
The content of A) plus RsR, 5iX2 is preferably 2 to 60 mol%.

[作用効果] 以上要するに、本発明は叙述の如く構成されたものであ
るから、窒化珪素粉末とその焼結助剤とを用いてセラミ
ック組成物を形成する場合に、窒素または/およごアン
モニア加圧状態で1650〜2200℃の焼結温度雰囲
気下にて窒化珪素を生じるポリシラザンを成形助剤とし
て混練させることになる。そしてこの焼結工程において
、上記ポリシラザンから高収率でSi3N4が生成する
ため、一般に使用されている有機成形助剤の様に、成形
後脱脂除去する必要が全くなく、しかもSi3N4とし
て成形体中にそのまま残ることになって、従来のように
有機成形助剤を除去することにより発生する空孔率を抑
えることができて、最終焼結体の収縮、変形率が小さく
、分解気化するガスも少ないので亀裂、脹れ等の欠陥も
生じにくいセラミック組成物にできる。しかもこのポリ
シラザンを用いてのセラミック組成物の焼成に際し、1
0気圧以下の低圧雰囲気下でも充分に良好な成形性を与
えることができて、セラミックス組成物を成形する場合
に一般的に使用される成形方法たとえば熱可塑成形、泥
漿鋳込み成形、プレス成形等の成形方法が、低圧で、し
かも脱脂工程を全く不要にしAA7− てできる。しかも得られたセラミック組成物は、焼成収
縮率が小さく、亀裂、欠陥のない高密度焼成体が得られ
、歪みが少なく寸法精度が高い有用なものとなる。
[Function and Effect] In summary, the present invention is constructed as described above, so when forming a ceramic composition using silicon nitride powder and its sintering aid, nitrogen or/and ammonia pressurization is not necessary. In this state, polysilazane, which produces silicon nitride, is kneaded as a forming aid in an atmosphere at a sintering temperature of 1,650 to 2,200°C. In this sintering process, Si3N4 is generated from the polysilazane at a high yield, so there is no need to degrease it after molding, unlike commonly used organic molding aids, and moreover, it is not necessary to remove fat from the molded body as Si3N4. As it remains as is, the porosity generated by removing the organic forming aid can be suppressed, resulting in less shrinkage and deformation of the final sintered body, and less gas that decomposes and vaporizes. Therefore, it is possible to create a ceramic composition that is less prone to defects such as cracks and swelling. Moreover, when firing a ceramic composition using this polysilazane, 1
It can provide sufficiently good formability even in a low-pressure atmosphere of 0 atmospheres or less, and can be applied to molding methods commonly used when molding ceramic compositions, such as thermoplastic molding, slurry casting, and press molding. The molding method can be performed at low pressure and completely eliminates the need for a degreasing process. Moreover, the obtained ceramic composition has a small firing shrinkage rate, a high-density fired body without cracks and defects, and is useful with low distortion and high dimensional accuracy.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

[実施例1] α−813N4粉末(電気化学工業製5N−9S)を8
7.0重量%、A1□03粉末(岩谷化学工業製アルミ
ナBタイプ)を4.9重量%、Y2O3粉末(三菱化成
工業イン1ヘリヤ0.8μm)を4.9重量%に、3.
3重量%の上記(ロ)式に記載するR□、R5、R6が
いずれもメチル基で数平均分子量が12oOのポリシラ
ザンをトルエン溶液で加え混練し、真空乾燥してα−8
i3N4粉末、A1□03粉末、Y2O3粉末およびポ
リシラザンの均一に分散した粉末を得た。その粉末を5
0X60nwn鉄製金型に入れ約30kg/、fflで
一軸加圧成形しその後3000 kg/ cm2の静水
圧プレスをして69゜5%TDの成形体を得た。その成
形体を窒化珪素るつぼに入れてSi3N4の詰め粉をし
た。焼成は1気圧窒素雰囲気で3℃/minで700 
’Cまで昇温し、その後15℃/minで1100℃ま
で昇温し、さらに10℃/minで1650℃まで昇温
した。
[Example 1] α-813N4 powder (5N-9S manufactured by Denki Kagaku Kogyo) was
7.0% by weight, 4.9% by weight of A1□03 powder (Alumina B type manufactured by Iwatani Chemical Co., Ltd.), 4.9% by weight of Y2O3 powder (Mitsubishi Chemical In1 Helia 0.8 μm), 3.
3% by weight of polysilazane, in which R□, R5, and R6 are all methyl groups and the number average molecular weight is 12oO, which is described in the above formula (b), is added in a toluene solution, kneaded, and vacuum-dried to obtain α-8.
Uniformly dispersed powders of i3N4 powder, A1□03 powder, Y2O3 powder and polysilazane were obtained. 5 of the powder
It was placed in a 0x60nwn iron mold and uniaxially pressed at about 30kg/ffl, followed by isostatic pressing at 3000kg/cm2 to obtain a molded body with a TD of 69° and 5%. The molded body was placed in a silicon nitride crucible and filled with Si3N4 powder. Firing was performed at 700°C at 3°C/min in a nitrogen atmosphere of 1 atm.
The temperature was raised to 'C, then the temperature was raised to 1100°C at 15°C/min, and further the temperature was raised to 1650°C at 10°C/min.

その後圧力を9.5気圧に保ちながら、10℃/min
で1850℃まで昇温し、これを3時間保持した後、自
然冷却して焼成体を得た。この焼成体の密度は98%T
D、線収縮率12%、常温曲げ強度は741Mpaであ
った。
After that, while maintaining the pressure at 9.5 atm,
The temperature was raised to 1850° C., maintained at this temperature for 3 hours, and then naturally cooled to obtain a fired body. The density of this fired body is 98%T
D, linear shrinkage rate was 12%, and room temperature bending strength was 741 Mpa.

[実施例2] α−8i3N4粉末を79.7重量%、Al2O,粉末
を4.4重量%、Y2O3粉末を4.4重量%に、11
.5重量%の上記(ロ)式に記載するR□、R5、R6
がいずれもメチル基で数平均分子量が1200のポリシ
ラザンをトルエン溶液で加え、実施例1の要領で成形し
、67.8%TDの成形体を得た。これを実施例1の要
領で焼成した。焼成体の密度は97.4%TD、線収縮
率1166%。
[Example 2] 79.7% by weight of α-8i3N4 powder, 4.4% by weight of Al2O powder, 4.4% by weight of Y2O3 powder, 11
.. 5% by weight of R□, R5, R6 described in the above formula (b)
A polysilazane having a methyl group and a number average molecular weight of 1200 was added in a toluene solution and molded in the same manner as in Example 1 to obtain a molded product with a TD of 67.8%. This was fired in the same manner as in Example 1. The density of the fired body is 97.4% TD, and the linear shrinkage rate is 1166%.

常温曲げ強度は682Mpaであった。The room temperature bending strength was 682 MPa.

[実施例3] a−8i3N、粉末63.7重量%、A12o、]粉末
3.5重量%、Y2O3粉末3,5重量%に、実施例1
に記載したポリシラザン29.3重量%をトルエン溶液
で加え、実施例1の要領で均一に分散した粉末を得た。
[Example 3] a-8i3N, 63.7% by weight of powder, A12o, 3.5% by weight of powder, 3.5% by weight of Y2O3 powder, Example 1
29.3% by weight of the polysilazane described in Example 1 was added in a toluene solution to obtain a uniformly dispersed powder in the same manner as in Example 1.

その粉末を、90℃に加熱した円筒に入れ100 Kg
/a++2の圧力で直径1.0mmの円柱形成形体を得
た。この成形体を実施例1の要領で焼成した。焼成体の
密度は96%TD、線収縮率17%であった。
Put the powder into a cylinder heated to 90℃ and weigh 100 kg.
A cylindrical shaped body with a diameter of 1.0 mm was obtained at a pressure of /a++2. This molded body was fired in the same manner as in Example 1. The density of the fired body was 96% TD, and the linear shrinkage rate was 17%.

[実施例4] α−3i、N4粉末75.0重量%、A1□03粉末4
.0重量%、Y2O3粉末4.0重量%に、実施例1に
記載したポリシラザン17重量%をトルエン溶液で加え
撹拌後、均一なスラリーにした。このスラリーを70X
20X10mmの型に流し込み真空乾燥して成形体を得
た。この成形体を実施例1の要領で焼成した。焼成体の
密度は91%TD、線収縮率12%であった。
[Example 4] α-3i, N4 powder 75.0% by weight, A1□03 powder 4
.. 0% by weight and 4.0% by weight of Y2O3 powder, 17% by weight of the polysilazane described in Example 1 was added as a toluene solution and stirred to form a uniform slurry. This slurry is 70X
The mixture was poured into a 20×10 mm mold and dried under vacuum to obtain a molded product. This molded body was fired in the same manner as in Example 1. The density of the fired body was 91% TD, and the linear shrinkage rate was 12%.

[実施例5] α−5i3N、粉末83.8重量%、Al2O3粉末4
.6重量%、Y2O3粉末4.6重量%に、7゜0重量
%の上記(イ)に示されるR1、R2、R3、R2が何
れもメチル基で、数平均分子量が1100のポリシラザ
ンをトルエン溶液で加え、実施例1の要領で焼成及び焼
成をした。得られた焼成体の密度は98%TD、線収縮
率は12.5%、常温曲げ強度は614Mpaであった
[Example 5] α-5i3N, powder 83.8% by weight, Al2O3 powder 4
.. 6% by weight, 4.6% by weight of Y2O3 powder, 7% by weight of the polysilazane shown in (a) above, in which R1, R2, R3, and R2 are all methyl groups and the number average molecular weight is 1100, was added to a toluene solution. and calcined and baked in the same manner as in Example 1. The density of the obtained fired body was 98% TD, the linear shrinkage rate was 12.5%, and the room temperature bending strength was 614 MPa.

[実施例6] α−8i3N4粉末79.7重量%、A1□03粉末4
.4重量%、Y2O3粉末4.4重量%に、11゜5重
量%の上記(ハ)に示されるR1、R2、R3、R4,
R5、R6が何れもメチル基で、数平均分子量が120
0のポリシラザンをトルエン溶液で加え、実施例1の要
領で焼成及び焼成をした。得られた焼成体の密度は97
%TD、線収縮率は11゜6%、常温曲げ強度は655
 Mpaであった。
[Example 6] α-8i3N4 powder 79.7% by weight, A1□03 powder 4
.. 4% by weight, 4.4% by weight of Y2O3 powder, 11°5% by weight of R1, R2, R3, R4, shown in (c) above,
R5 and R6 are both methyl groups, and the number average molecular weight is 120
0 polysilazane was added as a toluene solution, and firing and firing were performed in the same manner as in Example 1. The density of the obtained fired body is 97
%TD, linear shrinkage rate is 11°6%, room temperature bending strength is 655
It was Mpa.

Claims (1)

【特許請求の範囲】 1)窒化珪素粉末と窒化珪素焼結助剤とに、窒素または
/およびアンモニア加圧状態で1650〜2200℃の
焼結温度雰囲気下にて窒化珪素を生成するポリシラザン
を混練させて成形体を形成し、該成形体を焼成してなる
ことを特徴とするセラミック組成物の製造方法。 2)前記第1請求項のポリシラザンは式(イ)で示され
るものであることを特徴とするセラミック組成物の製造
方法。 式(イ)は、 式:▲数式、化学式、表等があります▼ の繰返し単位からなる骨格構造を有し、 式:▲数式、化学式、表等があります▼ なる単位を有する複数の先駆体残基が、一部は式:▲数
式、化学式、表等があります▼ なる構造単位となり、一部は 式:▲数式、化学式、表等があります▼ なる構造単位により互いに連結しているポリシラザンで
ある。 [尚、式中、R_1、R_2、R_3、R_4は、水素
(但し、水素はR_1、R_2、R_3は含むことがで
き、R_4は含まない。以下同じ。)、メチル基、エチ
ル基、n−プロピル基、イソプロピル基等の1から6個
までの炭素原子を有する低級アルキル基、置換または非
置換のビニル基、置換または非置換のアリル基、フェニ
ル基、トリル基、キシリル基等の6から10個までの炭
素原子を有する置換または非置換の低級アリール基、ト
リメチル−、ジメチル−、メチルエチル−、トリエチル
−シリル基等のトリ(低級)アルキル−またはジ(低級
)アルキルシリル基、若しくはジメチル−、ジエチル−
、メチルエチル−、ジイソプロピル−アミノ基等のジ(
低級)アルキルアミノ基(但し、ジ(低級)アルキルア
ミノ基はR_1、R_2、R_3は含むことができ、R
_4は含まない。以下同じ。)であつて、しかもR_1
、R_2、R_3、R_4は同じでも異なつていても良
いものである。] 3)前記第1請求項のポリシラザンは式(ロ)で示され
るものであることを特徴とするセラミックスの製造方法
。 式(ロ)は、 式:▲数式、化学式、表等があります▼ の繰返し単位から成る骨格構造を有し、先駆体における
式: ▲数式、化学式、表等があります▼ なる単位の繰返しである残基が、 式:▲数式、化学式、表等があります▼ なる構造単位で互いに連結してなるポリシラザンであつ
て、前記先駆体は、 式:▲数式、化学式、表等があります▼ および式:▲数式、化学式、表等があります▼ なる単位から構成されていることを特徴とするポリシラ
ザンである。 [尚、式中、R_1については第1請求項に記載された
ものに準じ、またR_5、R_6については、メチル基
、エチル基、n−プロピル基、イソプロピル基等の1か
ら6個までの炭素原子を有する低級アルキル基、置換ま
たは非置換のビニル基、置換または非置換のアリル基、
フェニル基、トリル基、キシリル基等の6から10個ま
での炭素原子を有する置換または非置換の低級アリール
基、トリメチル−、ジメチル−、メチルエチル−、トリ
エチル−シリル基等のトリ(低級)アルキル−またはジ
(低級)アルキルシリル基、若しくはジメチル−、ジエ
チル−、メチルエチル−、ジイソプロピル−アミノ基等
のジ(低級)アルキルアミノ基であつて、しかもR_1
、R_5、R_6は同じでも異なつていても良いもので
ある]。 4)前記第1請求項のポリシラザンは式(ハ)で示され
るものであることを特徴とするセラミックスの製造方法
。 式(ハ)は、 式:▲数式、化学式、表等があります▼ の繰返し単位からなる骨格構造を有し、 式:▲数式、化学式、表等があります▼ なる単位を有する複数の先駆体残基が、一部は式:▲数
式、化学式、表等があります▼ なる構造単位となり、一部は式: ▲数式、化学式、表等があります▼ なる構造単位により互いに連結しているポリシラザンで
あつて、さらにその先駆体の一部は、式:▲数式、化学
式、表等があります▼ および式:▲数式、化学式、表等があります▼ なる単位から構成されていることを特徴とするポリシラ
ザンである。 [尚、R_1、R_2、R_3、R_4、R_5、R_
6については、前記第2、第3請求項に記載されたもの
に準じ、かつR_1、R_2、R_3、R_4、R_5
、R_6は同じでも異なつていても良い(以下同じ)。 ] 5)窒化珪素粉末、窒化珪素焼結助剤、および窒素また
は/およびアンモニア加圧状態で、1650〜2200
℃の焼結温度雰囲気下にて窒化珪素を生成するポリシラ
ザンを混練させて成形体を形成し、該成形体を焼成して
生成してなることを特徴とするセラミックス組成物。 6)前記第5請求項に記載されるポリシラザンは、前記
第2、第3、第4請求項に記載される式(イ)(ロ)(
ハ)で示されるポリシラザンのうちの少なくとも一種類
を含んだものであることを特徴とするセラミックス組成
物。 7)窒化珪素粉末、窒化珪素焼結助剤と混練され、脱脂
工程のない状態での成形を可能とするために用いる成形
助剤であつて、該成形助剤は、窒素または/およびアン
モニア加圧状態で、1650〜2200℃の焼結温度雰
囲気下にて窒化珪素を生成するポリシラザンであること
を特徴とするセラミックス組成物の成形助剤。 8)前記第7請求項のポリシラザンは、第2、第3、第
4請求項に記載される式(イ)(ロ)(ハ)で示される
ポリシラザンのうちの少なくとも一種類を含んだもので
あることを特徴とするセラミックス組成物の成形助剤。
[Scope of Claims] 1) Silicon nitride powder and silicon nitride sintering aid are kneaded with polysilazane that produces silicon nitride in a nitrogen or/and ammonia pressurized atmosphere at a sintering temperature of 1650 to 2200°C. 1. A method for producing a ceramic composition, which comprises: forming a molded body, and firing the molded body. 2) A method for producing a ceramic composition, wherein the polysilazane according to claim 1 is represented by formula (a). Formula (A) has a skeletal structure consisting of repeating units of the formula: ▲ There are mathematical formulas, chemical formulas, tables, etc. It is a polysilazane in which the groups are connected to each other by structural units, some of which are the formula: ▲Mathematical formulas, chemical formulas, tables, etc.▼, and some of which are connected to each other by structural units of the formula: . [In the formula, R_1, R_2, R_3, and R_4 are hydrogen (however, hydrogen can include R_1, R_2, and R_3, but not R_4. The same applies hereinafter), methyl group, ethyl group, n- Lower alkyl groups having 1 to 6 carbon atoms such as propyl group, isopropyl group, substituted or unsubstituted vinyl group, substituted or unsubstituted allyl group, phenyl group, tolyl group, xylyl group, etc. 6 to 10 Substituted or unsubstituted lower aryl radicals having up to 5 carbon atoms, tri(lower)alkyl- or di(lower)alkylsilyl radicals such as trimethyl-, dimethyl-, methylethyl-, triethyl-silyl radicals, or dimethyl- , diethyl-
, methylethyl-, diisopropyl-amino group, etc.
lower) alkylamino group (however, di(lower) alkylamino group can include R_1, R_2, R_3, R
_4 is not included. same as below. ) and R_1
, R_2, R_3, and R_4 may be the same or different. 3) A method for producing ceramics, wherein the polysilazane according to the first claim is represented by formula (b). Formula (b) has a skeletal structure consisting of repeating units of the formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and the formula in the precursor is: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ It is a repeating unit of The precursor is a polysilazane in which the residues are connected to each other by structural units of the formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ and the formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ It is a polysilazane characterized by being composed of units. [In the formula, R_1 is as described in the first claim, and R_5 and R_6 are 1 to 6 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, etc. a lower alkyl group having an atom, a substituted or unsubstituted vinyl group, a substituted or unsubstituted allyl group,
Substituted or unsubstituted lower aryl groups having 6 to 10 carbon atoms such as phenyl, tolyl, xylyl, tri(lower)alkyl such as trimethyl, dimethyl, methylethyl, triethylsilyl; - or a di(lower)alkylsilyl group, or a di(lower)alkylamino group such as dimethyl-, diethyl-, methylethyl-, diisopropyl-amino group, and R_1
, R_5, and R_6 may be the same or different]. 4) A method for producing ceramics, characterized in that the polysilazane according to claim 1 is represented by formula (c). Formula (c) has a skeletal structure consisting of repeating units of the formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼, and it has a skeleton structure consisting of repeating units of the formula: The group is a polysilazane that is connected to each other by structural units, some of which are the formula: ▲Mathematical formula, chemical formula, table, etc.▼, and some of which are the formula: ▲There are mathematical formulas, chemical formulas, tables, etc. Furthermore, some of its precursors are polysilazane characterized by being composed of units with the formula: ▲Mathematical formula, chemical formula, table, etc.▼ and formula: be. [In addition, R_1, R_2, R_3, R_4, R_5, R_
6 is in accordance with what is stated in the second and third claims, and R_1, R_2, R_3, R_4, R_5
, R_6 may be the same or different (the same applies hereinafter). ] 5) Silicon nitride powder, silicon nitride sintering aid, and nitrogen or/and ammonia in a pressurized state, 1650 to 2200
A ceramic composition characterized in that it is produced by kneading polysilazane that produces silicon nitride in an atmosphere at a sintering temperature of °C to form a molded body, and firing the molded body. 6) The polysilazane described in the fifth claim has the formulas (a), (b), and (b) as described in the second, third, and fourth claims.
A ceramic composition characterized by containing at least one type of polysilazane shown in c). 7) A molding aid that is kneaded with silicon nitride powder and a silicon nitride sintering aid and used to enable molding without a degreasing process, the molding aid being mixed with nitrogen or/and ammonia additive. A molding aid for a ceramic composition, characterized in that it is a polysilazane that produces silicon nitride under pressure in an atmosphere at a sintering temperature of 1650 to 2200°C. 8) The polysilazane of the seventh claim contains at least one of the polysilazane represented by formulas (a), (b), and (c) described in the second, third, and fourth claims. A forming aid for a ceramic composition, characterized in that:
JP63332044A 1988-12-28 1988-12-28 Ceramic composition, method for producing the same, and molding aid Expired - Lifetime JP2733675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332044A JP2733675B2 (en) 1988-12-28 1988-12-28 Ceramic composition, method for producing the same, and molding aid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332044A JP2733675B2 (en) 1988-12-28 1988-12-28 Ceramic composition, method for producing the same, and molding aid

Publications (2)

Publication Number Publication Date
JPH02175657A true JPH02175657A (en) 1990-07-06
JP2733675B2 JP2733675B2 (en) 1998-03-30

Family

ID=18250511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332044A Expired - Lifetime JP2733675B2 (en) 1988-12-28 1988-12-28 Ceramic composition, method for producing the same, and molding aid

Country Status (1)

Country Link
JP (1) JP2733675B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018707B2 (en) 2000-03-03 2006-03-28 Noritake Co., Limited Porous ceramic laminate and production thereof
CN116477958A (en) * 2023-04-28 2023-07-25 长沙新立硅材料科技有限公司 Manufacturing method of high-purity integrated silicon nitride heat dissipation substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242963A (en) * 1987-03-31 1988-10-07 新日本製鐵株式会社 Manufacture of non-oxide base ceramic burnt body from organic metal high molecules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242963A (en) * 1987-03-31 1988-10-07 新日本製鐵株式会社 Manufacture of non-oxide base ceramic burnt body from organic metal high molecules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018707B2 (en) 2000-03-03 2006-03-28 Noritake Co., Limited Porous ceramic laminate and production thereof
CN116477958A (en) * 2023-04-28 2023-07-25 长沙新立硅材料科技有限公司 Manufacturing method of high-purity integrated silicon nitride heat dissipation substrate

Also Published As

Publication number Publication date
JP2733675B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US8142845B2 (en) Process for the manufacturing of dense silicon carbide
EP0771769A2 (en) Sintering alpha silicon carbide powder with multiple sintering aids
JPS5830264B2 (en) Golden croaker
EP0368535B1 (en) Highly densified bodies from preceramic polysilazanes filled with silicon carbide powders
JPS61242960A (en) Manufacture of formed body comprising reaction bonded silicon nitride by nitriding under high pressure of nitrogengas
EP0698589A1 (en) Preparation of high density titanium carbide ceramics with preceramic polymer binders
EP0562507B1 (en) Silicon-filled aluminum polymer precursors to silicon carbide-aluminum nitride ceramics
JPH0379306B2 (en)
JP2741046B2 (en) Ceramic composition based on silicon nitride and / or silicon carbide, method for producing the same, and molding aid
EP0520453B1 (en) Borosilazanes as binders for the preparation of sintered silicon carbide monoliths
JPH02175657A (en) Ceramic composition, production thereof and forming assistant
US5240658A (en) Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases
EP0695729B1 (en) Preparation of high density zirconium carbide ceramics with preceramic polymer binders
US5294574A (en) Production of nonoxide monolithic ceramic shaped articles
US5162272A (en) Sinterable ceramic powder, process for its production, silicon nitride ceramic produced therefrom, process for its production and its use
JPH05319959A (en) Production of high-density ceramic
JPS6212663A (en) Method of sintering b4c base fine body
JPH0437644A (en) Ceramic composition and its production
EP0771771A2 (en) Sintering beta silicon carbide powder with a polysiloxane and multiple sintering aids
JPH0859364A (en) Production of ceramic porous body
JP3112677B2 (en) Carbon / ceramic composite material and method for producing the same
EP0771770A2 (en) Sintering alpha silicon carbide powder with a polysiloxane and multiple sintering aids
JPS6325276A (en) Manufacture of silicon nitride sintered body
JPS62113769A (en) Manufacture of silicon nitride sintered body
JPH0337176A (en) Reacted sintered silicon carbide product and its preparation