JPH02175403A - Suspension control device - Google Patents

Suspension control device

Info

Publication number
JPH02175403A
JPH02175403A JP32947488A JP32947488A JPH02175403A JP H02175403 A JPH02175403 A JP H02175403A JP 32947488 A JP32947488 A JP 32947488A JP 32947488 A JP32947488 A JP 32947488A JP H02175403 A JPH02175403 A JP H02175403A
Authority
JP
Japan
Prior art keywords
wheel
air pressure
tire
load
wheel load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32947488A
Other languages
Japanese (ja)
Inventor
Masatsugu Yokote
正継 横手
Fukashi Sugasawa
菅沢 深
Takashi Imazeki
隆志 今関
Toshihiro Yamamura
智弘 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP32947488A priority Critical patent/JPH02175403A/en
Publication of JPH02175403A publication Critical patent/JPH02175403A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • B60G17/0185Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method for failure detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To ensure driving stability even at a decreased air pressure in a tire while turning by arranging a tire air pressure detecting means which detecting each air pressure in the tires of front and rear wheels, and a wheel load changing means which changes the wheel load of a given wheel through a wheel load adjusting mechanism according to detected air pressure. CONSTITUTION:Tire air pressure P1 - P4 and lateral G are read by respective tire air pressure sensors 27 - 30 and a lateral acceleration (lateral G) sensor 31, and as turning driving when lateral G is beyond prescribed level G0, the wheel loads of right and left rear wheels are relocated so that the wheel load of a rear outer wheel may increase with the decrease in the air pressure of a front wheel tire if at least either of air pressure P1 or P2 of a right or left front wheel tire is under an abnormal condition of air pressure in the front wheel tire. When both air pressure P1 and P2 are beyond a prescribed level and air pressure P3 or P4 in a right or left rear wheel tire is under an abnormal condition of air pressure in a rear wheel tire which is below the prescribed level, the wheel loads of right and left front wheels are relocated so that the wheel load of a front outer wheel may increase with the decrease in the air pressure of a rear wheel. This makes a correction so that the steering characteristics of a vehicle may be neutralized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はサスペンションを制御して輪荷重の移動によっ
て車輪のコーナリングフォースを適正値に調整すること
により、車両の旋回特性を向上させるようにしたサスペ
ンション制御装置に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention improves the turning characteristics of a vehicle by controlling the suspension and adjusting the cornering force of the wheels to an appropriate value by shifting the wheel load. The present invention relates to a suspension control device.

(従来の技術) この種の従来のサスペンション制御装置としては、例え
ば本朝出願人が先に出願した特開昭62275814号
公報に記載されたものがある。
(Prior Art) As a conventional suspension control device of this type, there is one described in, for example, Japanese Patent Laid-Open No. 62275814, which was previously filed by the applicant of the present invention.

この装置は車体と車輪との間に、輪荷重を支持するメカ
ニカルなスプリングと、所望の減衰力を発生して振動を
吸収するショックアブソーバとしての油圧シリンダとを
、並列に配置して輪荷重調整機構となすアクティブサス
ペンション装置において、走行状態に応じて荷重移動を
行うことにより車輪のコーナリングフォース(以下CF
と称す)を適正値に制御するものである。すなわちこの
装置は、上記走行状態として用いる制動・駆動力や横加
速度(以下横Gと称す)に応じて、この走行状態の変化
に伴うヨーモーメントの変化を抑える方向に輪荷重配分
を変更して、車輪のCFの変化を補正するように所望の
荷重移動を実現することにより車両旋回特性の向上を達
成するものである。
This device adjusts the wheel load by placing a mechanical spring that supports the wheel load in parallel between the vehicle body and the wheels, and a hydraulic cylinder that acts as a shock absorber that generates the desired damping force and absorbs vibrations. In an active suspension system, the cornering force (hereinafter referred to as CF) of the wheel is generated by shifting the load according to the driving condition.
) is controlled to an appropriate value. In other words, this device changes the wheel load distribution in a direction that suppresses changes in yaw moment due to changes in the driving condition, depending on the braking/driving force and lateral acceleration (hereinafter referred to as lateral G) used for the driving condition. , the vehicle turning characteristics are improved by realizing a desired load movement to compensate for changes in wheel CF.

(発明が解決しようとする課題) しかしながら上述した従来のサスペンション制御装置に
おいては、走行状態としての制動・駆動力や横Gの変化
に対しては車輪のCFの変化を補正するように制御して
いるが、走行中車輪のタイヤ空気圧が変化した場合に対
してはその補正の制御を行っていないため、以下の問題
を生ずる。すなわち旋回走行中前輪の一方、例えば前外
輪(旋回時外周側になる方の前輪)のタイヤ空気圧が減
少した場合にはその車輪のCFが減少するため、前輪の
CP合計量が減少し、したがって前輪のコーナリングパ
ワー(以下CPと称す)が減少することにより車両のス
テアリング特性はアンダーステア傾向となり、旋回時の
走行安定性確保が難しくなる。
(Problem to be Solved by the Invention) However, in the above-mentioned conventional suspension control device, control is performed to correct changes in wheel CF in response to changes in braking/driving force and lateral G in the driving state. However, if the tire air pressure of the wheels changes while the vehicle is running, no correction control is performed, resulting in the following problems. In other words, if the tire pressure of one of the front wheels, for example, the front outer wheel (the front wheel that is on the outer side during a turn) decreases while turning, the CF of that wheel decreases, so the total amount of CP of the front wheel decreases. As the cornering power (hereinafter referred to as CP) of the front wheels decreases, the steering characteristics of the vehicle tend to understeer, making it difficult to ensure running stability during turns.

本発明はタイヤ空気圧の減少時、所定車輪の輪荷重を変
更してCFの減少分を補正する制御を行うことにより上
述した問題を解決することを目的とする。
An object of the present invention is to solve the above-mentioned problem by performing control to correct the decrease in CF by changing the wheel load of a predetermined wheel when the tire air pressure decreases.

(課題を解決するための手段) この目的のため本発明のサスペンション制御装置は、左
右輪間における荷重移動量と前後輪間における荷重配分
量との内の少くとも一方を調整可能な輪荷重調整機構を
有するサスペンション制御装置において、前後輪のタイ
ヤ空気圧を検出するタイヤ空気圧検出手段と、検出され
たタイヤ空気圧に基づき、前記輪荷重調整機構により所
定車輪の輪荷重を変更する輪荷重変更手段とを設けたこ
とを特徴とするものであり、この場合例えば前記輪荷重
変更手段による輪荷重の変更は、左右前輪の少くとも一
方のタイヤ空気圧が所定値以下に減少したとき旋回外周
側の後輪の輪荷重を増加させ、左右後輪の少くとも一方
のタイヤ空気圧が所定値以下に減少した時旋回外周側の
前輪の輪荷重を増加させるようになすものとする。
(Means for Solving the Problems) For this purpose, the suspension control device of the present invention provides wheel load adjustment capable of adjusting at least one of the amount of load transfer between the left and right wheels and the amount of load distribution between the front and rear wheels. A suspension control device having a mechanism includes a tire air pressure detection means for detecting tire air pressure of front and rear wheels, and a wheel load changing means for changing the wheel load of a predetermined wheel by the wheel load adjustment mechanism based on the detected tire air pressure. In this case, for example, when the tire pressure of at least one of the left and right front wheels decreases below a predetermined value, the wheel load changing means changes the wheel load by changing the wheel load of the rear wheel on the outer periphery of the turn when the tire pressure of at least one of the left and right front wheels decreases below a predetermined value. The wheel load is increased, and when the tire air pressure of at least one of the left and right rear wheels decreases below a predetermined value, the wheel load of the front wheel on the outer circumferential side of the turn is increased.

(作 用) 車両走行中、タイヤ空気圧検出手段は左右前輪および左
右後輪のタイヤ空気圧を検出している。
(Function) While the vehicle is running, the tire pressure detection means detects the tire pressures of the left and right front wheels and the left and right rear wheels.

ところで車両旋回時において前輪または後輪にタイヤ空
気圧の減少が発生すると、前輪または後輪全体としての
CFが減少して夫々車両のステアリング特性はアンダー
ステア傾向またはオーバーステア傾向になる。そこで輪
荷重変更手段は、検出されたタイヤ空気圧に基づき輪荷
重調整機構により所定車輪の輪荷重を変更する。なおこ
の輪荷重の変更は、例えば左右前輪(または後輪)の一
方または双方のタイヤ空気圧が所定値以下に減少したと
き、後外輪(または前外輪)の輪荷重を増加させるよう
な制御により行う。
By the way, when the tire pressure decreases in the front or rear wheels when the vehicle turns, the CF of the front or rear wheels as a whole decreases, and the steering characteristics of the vehicle tend to understeer or oversteer, respectively. Therefore, the wheel load changing means changes the wheel load of a predetermined wheel using a wheel load adjustment mechanism based on the detected tire air pressure. This change in wheel load is performed, for example, by controlling the wheel load of the rear outer wheel (or front outer wheel) when the tire pressure of one or both of the left and right front wheels (or rear wheels) decreases below a predetermined value. .

これにより車両のステアリング特性は前述したアンダー
ステア傾向またはオーバーステア傾向が等価的に打消さ
れてニュートラル化されることになり、タイヤ空気圧が
変動した場合においても旋回時の走行安定性を十分に確
保することができる。
As a result, the steering characteristics of the vehicle are neutralized by equivalently canceling the aforementioned understeer or oversteer tendency, and sufficient running stability during turns can be ensured even when tire pressure fluctuates. Can be done.

(実施例) 以下、本発明の実施例を図面に基づき詳細に説明する。(Example) Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明のサスペンション制御装置の第1実施例
の構成を示す線図であり、この例では油圧シリンダを用
いたアクティブサスペンションを採用している。図中1
0FL、 l0PR,l0RL、 l0RRは夫々左右
前後輪の油圧シリンダである。
FIG. 1 is a diagram showing the configuration of a first embodiment of the suspension control device of the present invention, and this example employs an active suspension using hydraulic cylinders. 1 in the diagram
0FL, 10PR, 10RL, and 10RR are hydraulic cylinders for the left and right front and rear wheels, respectively.

油圧シリンダl0FL、 l0PR,l0RL、 l0
RRは図示左端を車体側に支持されるとともに図示右端
を車輪側に支持されるように装着してあり、図示しない
各車輪を夫々独立懸架する。油圧シリンダのボート10
aにはショックアブソーバ機能を有する、絞り弁11お
よびアキュムレータ12の直列回路を接続し、ボート1
0bには後述する油圧制御回路より制御圧P、(P−+
、Pcz、P−z、P−4)を供給する。これら油圧シ
リンダはボート10bに制御圧P、を供給すると、この
制御圧P、がシリンダ10cの連通孔10dを経て油室
10eに供給されるとともに連通孔10fを経て油室1
0gに供給されるため、受圧面積の大小によりシリンダ
lOcを図示左方に移動させる力が働き、そのとき車体
に加わる荷重へ−によりシリンダ10cを図示右方に移
動させる力が働くため、シリンダ10cはこれらの力が
つり合う位置で停止する。アキュムレータ11および絞
り弁12は車体振動等の荷重△Wの急激な変動時、絞り
弁12が振動を減衰させ、アキュムレータ11がばね作
用をなすことによりショックアブソーバ機能を発揮する
。なお上記油圧シリンダおよび以下の油圧制御回路は全
体として輪荷重調整機構を構成する。
Hydraulic cylinder l0FL, l0PR, l0RL, l0
The RR is mounted so that its left end in the figure is supported by the vehicle body and its right end in the figure is supported by the wheels, and each wheel (not shown) is independently suspended. Hydraulic cylinder boat 10
A series circuit of a throttle valve 11 and an accumulator 12 having a shock absorber function is connected to the boat 1.
0b is supplied with control pressure P, (P-+
, Pcz, P-z, P-4). When these hydraulic cylinders supply a control pressure P to the boat 10b, this control pressure P is supplied to the oil chamber 10e through the communication hole 10d of the cylinder 10c, and is also supplied to the oil chamber 10e through the communication hole 10f.
0g, a force is applied to move the cylinder 10c to the left in the drawing depending on the size of the pressure receiving area, and a force to move the cylinder 10c to the right in the drawing is applied to the load applied to the vehicle body at that time, so the cylinder 10c stops at a position where these forces are balanced. The accumulator 11 and the throttle valve 12 exhibit a shock absorber function when the load ΔW changes suddenly due to vibrations of the vehicle body, the throttle valve 12 damps vibrations, and the accumulator 11 acts as a spring. Note that the above hydraulic cylinder and the following hydraulic control circuit constitute a wheel load adjustment mechanism as a whole.

次に油圧制御回路を説明する。13は油圧ポンプであり
、チエツク弁14.15.16、アキュムレータ17、
アンロード弁18、オイルクーラ19、タンク20およ
びシャットオフ弁(フェールセーフ弁)21とともに油
圧供給回路を構成する。すなわち、油圧ポンプ13より
油圧の供給を開始すると、アキュムレータ17の内圧が
高まるとともに1.アンロード弁18およびシャットオ
フ弁21が加圧される。ここでシャットオフ弁21はイ
グニッションキーOFFによるエンジン停止時図示のし
ゃ断位置となって元圧の供給をしゃ断して車両の姿勢変
化を防止し、イグニッションキーON時連通位置となっ
て元圧を各輪個別に供給する。なおアキュムレータ17
の内圧が所定値以上になるとアンロード弁18が連通位
置となってオイルクーラ19を介して油圧をタンク20
にドレンする。
Next, the hydraulic control circuit will be explained. 13 is a hydraulic pump, check valves 14, 15, 16, accumulator 17,
The unload valve 18, oil cooler 19, tank 20, and shutoff valve (fail-safe valve) 21 constitute a hydraulic pressure supply circuit. That is, when the hydraulic pump 13 starts supplying hydraulic pressure, the internal pressure of the accumulator 17 increases and 1. Unload valve 18 and shutoff valve 21 are pressurized. When the ignition key is turned OFF and the engine is stopped, the shutoff valve 21 is in the cut-off position shown in the figure to cut off the supply of source pressure and prevent the vehicle's attitude from changing, and when the ignition key is turned ON, the shutoff valve 21 is in the communicating position to allow the source pressure to flow to each source. Supplied individually. Furthermore, the accumulator 17
When the internal pressure of
Drain.

イグニッションキーON時、シャットオフ弁21を経た
元圧は各輪個別に、例えば左(右)前輪の場合、アキュ
ムレータ22F、圧力制御弁23PL (23FR)を
介して油圧シリンダl0FL (1,0PR)に制御圧
PC1(pcz)として供給される(左右後輪の場合も
同様である)。電磁比例式圧力制御弁23F11.23
PR,23RL23RRは元圧供給時図示の連通状態と
なって各油圧シリンダに制御圧の供給を行うが、この際
元正に応じた圧力がフィードバックされる。このフィー
ドバック圧が所定値以上になると圧力制御弁はドレン状
態となって油圧シリンダの油圧をオリフィス24L、2
4R,25Lまたは25R、シャットオフ弁2I、チエ
ツク弁16およびオイルクーラ19を経てタンク20に
ドレンする。
When the ignition key is turned on, the source pressure that passes through the shutoff valve 21 is sent to each wheel individually, for example, in the case of the left (right) front wheel, it is sent to the hydraulic cylinder l0FL (1,0PR) via the accumulator 22F and the pressure control valve 23PL (23FR). It is supplied as a control pressure PC1 (pcz) (the same applies to the left and right rear wheels). Electromagnetic proportional pressure control valve 23F11.23
When the source pressure is supplied, PR, 23RL, and 23RR are in the communication state shown in the figure to supply control pressure to each hydraulic cylinder, but at this time, the pressure corresponding to the source pressure is fed back. When this feedback pressure exceeds a predetermined value, the pressure control valve enters the drain state and directs the hydraulic pressure of the hydraulic cylinder to the orifices 24L and 2.
4R, 25L or 25R, shutoff valve 2I, check valve 16 and oil cooler 19, and drains to tank 20.

上記フィードバック圧を圧力制御弁のソレノイド23a
の駆動電流I+、h、13. I4により制御すること
により制御圧PC1〜PC4の制御を行う。このソレノ
イド駆動電流制御のためコントローラ26を設け、コン
トローラ26には車輪毎に設けたタイヤ空気圧センサ2
7〜30よりタイヤ空気圧P l、P z 、P s 
、P 4を表わす信号を人力するとともに、横Gセンサ
31より車両の横方向加速度(横G)を表わす信号を入
力する。なお上記センサ27〜30として本例では本願
出願人が先に出願した特開昭58−223896号公報
に記載のタイヤ空気圧センサ(ブルドン管とリードスイ
ッチとの組合せにより、タイヤ空気圧の変化を発振周波
数の変化として非接触で測定できるセンサ)を用いたが
、これに限定されるものではなく、タイヤ空気圧を測定
可能なものであればよい。
The above feedback pressure is transferred to the solenoid 23a of the pressure control valve.
Drive current I+, h, 13. Control pressures PC1 to PC4 are controlled by controlling I4. A controller 26 is provided to control this solenoid drive current, and the controller 26 includes a tire air pressure sensor 2 provided for each wheel.
From 7 to 30, tire pressure P l, P z, P s
, P4, and a signal representing the lateral acceleration (lateral G) of the vehicle is input from the lateral G sensor 31. In this example, the sensors 27 to 30 are a tire air pressure sensor (combined with a Bourdon tube and a reed switch) described in Japanese Patent Application Laid-open No. 58-223896, which was previously filed by the applicant of the present application, to detect changes in tire air pressure at an oscillation frequency. Although a sensor capable of non-contact measurement is used as a change in tire pressure, the present invention is not limited to this, and any sensor capable of measuring tire air pressure may be used.

また横Gセンサの代りに車速Vおよび操舵角θの組合せ
により車両の旋回状態を推定するようにしてもよい。
Further, instead of using the lateral G sensor, the turning state of the vehicle may be estimated using a combination of the vehicle speed V and the steering angle θ.

コントローラ26は第4図の制御プログラムを実行して
本発明のサスペンション制御を行う。
The controller 26 executes the control program shown in FIG. 4 to perform the suspension control of the present invention.

すなわちまずステップ101でタイヤ空気圧センサ27
〜30および横Gセンサ31よりタイヤ空気圧PI+P
!、h、P4および横Gを読込み、ステップ102で横
Gが所定値60以上か否かの判別を行う。
That is, first in step 101, the tire pressure sensor 27 is
~30 and lateral G sensor 31 tire air pressure PI+P
! , h, P4, and lateral G are read, and in step 102 it is determined whether the lateral G is a predetermined value of 60 or more.

ここで横Gが60未満ならば旋回走行中ではないから制
御をそのまま終了し、横Gが00以上ならばステップ1
03以後で前・後輪毎のタイヤ空気圧判定を行う。
If the lateral G is less than 60, the control is ended as it is not turning, and if the lateral G is 00 or more, step 1
From 03 onwards, the tire pressure will be determined for each front and rear wheel.

すなわちステップ103では左右前輪のタイヤ空気圧p
、、p、が所定値以上か否かの判別を行う。なおここで
この所定値としては、例えば前述したタイヤ空気圧セン
サが警報出力を発生する境界値である0、3 kgf/
cm2を用いる。ここでこの判別がNo、すなわちタイ
ヤ空気圧p、、p、の少くとも一方が所定値未満の前輪
タイヤ空気圧異常時ならば、次のステップ104で後外
輪の輪荷重が前輪の空気圧減少量に応じて増加するよう
に、左右後輪の輪荷重移動をなすサスペンション制御を
行う。なおここで左右後輪のどちらが後外輪に該当する
かは、ステップ101で読込んだ横Gの極性(正負)に
基づき決定するものとし、上記輪荷重移動は後外輪に該
当する車輪側で前後輪間における荷重配分量を変更する
方法により行ってもよい。
That is, in step 103, the tire pressure p of the left and right front wheels is
, , p is greater than or equal to a predetermined value. Note that this predetermined value may be, for example, 0.3 kgf/, which is the boundary value at which the tire pressure sensor described above generates an alarm output.
cm2 is used. If this determination is No, that is, if at least one of the tire pressures p, , p is abnormal and the front tire pressure is less than a predetermined value, then in the next step 104, the wheel load on the rear outer wheel is adjusted according to the amount of decrease in the front tire air pressure. Suspension control is performed to shift the wheel load between the left and right rear wheels so that the load increases. Note that which of the left and right rear wheels corresponds to the rear outer wheel is determined based on the polarity (positive or negative) of the lateral G read in step 101, and the wheel load shift described above is carried out front and rear on the side of the wheel corresponding to the rear outer wheel. This may also be done by changing the amount of load distribution between the wheels.

一方、ステップ103の判別がYes 、すなわちタイ
ヤ空気圧P、、P、が共に所定値以上の前輪タイヤ空気
圧正常時ならば、ステップ103と同様にしてステップ
105で左右後輪のタイヤ空気圧Ps、Pgが前記所定
値以上か否かの判別を行う。ここでこの判別がNOの後
輪タイヤ空気圧異常時ならば、次のステップ106で前
外輪の輪荷重が後輪の空気圧減少量に応じて増加するよ
うに、左右前輪の輪荷重移動(ステップ104と同様前
後輪間における荷重配分量の変更でもよい)をなすサス
ペンション制御を行う、なおステップ105の判別がY
esならば前後輪共にタイヤ空気圧は正常であるから、
制御をそのまま終了する。
On the other hand, if the determination in step 103 is Yes, that is, if the tire pressures P, , P, are both equal to or higher than the predetermined value and the front tire pressure is normal, the tire pressures Ps, Pg of the left and right rear wheels are determined in step 105 in the same manner as step 103. A determination is made as to whether or not the predetermined value is greater than or equal to the predetermined value. If this determination is NO (rear wheel tire pressure abnormality), the wheel load of the left and right front wheels is shifted (step 104 The suspension control may also be performed by changing the load distribution amount between the front and rear wheels in the same way as in step 105.
If it is an ES, both the front and rear tires have normal tire pressure, so
Terminates control as is.

上記制御の作用について以下に詳細に説明する。The operation of the above control will be explained in detail below.

−iに油圧アクティブサスペンションにおいては、各車
輪の輪荷重を夫々独立に制御することができるが、その
際車両の姿勢変化を生じさせないためには一つの車輪に
対し前後方向および左右方向の輪荷重差を等しくしてモ
ーメント変化をなくす必要がある(例えば右前輪の輪荷
重をΔ−だけ増加させた場合、他の車輪の輪荷重は一義
的に定まり、左後輪を+△誓、左前輪および右後輪をΔ
Wとして対角線上の車輪の輪荷重を等しくする)。
-i In hydraulic active suspensions, the wheel load of each wheel can be controlled independently, but in order to avoid changes in the vehicle's attitude, it is necessary to It is necessary to equalize the difference and eliminate moment changes (for example, if the wheel load on the right front wheel is increased by Δ-, the wheel loads on the other wheels are uniquely determined, and the left rear wheel is increased by +△, and the left front wheel is increased by +△). and right rear wheel Δ
The wheel loads of the wheels on the diagonal are equal as W).

ところで車両走行中、特に旋回走行時においては車輪の
タイヤ空気圧が減少すると、輪荷重減少時と同様に車輪
のCFが゛減少するため、車両のステアリング特性は前
輪のCFF計量減少時アンダーステア傾向になり、後輪
のCF合合計量減少時オーツ−ステア傾向になる。
By the way, when the tire air pressure of the wheels decreases while the vehicle is running, especially when turning, the CF of the wheels decreases in the same way as when the wheel load decreases, so the steering characteristics of the vehicle tend to understeer when the CFF measurement of the front wheels decreases. , when the total CF amount of the rear wheels decreases, auto-steer tends to occur.

ここでこのCFの減少を補正する方法としては、前輪お
よび後輪における左右輪間の荷重移動量の合計は横Gに
応じて定まる一定量となることから、前後輪の内のタイ
ヤ空気圧減少側の車輪の輪荷重を制御する方法と、タイ
ヤ空気圧正常側の車輪の輪荷重を制御する方法とが考え
られるが、正常側を制御した方がより効果的であるため
後者を採用する。したがって前輪のタイヤ空気圧減少時
には、第4図のステップ103,104の実行により後
外輪の輪荷重を前輪の空気圧減少量に応じて増加させ、
後輪のタイヤ空気圧減少時にはステップ105.106
の実行により前外輪の輪荷重を後輪の空気圧減少量に応
じて増加させる。
Here, as a method to correct this decrease in CF, since the total amount of load transfer between the left and right wheels in the front and rear wheels is a constant amount determined according to the lateral G, the tire pressure of the front and rear wheels decreases. One method is to control the wheel load of the wheel on the side where the tire pressure is normal, and the other is to control the wheel load on the wheel where the tire pressure is normal. However, since it is more effective to control the tire pressure on the normal side, the latter is adopted. Therefore, when the tire air pressure of the front wheels decreases, the wheel load of the rear outer wheels is increased according to the amount of decrease in the air pressure of the front wheels by executing steps 103 and 104 in FIG.
Steps 105 and 106 when the rear tire air pressure decreases.
By executing this, the wheel load on the front outer wheels is increased in accordance with the amount of air pressure reduction in the rear wheels.

これにより所望のヨーモーメントが得られ、車両のステ
アリング特性は上述したアンダーステア傾向またはオー
バーステア傾向が等価的に打消されてニュートラル化さ
れることになり、例えばタックイン時においてもタイヤ
空気圧変動の有無に拘らず走行安定性を十分に確保する
ことができる。
As a result, the desired yaw moment is obtained, and the steering characteristics of the vehicle are neutralized by equivalently canceling the above-mentioned understeer or oversteer tendency. Therefore, sufficient running stability can be ensured.

第2図は本発明のサスペンション制御装置の第2実施例
の構成を示す線図であり、この例ではエアサスペンショ
ンを採用している。なお第1実施例と同一の部分には同
一符号を用いる。
FIG. 2 is a diagram showing the configuration of a second embodiment of the suspension control device of the present invention, and this example employs an air suspension. Note that the same reference numerals are used for the same parts as in the first embodiment.

50はモータ、51はコンプレッサであり、モータ50
により駆動されたコンプレッサ51はフィルタ52より
取り入れた空気を圧縮して空圧を発生する。
50 is a motor, 51 is a compressor, and the motor 50
The compressor 51 driven by the compressor 51 compresses the air taken in from the filter 52 to generate air pressure.

この空圧はドライヤ53を経た後、チエツク弁54を介
してメインタンク55に蓄えられるとともに、給排気弁
561?L、56FR,56RL、56RRを介して各
輪個別に供給される。ここでチエツク弁54と並列にメ
インバルブ57を設ける。このメインバルブ57はメイ
ンタンク55内の圧力を一定値に保持するとともに、所
望に応じてメインタンク55より空圧を供給するもので
ある。
After passing through the dryer 53, this air pressure is stored in the main tank 55 via the check valve 54, and is also stored in the main tank 55 through the air supply/exhaust valve 561? It is supplied to each wheel individually via L, 56FR, 56RL, and 56RR. Here, a main valve 57 is provided in parallel with the check valve 54. This main valve 57 maintains the pressure within the main tank 55 at a constant value and supplies air pressure from the main tank 55 as desired.

給排気弁56FL、56FR,56RL、 56RRは
しゃ断、連通、排気の3位置を取り得る3位置切換弁で
ある。すなわち図示の常態(a)で空圧源とサスベンジ
ジン装置との間をしゃ断し、ソレノイド56aの駆動時
図示(b)位置で連通して空圧源からサスベンジジン装
置に空圧を供給し、ソレノイド56bの駆動時図示(C
)位置でサスペンション装置の空圧を排気するとともに
空圧供給をしゃ断する。
The supply and exhaust valves 56FL, 56FR, 56RL, and 56RR are three-position switching valves that can take three positions: cutoff, communication, and exhaust. That is, in the normal state (a) shown in the figure, the air pressure source and the suspension device are cut off, and when the solenoid 56a is driven, they are communicated in the position (b) shown in the drawing to supply air pressure from the pneumatic source to the suspension device. Illustration of the solenoid 56b being driven (C
), the air pressure of the suspension device is exhausted and the air pressure supply is cut off.

給排気弁を経た空圧は夫々サスペンション装置58FL
、 58FR,58RL、 58RIiの空気室58a
に供給されるとともにその空圧を監視するために設けた
圧力センサ59に供給され、さらにカットバルブ60を
介してサブタンク61に供給される。これらサスベンシ
ョン装置は空気室58aに供給された空圧PC1+PC
2゜PC31PC4に応じて車高調整を行うものであり
、ショックアブソーバ機能を有している。またサスベン
ジジン装置にはそのストロークを検出するためにストロ
ークセンサ62が設けられている。カットバルブ60は
空気室58aとサブタンク61とを連通またはしゅ断す
ることにより空圧制御を行い、サスペンション装置のバ
ネ定数を切換えるものである。
The air pressure that passes through the supply and exhaust valves is sent to each suspension device 58FL.
, 58FR, 58RL, 58RIi air chamber 58a
It is also supplied to a pressure sensor 59 provided to monitor the air pressure, and further supplied to a sub tank 61 via a cut valve 60. These suspension devices are connected to the air pressure PC1+PC supplied to the air chamber 58a.
2゜It adjusts the vehicle height according to PC31PC4 and has a shock absorber function. The suspension device is also provided with a stroke sensor 62 to detect its stroke. The cut valve 60 controls air pressure by communicating or cutting off the air chamber 58a and the sub-tank 61, and changes the spring constant of the suspension device.

上記空圧を給排気弁、メインバルブおよびカットバルブ
の各ソレノイド駆動電流により制御する。
The air pressure is controlled by each solenoid drive current of the supply/exhaust valve, main valve, and cut valve.

このソレノイド駆動電流制御のため、コントローラ26
を設ける。なおコントローラ26への入力は第1実施例
と同様に、前述した各センサ27〜31からのタイヤ空
気圧P、〜P4および横Gを用いる。
In order to control this solenoid drive current, the controller 26
will be established. Note that, as in the first embodiment, tire air pressures P, -P4 and lateral G from the sensors 27 to 31 described above are used as inputs to the controller 26.

コントローラ26は第1実施例と同様に、第4図の制御
プログラムを実行して本発明のサスペンション制御を行
う。
As in the first embodiment, the controller 26 executes the control program shown in FIG. 4 to perform the suspension control of the present invention.

本例においては、この制御の作用は第1実施例と同様で
あるが、具体的な輪荷重制御方法が若干異なる。例えば
右前輪、左後輪の輪荷重を+△d、左前輪、右後輪の輪
荷重を−Δ轄とする場合には、メインバルブ57を連通
させると同時にコンプレッサ51を駆動し、給排気弁5
6FR,561?Lを連通させて右前輪、左後輪のサス
ベンジジン装置への空圧を増加させることにより4△−
の輪荷重を得る(この+Δ讐の数量的な制御は前記圧力
センサ59のフィードバックにより行う)とともに、給
排気弁−56FL、56R1?を排気位置にして左前輪
、右後輪のサスペンション装置の空圧を大気開放するこ
とにより一へ−の輪荷重を得る。
In this example, the effect of this control is similar to that of the first example, but the specific wheel load control method is slightly different. For example, if the wheel loads of the right front wheel and left rear wheel are +Δd, and the wheel loads of the left front wheel and right rear wheel are -Δ, the compressor 51 is driven at the same time as the main valve 57 is opened, and the air supply and exhaust gas are Valve 5
6FR, 561? By connecting L and increasing the air pressure to the suspension system for the right front wheel and left rear wheel, 4△-
(This quantitative control of +Δ is performed by feedback from the pressure sensor 59), and the supply and exhaust valves -56FL, 56R1? By setting the wheel to the exhaust position and releasing the air pressure of the suspension devices of the left front wheel and the right rear wheel to the atmosphere, a wheel load of - is obtained.

これにより本例においても第1実施例と同様な効果を得
ることができ、さらにシステム構成の簡略化によりシス
テムの軽量化およびコストダウンを図ることができる。
As a result, the same effects as in the first embodiment can be obtained in this example as well, and furthermore, by simplifying the system configuration, it is possible to reduce the weight and cost of the system.

第3図は本発明のサスペンション制御装置の第3実施例
の原理的構成を示す線図であり、この例では可変スタビ
ライザを用いる。
FIG. 3 is a diagram showing the principle structure of a third embodiment of the suspension control device of the present invention, and a variable stabilizer is used in this example.

図中70.71は夫々前後輪の油圧シリンダであり、図
示上方(シリンダチューブ)を車体側に支持し、下方(
ピストンロンド)を車輪側に支持する。油圧シリンダ7
0の油室70a と油圧シリンダ71の油室71bとを
油路72により接続し、油路72にアキエムレータ73
を設ける。同様に油室70bと71aとを接続する油路
74にアキュムレータ75を設ける。
In the figure, 70 and 71 are hydraulic cylinders for the front and rear wheels, respectively, with the upper part (cylinder tube) supported on the vehicle body side, and the lower part (cylinder tube)
The piston rond) is supported on the wheel side. Hydraulic cylinder 7
The oil chamber 70a of the hydraulic cylinder 71 and the oil chamber 71b of the hydraulic cylinder 71 are connected by an oil passage 72.
will be established. Similarly, an accumulator 75 is provided in the oil passage 74 connecting the oil chambers 70b and 71a.

次に作用を説明する。いま前輪側より加わる力△F、に
より油圧シリンダ70のピストン70cがΔX。
Next, the effect will be explained. The piston 70c of the hydraulic cylinder 70 moves ΔX due to the force ΔF applied from the front wheel side.

たけストロークしたとすると、後輪側の油圧シリンダ7
エのピストン71Cのストローク△χ、がOであれば、
ピストン71cを図示上方に押上げようとする力△f(
r△Pr )が働き、スタビライズ効果を得ることがで
きる。
Assuming a long stroke, the hydraulic cylinder 7 on the rear wheel side
If the stroke Δχ of the piston 71C in E is O, then
The force △f(
rΔPr ) works, and a stabilizing effect can be obtained.

ここでタイヤ空気圧との関係について考察すると、タイ
ヤ空気圧減少時には輪荷重が減少し、油圧シリンダT0
.71を図示上方より押付けようとする力が減少するか
ら、車両系全体として見ると相対的に車輪側よりカムF
、またはΔFrが加わる場合と同様になる。
Considering the relationship with tire air pressure, when the tire air pressure decreases, the wheel load decreases, and the hydraulic cylinder T0
.. Since the force that tries to press 71 from above in the figure decreases, when looking at the vehicle system as a whole, the cam F is relatively pushed from the wheel side.
, or ΔFr is added.

したがって第3図の機構を左前後輪系および右前後輪系
に夫々設けるとともに第1、第2実施例と同様にコント
ローラ26、タイヤ空気圧センサ27〜30および横G
センサ31を設けた車両においては、前述した第4図の
制御プログラムに基づき、夫々上記左・右前後輪系につ
いてアキュムレータ圧ΔPry△P、の一方または双方
を制御する能動的な輪荷重移動制御を行えば、第1実施
例と同様な効果を得ることができ、さらに第2実施例の
システムの軽量化およびコストダウンの効果をも得るこ
とができる。なおこのように構成した車両がFF車(前
輪駆動車)の場合には、上記輪荷重移動制御を行わなく
ても、外輪側の輪荷重が増加してステアリング特性がニ
ュートラル化する受動的な効果が得られる。
Therefore, the mechanism shown in FIG. 3 is provided in the left front and rear wheel system and the right front and rear wheel system, respectively, and the controller 26, tire pressure sensors 27 to 30, and lateral G
In the vehicle equipped with the sensor 31, active wheel load shift control is performed to control one or both of the accumulator pressures ΔPryΔP for the left and right front and rear wheel systems, respectively, based on the control program shown in FIG. 4 described above. If carried out, the same effects as those of the first embodiment can be obtained, and furthermore, the effects of weight reduction and cost reduction of the system of the second embodiment can also be obtained. Note that if the vehicle configured in this way is a front-wheel drive vehicle (front-wheel drive vehicle), even if the wheel load transfer control described above is not performed, the passive effect of increasing the wheel load on the outer wheel side and making the steering characteristics neutral is generated. is obtained.

(発明の効果) かくして本発明のサスペンション制御装置は上述の如く
、タイヤ空気圧減少時所定車輪の輪荷重を変更してCF
の減少分を、車両のステアリング特性をニュートラル化
するように補正するから、タイヤ空気圧が変動した場合
においても旋回時の走行安定性を十分に確保することが
できる。
(Effects of the Invention) Thus, as described above, the suspension control device of the present invention changes the wheel load of a predetermined wheel when the tire air pressure decreases, thereby controlling the CF.
Since the decrease in the steering characteristics of the vehicle is corrected to neutralize the steering characteristics of the vehicle, it is possible to sufficiently ensure running stability during turns even when the tire air pressure fluctuates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のサスペンション制御装置の第1実施例
の構成を示す線図、 第2図は同しく第2実施例の構成を示す線図、第3図は
同しく第3実施例の原理的構成を示す線図、 第4図は第1、第2および第3実施例におけるコントロ
ーラの制御プログラムを示すフローチャートである。 1、OFL、 1.OFR,l0RL、 l0RR・・
・油圧シリンダ11・・・アキュムレータ  12・・
・絞り弁13・・・油圧ポンプ    21・・・シャ
ットオフ弁23FL、23F11.23RL、23RR
・・・圧力制御弁26・・・コントローラ 27〜30・・・タイヤ空気圧センサ 31・・・横Gセンサ    50・・・モータ51・
・・コンプレッサ   55・・・メインタンク56P
L、56FR,56RL、56RR・・・給排気弁57
・・・メインバルブ
FIG. 1 is a diagram showing the configuration of a first embodiment of the suspension control device of the present invention, FIG. 2 is a diagram showing the configuration of the second embodiment, and FIG. 3 is a diagram showing the configuration of the third embodiment. Diagram showing the principle configuration. FIG. 4 is a flowchart showing the control program of the controller in the first, second and third embodiments. 1, OFL, 1. OFR, l0RL, l0RR...
・Hydraulic cylinder 11...Accumulator 12...
- Throttle valve 13...Hydraulic pump 21...Shutoff valve 23FL, 23F11.23RL, 23RR
...Pressure control valve 26...Controller 27-30...Tire air pressure sensor 31...Lateral G sensor 50...Motor 51.
...Compressor 55...Main tank 56P
L, 56FR, 56RL, 56RR... Supply and exhaust valve 57
・・・Main valve

Claims (1)

【特許請求の範囲】 1、左右輪間における荷重移動量と前後輪間における荷
重配分量との内の少くとも一方を調整可能な輪荷重調整
機構を有するサスペンション制御装置において、 前後輪のタイヤ空気圧を検出するタイヤ空気圧検出手段
と、 検出されたタイヤ空気圧に基づき、前記輪荷重調整機構
により所定車輪の輪荷重を変更する輪荷重変更手段とを
設けたことを特徴とするサスペンション制御装置。 2、前記輪荷重変更手段による輪荷重の変更は、左右前
輪の少くとも一方のタイヤ空気圧が所定値以下に減少し
たとき旋回外周側の後輪の輪荷重を増加させ、左右後輪
の少くとも一方のタイヤ空気圧が所定値以下に減少した
とき旋回外周側の前輪の輪荷重を増加させるようになす
ことを特徴とする請求項1記載のサスペンション制御装
置。
[Scope of Claims] 1. In a suspension control device having a wheel load adjustment mechanism capable of adjusting at least one of the amount of load transfer between the left and right wheels and the amount of load distribution between the front and rear wheels, the tire air pressure of the front and rear wheels is adjusted. What is claimed is: 1. A suspension control device comprising: tire air pressure detection means for detecting tire air pressure; and wheel load changing means for changing the wheel load of a predetermined wheel by the wheel load adjustment mechanism based on the detected tire air pressure. 2. Changing the wheel load by the wheel load changing means increases the wheel load of the rear wheel on the outer periphery of the turn when the tire pressure of at least one of the left and right front wheels decreases to a predetermined value or less. 2. The suspension control device according to claim 1, wherein when the air pressure of one tire decreases below a predetermined value, the wheel load of the front wheel on the outer circumferential side of the turn is increased.
JP32947488A 1988-12-28 1988-12-28 Suspension control device Pending JPH02175403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32947488A JPH02175403A (en) 1988-12-28 1988-12-28 Suspension control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32947488A JPH02175403A (en) 1988-12-28 1988-12-28 Suspension control device

Publications (1)

Publication Number Publication Date
JPH02175403A true JPH02175403A (en) 1990-07-06

Family

ID=18221783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32947488A Pending JPH02175403A (en) 1988-12-28 1988-12-28 Suspension control device

Country Status (1)

Country Link
JP (1) JPH02175403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218416A (en) * 1990-03-07 1992-08-10 Monroe Auto Equip Co Remote measuring system for detecting pressure and temperature of tire
WO2004014674A1 (en) * 2002-08-07 2004-02-19 Toyota Jidosha Kabushiki Kaisha Ground contact load control device for vehicle
WO2004048136A1 (en) * 2002-11-28 2004-06-10 Societe De Technologie Michelin Method and system for extending the mobility of a vehicle
WO2005123426A1 (en) * 2004-06-17 2005-12-29 Daimlerchrysler Ag Tire protection system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218416A (en) * 1990-03-07 1992-08-10 Monroe Auto Equip Co Remote measuring system for detecting pressure and temperature of tire
WO2004014674A1 (en) * 2002-08-07 2004-02-19 Toyota Jidosha Kabushiki Kaisha Ground contact load control device for vehicle
KR100769605B1 (en) * 2002-08-07 2007-10-23 도요다 지도샤 가부시끼가이샤 Ground contact load control apparatus for a vehicle
CN100408364C (en) * 2002-08-07 2008-08-06 丰田自动车株式会社 Ground contact load control apparatus for vehicle
US7431309B2 (en) 2002-08-07 2008-10-07 Toyota Jidosha Kabushiki Kaisha Ground contact load control apparatus for a vehicle
WO2004048136A1 (en) * 2002-11-28 2004-06-10 Societe De Technologie Michelin Method and system for extending the mobility of a vehicle
US7546763B2 (en) 2002-11-28 2009-06-16 Michelin Recherche Et Technique S.A. Method and system for extending the mobility of a vehicle
WO2005123426A1 (en) * 2004-06-17 2005-12-29 Daimlerchrysler Ag Tire protection system

Similar Documents

Publication Publication Date Title
JPH02182521A (en) Suspension control device
US4903983A (en) Actively controlled automotive suspension system with improved cornering characteristics
JPH03511A (en) Car height control method for vehicle with car height adjuster
JP2625445B2 (en) Active suspension
JPH023506A (en) Active suspension
JPH0717135B2 (en) Suspension for vehicles
JPH0825374B2 (en) Active suspension device
US5396423A (en) Automotive active suspension system for regulating vehicular height level during anti-rolling control
JP2559769B2 (en) Active suspension
US5228719A (en) Automotive active suspension system for anti-rolling control
US4856815A (en) Vehicle suspension apparatus
EP0420285B1 (en) Active suspension system for automotive vehicle
JPH02175403A (en) Suspension control device
JP2765311B2 (en) Active suspension
JPH02182522A (en) Suspension control device
JPH02179530A (en) Suspension controller
JPH02144208A (en) Active type suspension for vehicle
JPH0248207A (en) Suspension control device for vehicle
JP2852660B2 (en) Vehicle height control method for vehicle with vehicle height adjustment device
JPH02296513A (en) Active suspension
JPH02182520A (en) Suspension control device
JP2573193B2 (en) Vehicle suspension device
JP4760331B2 (en) Vehicle equipped with a rear wheel cross-linked shock absorber system
JPH02151515A (en) Active suspension for vehicle
JPH02109712A (en) Positive suspension for car