JPH02174912A - Pressure variable type gas separation device - Google Patents

Pressure variable type gas separation device

Info

Publication number
JPH02174912A
JPH02174912A JP63331883A JP33188388A JPH02174912A JP H02174912 A JPH02174912 A JP H02174912A JP 63331883 A JP63331883 A JP 63331883A JP 33188388 A JP33188388 A JP 33188388A JP H02174912 A JPH02174912 A JP H02174912A
Authority
JP
Japan
Prior art keywords
adsorption tower
buffer tank
orifice
flow rate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63331883A
Other languages
Japanese (ja)
Other versions
JPH074499B2 (en
Inventor
Kazukiyo Takano
和潔 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electronic Industries Co Ltd
Original Assignee
Sanyo Electronic Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electronic Industries Co Ltd filed Critical Sanyo Electronic Industries Co Ltd
Priority to JP63331883A priority Critical patent/JPH074499B2/en
Publication of JPH02174912A publication Critical patent/JPH02174912A/en
Publication of JPH074499B2 publication Critical patent/JPH074499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the valves or the like of output side by connecting each adsorption tower with a buffer tank through a flow rate regulating means. CONSTITUTION:The compressed air which is the raw material is sent from an air compressor 1 to each adsorption towers 2, 3 packed with zeolite, through a valve 4 to the adsorption tower 2 and through a valve 5 to the adsorption tower 3. A valve 6 and a valve 7 are respectively connected to the adsorption towers 2, 3 for discharging the exhaust gas generated in desorption, and the exhaust gas is discharged to the atmosphere by opening these valves. The adsorption tower 2 is connected with the buffer tank 13 through a piping 11, and an orifice 9 is inserted in the route of the piping 11 to regulate the flow rate in the piping. Similarly, the adsorption tower 3 is connected with the buffer tank 13 through a piping 12, and the orifice 10 is inserted in the route of the piping 12 to regulate the flow rate. By this method, the parts for controlling valves are eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧力変動方式による気体分離と精製ガスの取り
出しに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to gas separation and purified gas extraction using a pressure fluctuation method.

〔従来の技術〕[Conventional technology]

従来の圧力変動方式による気体分離は複数の吸着塔を用
い、その各々の吸着筒には、原料ガスを供給する為のバ
ルブ類、排気ガスを排出する為のバルブ類、及び吸着塔
の出口に製品ガスの取り出し及び均圧を行う為やパージ
等を行う為のバルブ類が複雑に接続され、その制御も複
雑になっている。それ等を接続する配管及び配線も複雑
になっている。
Conventional gas separation using the pressure fluctuation method uses multiple adsorption towers, and each adsorption tower has valves for supplying raw material gas, valves for discharging exhaust gas, and valves at the outlet of the adsorption tower. Valves for extracting product gas, equalizing pressure, purging, etc. are connected in a complicated manner, and their control is also complicated. The piping and wiring that connect them are also complicated.

例えば特公昭54−9587号公報 ”  54−17614号公報 〃 55−28725号公報 〃 5B−40625号公報 〃 57−18932号公報 特開昭57−105220号にその例をみる。第2図に
特開昭57−105220号公報のフローシートを示す
。2本の吸着塔とこれに圧縮空気を送るコンプレッサー
と空気をためておく空気タンクと、これ等の空気を2本
の吸着塔に送り込むための2つのバルブと排気のための
2つのバルブがそれぞれの吸着塔の入口側に接続されて
あり、吸着塔の出口側にそれぞれ取出用のバルブと均圧
用のバルブと流量を制御するためのオリフィスがバッフ
ァタンクとの間に接続されている。
Examples of this can be seen in, for example, Japanese Patent Publication No. 54-9587, Publication No. 54-17614, Publication No. 55-28725, Publication No. 5B-40625, Publication No. 57-18932, and Japanese Patent Application Laid-open No. 105220-1987. The flow sheet of Japanese Patent Publication No. 57-105220 is shown. Two adsorption towers, a compressor to send compressed air to them, an air tank to store air, and a system for sending these air to the two adsorption towers. Two valves and two valves for exhaust are connected to the inlet side of each adsorption tower, and on the outlet side of the adsorption tower, there is a take-out valve, a pressure equalization valve, and an orifice for controlling the flow rate. It is connected between the buffer tank.

本発明は出力側のバルブ等の削減に関する改良に関する
ものである。これに対する改良された技術が特開昭57
−44361号公報の例がある。
The present invention relates to improvements in reducing the number of valves and the like on the output side. An improved technology for this was published in Japanese Patent Application Laid-open No. 57
There is an example in Publication No.-44361.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の圧力変動方式による気体分離は前述の如くバルブ
類が多く存在するため、それ等を接続する複雑な配管と
これ等のバルブを制御する高度な制御部が必要となる。
Since conventional gas separation using the pressure fluctuation method involves many valves as described above, it requires complicated piping to connect these valves and a sophisticated control unit to control these valves.

本発明の第1の目的は出力側のバルブ類をなくし、従っ
て当該バルブを制御する制御部を無くすることにある。
The first object of the present invention is to eliminate valves on the output side and, therefore, eliminate the control section for controlling the valves.

また、特公昭57−44361号公報に示される例は、
そのシステム構造が大変簡単になっており、吸着筒出口
にはバルブ類はなく、単に吸着塔相互を接続しているだ
けである。しかし、このシステムは次のような欠点を持
っている。すなわちこのシステムを実現する為には、短
い切替時間と特殊な粒形状を持つ吸着剤を必要とする。
In addition, the example shown in Japanese Patent Publication No. 57-44361 is
The system structure is very simple; there are no valves at the outlet of the adsorption column, and the adsorption columns are simply interconnected. However, this system has the following drawbacks. In other words, in order to realize this system, an adsorbent with a short switching time and a special particle shape is required.

この為、次のような欠点を有する。Therefore, it has the following drawbacks.

■短時間に所定の原料ガスを吸着塔に送入巳なければな
らない為、定圧空気源が必要となり、空気圧縮器の後に
比較的大きい空気タンクを必要とする。
■Since a specified amount of raw material gas must be delivered to the adsorption tower in a short period of time, a constant pressure air source is required, and a relatively large air tank is required after the air compressor.

■短時間で頻繁にバルブ類を切換えるため大変長寿命の
バルブを必要とするか装置の寿命が短くなる。
■Since valves are changed frequently in a short period of time, very long-life valves are required or the life of the equipment is shortened.

■特殊な粒形状(細かい粒子)の吸着剤を必要とする。■Requires an adsorbent with a special particle shape (fine particles).

本発明は上記欠点がなく、シかもバルブ類の少ない方式
の圧力変動方式による気体分離装置を提供することを目
的とする。
It is an object of the present invention to provide a pressure fluctuation type gas separation apparatus which does not have the above-mentioned drawbacks and which requires fewer valves.

〔課題を解決する為の手段〕[Means to solve problems]

前記目的を達成する為に本発明の圧力変動方式による気
体分離装置においては、吸着塔の後にバッファタンクを
持ち、これと各吸着塔の間の流量を制御する手段9例え
ばオリフィスを介して接続する構造とする。
In order to achieve the above object, the pressure fluctuation type gas separation apparatus of the present invention has a buffer tank after the adsorption tower, and a means 9 for controlling the flow rate between this and each adsorption tower, for example, through an orifice. Structure.

〔作  用〕[For production]

上記のように構成された圧力変動方式による気体分離装
置は2つの吸着塔がそれぞれ流量制御手段であるオリフ
ィスを介して精製ガスをためておくバッファタンクに連
通しているため加圧吸着工程においても、減圧脱着工程
においてもその間の移行時においてもガスの流通が生じ
、加圧吸着工程においては精製ガスが吸着塔よりバッフ
ァタンクに流入する方向に、減圧脱着時においてはバッ
ファタンクから逆に吸着塔に戻ってくる方向に流れる。
In the pressure fluctuation type gas separation device configured as described above, each of the two adsorption towers is connected to a buffer tank storing purified gas through an orifice that is a flow rate control means, so it can be used even in a pressurized adsorption process. , Gas flow occurs both during the vacuum desorption process and during the transition between them; in the pressure adsorption process, purified gas flows from the adsorption tower to the buffer tank, and during vacuum desorption, the purified gas flows from the buffer tank to the adsorption tower. flows in the direction of returning to.

このバッファタンク容量とオリフィスの径を適当な値に
選定することにより従来チエツクバルブとオリフィスま
たはバルブとオリフィスで達成している機能が得られる
By selecting appropriate values for the capacity of the buffer tank and the diameter of the orifice, the functions achieved conventionally with a check valve and orifice or a valve and orifice can be obtained.

図面により作用を説明する。The operation will be explained with reference to the drawings.

すなわち第1図は本発明の1実施例を示すフローシート
で第6図は2つの吸着塔内圧とバッファタンク内圧を示
す。第5図は第1図に示すバルブ45、 6. 7の開
閉を示すタイムチャートである加圧吸着時の吸着塔から
オリフィスを通してバッファタンクに流出するガス量は
精製ガスとしてバッファタンクより取出し消費されるも
のと均圧ガス、パージガスとして減圧脱着工程中の吸着
塔へ供給する量の和である。このガス量は吸着塔内圧と
バッファタンク内圧の差圧がオリフィスにかかり次式で
決定される流量がこの値となる。
That is, FIG. 1 is a flow sheet showing one embodiment of the present invention, and FIG. 6 shows two adsorption tower internal pressures and a buffer tank internal pressure. FIG. 5 shows the valve 45 shown in FIG. 1, 6. The amount of gas flowing out from the adsorption tower through the orifice into the buffer tank during pressurized adsorption is the amount of gas that is taken out from the buffer tank as purified gas and consumed, and the amount of gas that is used as equalization gas and purge gas during the vacuum desorption process. This is the sum of the amounts supplied to the adsorption tower. This amount of gas is determined by the flow rate determined by the following equation when the pressure difference between the internal pressure of the adsorption tower and the internal pressure of the buffer tank is applied to the orifice.

S ニオリフイス有効断面積 PH:流入側圧力 PL:流出側圧力 また、脱着工程時にはパージガスが同−オリフィスを通
してバッファタンク内圧と減圧脱着工程時の吸着塔内圧
の差により決定される流量が吸着塔の方へ流れる。
S Niorifice effective cross-sectional area PH: Inlet side pressure PL: Outlet side pressure Also, during the desorption process, the purge gas passes through the same orifice, and the flow rate determined by the difference between the internal pressure of the buffer tank and the internal pressure of the adsorption tower during the vacuum desorption process is determined by the flow rate towards the adsorption tower. flows to

このパージガスにより脱着工程中の吸着剤の脱着再生が
促進される。この量は多すぎても少なすぎても所定の性
能は得られない。
This purge gas facilitates desorption regeneration of the adsorbent during the desorption process. If this amount is too large or too small, the desired performance cannot be obtained.

吸MQ 内のマストランスファーゾーン(MTZ>は吸
着筒内の急速な流量変動を与えると乱れ、ガスの精製効
率を下げることになる。このため吸着塔内のガスの流れ
変化は連続的に行い、スムーズな吸着工程、均圧、脱着
工程への移行が効率の良い精製ガス産出を与えることに
なる。
The mass transfer zone (MTZ) in the suction MQ will be disturbed if a rapid flow rate fluctuation in the adsorption column is applied, reducing the gas purification efficiency.For this reason, the gas flow in the adsorption column is changed continuously. A smooth transition from adsorption to pressure equalization to desorption will result in efficient purified gas production.

本発明は吸着塔の出口側にバルブ類を持たないので切替
による急激な流速変動がないので良い結果が得られてい
る。
Since the present invention does not have valves on the outlet side of the adsorption tower, there is no sudden change in flow rate due to switching, and good results have been obtained.

尚、オリフィスの形状によりそこを流れる流量が異なる
性質がある。すなわちオリフィスの有効断面積Sが 第3図に示す如く、その流出部の形状により圧力損失係
数ζが1桁以上の違いがあり、オリフィスの形状を第4
図に示す如くすれば、その流れる向きにより、オリフィ
スにかかる圧力が同一圧力差においても流量を違えるよ
う構成することが出来る。
Note that the flow rate flowing through the orifice varies depending on the shape of the orifice. In other words, as shown in Fig. 3, the effective cross-sectional area S of the orifice varies by more than one order of magnitude in the pressure loss coefficient ζ depending on the shape of its outlet.
As shown in the figure, it is possible to configure the flow rate to vary depending on the flow direction even when the pressure applied to the orifice is the same pressure difference.

すなわち、パージガス量は精製ガス量より少ないしパー
ジに必要最少限の少ないガス量で良いので第4図に示す
オリフィスを吸着塔からバッファタンクの向きに流量の
大きい向きに取りつけることにより、より効率を高めら
れる。
In other words, the amount of purge gas is smaller than the amount of purified gas, and the minimum amount of gas required for purging is sufficient, so by installing the orifice shown in Figure 4 in the direction of the large flow rate from the adsorption tower to the buffer tank, efficiency can be increased. be enhanced.

また、バッファタンク圧はオリフィスから流入してくる
精製ガス量をバッファタンクから流出する製品ガスとパ
ージガス量の和より自動的に決定されるが、そのサイク
ル内の変動量はタンク容量によって決定する。バッファ
タンクから取出す精製ガスの許容変動量によりバッファ
タンク容積を決定すればよい。
Further, the buffer tank pressure is automatically determined by the sum of the amount of purified gas flowing in from the orifice, the amount of product gas flowing out from the buffer tank, and the amount of purge gas, but the amount of fluctuation within the cycle is determined by the tank capacity. The buffer tank volume may be determined based on the permissible fluctuation amount of purified gas taken out from the buffer tank.

〔実施例〕〔Example〕

実施例について図を参照して説明すると、第1図におい
て1本実施例は空気中より酸素ガスを分離精製する装置
で2木のゼオライトを充填した吸着塔2.3に空気圧縮
器1より原料ガスである圧縮空気をバルブ4を介して吸
着塔2へ、バルブ5を介して吸着塔3へそれぞれ接続し
、また脱着時の排気ガスの排気用として、バルブ6を吸
着塔2、バルブ7を吸着塔3へそれぞれ接続し、これを
大気に開放して排出する。
Embodiments will be explained with reference to the drawings. In Fig. 1, 1 is an apparatus for separating and purifying oxygen gas from air. 2 Materials are transferred from an air compressor 1 to an adsorption tower 2.3 filled with wood zeolite. Compressed air, which is a gas, is connected to the adsorption tower 2 through valve 4 and to adsorption tower 3 through valve 5, and valve 6 is connected to the adsorption tower 2 and valve 7 is connected to exhaust gas during desorption. Each is connected to the adsorption tower 3, which is opened to the atmosphere and discharged.

吸着塔2よりバッファタンク13に配管11で接続し、
その配管11の途中にオリフィス9を挿入し、これによ
りここを流れる流量を制限している同じく吸着塔3より
バッファタンク13に配管12で接続しその配管12の
途中にオリフィス10を挿入し、ここを流れる流量を制
限している。
The adsorption tower 2 is connected to the buffer tank 13 by a pipe 11,
An orifice 9 is inserted in the middle of the pipe 11, thereby restricting the flow rate flowing therethrough.The adsorption tower 3 is also connected to the buffer tank 13 by a pipe 12, and an orifice 10 is inserted in the middle of the pipe 12. restricts the flow rate.

バッファタンク13より配管14を通して精製酸素ガス
が得られる。ここでオリフィス9及び10はその流量を
制限することが目的であるので、絞り弁でも可能である
。より具体的な値を示すと。
Purified oxygen gas is obtained from the buffer tank 13 through the pipe 14. Since the purpose of the orifices 9 and 10 is to limit the flow rate, a throttle valve may also be used. To show more specific values.

吸着塔の寸法を2.3!とし、バッファタンク容量を2
β、オリフィス径1..4m+++φ、吸着剤はゼオラ
イトを用い1..5kgを各々の吸着塔に充填して使用
する。サイクルタイムは30秒である。
The dimensions of the adsorption tower are 2.3! and the buffer tank capacity is 2
β, orifice diameter 1. .. 4m+++φ, using zeolite as adsorbent 1. .. 5 kg is used by filling each adsorption tower. Cycle time is 30 seconds.

以上の構成で濃度93%以上の酸素ガス量41/分が得
られる。このときの吸着塔2.3及びバッファタンクの
圧力波形を第6図に示す。
With the above configuration, an oxygen gas amount of 41/min with a concentration of 93% or more can be obtained. The pressure waveforms of the adsorption tower 2.3 and the buffer tank at this time are shown in FIG.

いま空気圧縮器1の圧縮空気をバルブ4より吸着塔2へ
送っているとき吸着塔の内圧は第6図の波形へで示す形
で圧力が上昇する。このときオリフィス9の両端には波
形Aの圧力どバッファタンク13の圧力波形Cで示す圧
力との差の圧力がかかって精製ガスが吸着塔2からバッ
ファタンク13に流入する。このとき、バルブ5.6は
閉の状態にあり、バルブ7が開の状態にある。そして減
圧脱着工程にある吸着塔3は波形Bで表される圧カニあ
りオリフィス10の両端にはその圧力とバッファタンク
13の圧力波形Cとの差の圧力がかかりパージガスが吸
着塔3に流入してくる。吸着塔2の加圧吸着工程から減
圧脱着工程に入る間に均圧工程と称する期間があり、そ
の期間はバルブ4.6.7は閉、バルブ5は開となって
おり、その継続時間は1.5秒である。この工程は、圧
縮空気が吸着塔2から3へ切換えられ、吸着塔3へはバ
ッファタンク13より精製ガスが流入し、吸着塔2から
はオリフィス9を通してバッファタンクに流入するので
バッファタンクの圧力は高い状態で維持される。
When compressed air from the air compressor 1 is being sent to the adsorption tower 2 through the valve 4, the internal pressure of the adsorption tower increases as shown by the waveform in FIG. At this time, a pressure difference between the pressure of the waveform A and the pressure of the buffer tank 13 shown by the pressure waveform C is applied to both ends of the orifice 9, and purified gas flows from the adsorption tower 2 into the buffer tank 13. At this time, valve 5.6 is in a closed state and valve 7 is in an open state. Then, in the adsorption tower 3 in the depressurization desorption process, a pressure difference between that pressure and the pressure waveform C of the buffer tank 13 is applied to both ends of the pressure crab orifice 10 represented by waveform B, and the purge gas flows into the adsorption tower 3. It's coming. There is a period called a pressure equalization step between the pressurized adsorption step and the reduced pressure desorption step in the adsorption tower 2. During this period, valves 4.6.7 are closed and valve 5 is open, and the duration is as follows. It is 1.5 seconds. In this process, compressed air is switched from adsorption tower 2 to 3, purified gas flows into adsorption tower 3 from buffer tank 13, and from adsorption tower 2 flows into the buffer tank through orifice 9, so the pressure in the buffer tank is maintained at a high level.

次に吸着塔2は減圧脱着工程に入るすなわちバルブ6を
開とする。このときの吸着塔3は前述の吸着塔2の加圧
吸着工程のときと同じ過程をとり圧力がグラフBで示す
如く上昇する。後は同様にサイクルを繰返して酸素ガス
を連続的に濃縮精製する。
Next, the adsorption tower 2 enters a reduced pressure desorption process, that is, the valve 6 is opened. At this time, the adsorption tower 3 undergoes the same process as in the pressurized adsorption step of the adsorption tower 2 described above, and the pressure increases as shown in graph B. After that, the cycle is repeated in the same way to continuously concentrate and purify the oxygen gas.

この実施例では接続バイブ11及び12をそれぞれバッ
ファタンク13に接続したが、バイブ11のオリフィス
9の後で、同じくバイブ12のオリフィス10の後で2
つのバイブをひとつに結合して、1本にまとめてバッフ
ァタンクに入れる方法もある。この方が均圧時に加圧吸
着直後の吸着塔より、減圧直後の吸着塔に流れる均圧ガ
スが直接吸着塔間に流れる率が多くなるのでバッファタ
ンク内の精製ガス濃度を低めない利点がある。
In this embodiment, the connecting vibes 11 and 12 are connected to the buffer tank 13, respectively.
Another option is to combine two vibrators into one and place them all in a buffer tank. This has the advantage that the concentration of the purified gas in the buffer tank is not lowered because during pressure equalization, the pressure equalization gas flowing into the adsorption tower immediately after pressure reduction flows directly between the adsorption towers at a higher rate than from the adsorption tower immediately after pressurized adsorption.

次に3つの吸着塔を使用する場合のシーケンスは下表の
如くなり、2つの場合と同様に各吸着塔とバッファタン
クの間をオリフィスを使用して接続する事により同様な
効果が得られる。
Next, the sequence in the case of using three adsorption towers is as shown in the table below, and the same effect as in the case of two adsorption towers can be obtained by connecting each adsorption tower and the buffer tank using an orifice.

〔効  果〕〔effect〕

出力系のバルブ類が不用となり、それに伴いそれ等のバ
ルブを制御する部分が不用となる。
Output system valves are no longer needed, and the parts that control those valves are also no longer needed.

吸着剤は1通常使用のもので良く、特にサイクルタイム
を短くする必要はない。また第1図に示す如くコンプレ
ッサーの後に空気タンクを必要と第1図は本発明のフロ
ーシート図を示す。第2図は公知例のフローシート図を
示す。第3図はオリフィスの流入形状と圧力損失係数を
示す。第4図は方向により流量の異なるオリフィスの断
面形状を示す。第5図はバルブのタイムチャートを示す
。第6図は本発明の圧力関係図を示す。第1図の記号の
意味は次のとおりである。
The adsorbent may be one commonly used, and there is no particular need to shorten the cycle time. Further, as shown in FIG. 1, an air tank is required after the compressor. FIG. 1 shows a flow sheet diagram of the present invention. FIG. 2 shows a flow sheet diagram of a known example. Figure 3 shows the inflow shape of the orifice and the pressure loss coefficient. FIG. 4 shows the cross-sectional shape of an orifice with different flow rates depending on the direction. FIG. 5 shows a valve time chart. FIG. 6 shows a pressure relationship diagram of the present invention. The meanings of the symbols in Figure 1 are as follows.

Claims (3)

【特許請求の範囲】[Claims] (1)複数の吸着塔とバッファタンクを有する圧力変動
方式気体分離装置において、各々の吸着塔とバッファタ
ンクを流量制限手段を経由して接続することを特徴とす
る圧力変動方式による気体分離装置。
(1) A pressure fluctuation type gas separation apparatus having a plurality of adsorption towers and buffer tanks, wherein each adsorption tower and buffer tank are connected via a flow rate restriction means.
(2)流量制限手段にオリフィスを用いる特許請求の範
囲第1項記載の圧力変動方式による気体分離装置。
(2) A gas separation device using a pressure fluctuation method according to claim 1, in which an orifice is used as the flow rate restricting means.
(3)流量制限手段に方向により流量の変わる形状のオ
リフィスを用いる特許請求の範囲第1項記載の圧力変動
方式による気体分離装置。
(3) A gas separation device using a pressure fluctuation method according to claim 1, in which the flow rate limiting means includes an orifice having a shape that changes the flow rate depending on the direction.
JP63331883A 1988-12-28 1988-12-28 Gas separation device by pressure fluctuation method Expired - Fee Related JPH074499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63331883A JPH074499B2 (en) 1988-12-28 1988-12-28 Gas separation device by pressure fluctuation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63331883A JPH074499B2 (en) 1988-12-28 1988-12-28 Gas separation device by pressure fluctuation method

Publications (2)

Publication Number Publication Date
JPH02174912A true JPH02174912A (en) 1990-07-06
JPH074499B2 JPH074499B2 (en) 1995-01-25

Family

ID=18248687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63331883A Expired - Fee Related JPH074499B2 (en) 1988-12-28 1988-12-28 Gas separation device by pressure fluctuation method

Country Status (1)

Country Link
JP (1) JPH074499B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047805A1 (en) * 2014-09-25 2016-03-31 帝人ファーマ株式会社 Oxygen concentration device
JP2018521843A (en) * 2015-07-13 2018-08-09 ヌヴェラ・フュエル・セルズ,エルエルシー Pressure swing adsorber with flow regulation by orifice

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580702A (en) * 1978-12-14 1980-06-18 Nippon Denshi Zairyo Kk Oxygen concentrating apparatus
JPS59112822A (en) * 1982-12-17 1984-06-29 Kogyo Kaihatsu Kenkyusho Concentration of difficultly adsorbable component in gas
JPS59160515A (en) * 1983-02-28 1984-09-11 Hidenobu Toyotomi Separating and enriching system for oxygen in air
JPS621524A (en) * 1985-06-28 1987-01-07 Asahi Fiber Glass Co Ltd Joining structure with plastic member and joining method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580702A (en) * 1978-12-14 1980-06-18 Nippon Denshi Zairyo Kk Oxygen concentrating apparatus
JPS59112822A (en) * 1982-12-17 1984-06-29 Kogyo Kaihatsu Kenkyusho Concentration of difficultly adsorbable component in gas
JPS59160515A (en) * 1983-02-28 1984-09-11 Hidenobu Toyotomi Separating and enriching system for oxygen in air
JPS621524A (en) * 1985-06-28 1987-01-07 Asahi Fiber Glass Co Ltd Joining structure with plastic member and joining method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047805A1 (en) * 2014-09-25 2016-03-31 帝人ファーマ株式会社 Oxygen concentration device
JPWO2016047805A1 (en) * 2014-09-25 2017-06-08 帝人ファーマ株式会社 Oxygen concentrator
US10188821B2 (en) 2014-09-25 2019-01-29 Teijin Pharma Limited Oxygen concentration device
JP2018521843A (en) * 2015-07-13 2018-08-09 ヌヴェラ・フュエル・セルズ,エルエルシー Pressure swing adsorber with flow regulation by orifice

Also Published As

Publication number Publication date
JPH074499B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
US4194890A (en) Pressure swing adsorption process and system for gas separation
EP0085419B1 (en) Process and compound bed means for evolving a first component enriched gas
US4263018A (en) Pressure swing adsorption process and system for gas separation
US7122073B1 (en) Low void adsorption systems and uses thereof
US4168149A (en) Gas separation
US6010555A (en) Vacuum pressure swing adsorption system and method
US5658371A (en) Single bed pressure swing adsorption process for recovery of oxygen from air
EP0860195B1 (en) System for energy recovery in a vacuum pressure swing adsorption apparatus
JPH1087302A (en) Single step secondary high purity oxygen concentrator
US6858065B2 (en) High recovery PSA cycles and apparatus with reduced complexity
US5656068A (en) Large capacity vacuum pressure swing adsorption process and system
US5772737A (en) Process for treating a gas mixture by pressure swing adsorption
JPH05253438A (en) Dual product pressure swing adsorption and membrane operation
JPH07745A (en) Gas separation
US6090185A (en) Process for gas separation by adsorption with variable production rate
KR102446032B1 (en) Purification method and purification system for helium gas
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
JPH02174912A (en) Pressure variable type gas separation device
CA2493994A1 (en) Method of separating target gas
GB2073043A (en) Separation of a gaseous mixture
US5074893A (en) Fluid adsorption system
JPS636481B2 (en)
JP3143758B2 (en) Weight loss operation method of pressure fluctuation adsorption device
CN219744383U (en) Pressure swing adsorption process system
JPS6247802B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees