JPH02174304A - Planer antenna - Google Patents

Planer antenna

Info

Publication number
JPH02174304A
JPH02174304A JP33049188A JP33049188A JPH02174304A JP H02174304 A JPH02174304 A JP H02174304A JP 33049188 A JP33049188 A JP 33049188A JP 33049188 A JP33049188 A JP 33049188A JP H02174304 A JPH02174304 A JP H02174304A
Authority
JP
Japan
Prior art keywords
point
subarray
line
array
subarrays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33049188A
Other languages
Japanese (ja)
Inventor
Futoshi Deguchi
太志 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DX Antenna Co Ltd
Original Assignee
DX Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DX Antenna Co Ltd filed Critical DX Antenna Co Ltd
Priority to JP33049188A priority Critical patent/JPH02174304A/en
Publication of JPH02174304A publication Critical patent/JPH02174304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To expand the band width operated by a circularly polarized wave by arranging a subarray around a synthesis point of an array at an interval of 90 deg., rotating the physical attitude by pi/2 each sequentially and connecting lines whose length differs from lambdag/4 (lambdag is a wavelength of line) to a signal input output terminal of the array sequentially. CONSTITUTION:When an incident radio wave of subarrays 7A-7D is an elliptic polarized wave, the received radio wave of the subarrays 7A-7D is synthesized via lines 12-17 whose attitude differs sequentially from pi/2 each and whose length of line differs from lambdag/4, the attitude of the elliptic polarized wave of the radio wave coming from each subarray at the synthesis point differs from pi/2 each. Thus, the elliptic polarized waves whose attitude differs are synthesized, resulting that a completely circularly polarized wave is formed. Since the difference in the length of line from adjacent subarrays 7A-7D to the synthesis point is lambdag/4, the reflected wave coming from the synthesis point, inverted at the input and output point of each subarray and returned to the synthesis point has a different phase by 2pi each and the phase is inverted, then they are cancelled together. Thus, the frequency band width obtained at the circularly polarized wave characteristic is spread.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、マイクロウェーブ用の指向性平面アンテナ
、特に衛星放送受信用の円偏波マイクロストリップバッ
チアンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a directional planar antenna for microwaves, and in particular to a circularly polarized microstrip batch antenna for satellite broadcast reception.

〈従来の技術〉 第3図に示すような各種の形状の一点給電円偏波バッチ
アンテナ素子の多数を、平面誘電体基板上に配列した平
面アンテナが、マイクロストリップバッチアンテナとし
て知られている。
<Prior Art> A planar antenna in which a large number of single-point-fed circularly polarized batch antenna elements of various shapes as shown in FIG. 3 are arranged on a planar dielectric substrate is known as a microstrip batch antenna.

第4図に示すように、これらのバッチアンテナ素子l、
2.3.4は、4個づつ入出力線路5に適当な結合線路
6によって結合されて、サブアレイ7を形成する。矢印
8は、サブアレイの物理的姿勢を示す、第5図に示すよ
うに、このようなサブアレイ7A、7B、7C17Dは
更に4個づつ入出力線路9に接続されて、アレイを形成
する。
As shown in FIG. 4, these batch antenna elements l,
2.3.4 are coupled to the input/output lines 5 in groups of four by appropriate coupling lines 6 to form a subarray 7. Arrows 8 indicate the physical orientation of the subarrays.As shown in FIG. 5, four such subarrays 7A, 7B, 7C17D are further connected to input/output lines 9 to form an array.

第5図(a)においては、サブアレイ7B、 7G、7
Dはサブアレイ7Aと同姿勢である。入出力線路9は、
P点、R点及び8点を経て、サブアレイ7Aの入出力点
Aに接続され、サブアレイ7Dの出力点り八 にはP点、R点及びT点を経て接続されているが、線路
?S+SAヒRT+TDとは等長であるためにサブアレ
イ7Aと7Dとは同位相で励振される。更に、入出力線
路9は、P点、Q点及び0点を経て、すツアレイ7Bの
入出力点Bに、サブアレイ7Cの入出力点Cには、P点
、Q点及び7点を経てそれぞれ接続されており、線路Q
U+UB及びqv+vcは共に線路R3+SA、 RT
+TDと等長である。従ってサブアレイ7B及び7Cは
、サブアレイ7八及び7Dと同位相て励振される。その
結果、各サブアレイ7A、7B、7G、 7Dの電波は
、P点てはすべて同相で合成される。
In FIG. 5(a), subarrays 7B, 7G, 7
D is in the same attitude as subarray 7A. The input/output line 9 is
It is connected to input/output point A of sub-array 7A via point P, point R, and 8 points, and to output point A of sub-array 7D via point P, point R, and point T, but is it a line? Since S+SA, RT+TD have the same length, subarrays 7A and 7D are excited in the same phase. Further, the input/output line 9 is connected to the input/output point B of the tour array 7B via the P point, the Q point, and the 0 point, and to the input/output point C of the subarray 7C via the P point, the Q point, and the 7 point, respectively. connected, line Q
U+UB and qv+vc are both lines R3+SA, RT
+TD and the same length. Therefore, subarrays 7B and 7C are excited in the same phase as subarrays 78 and 7D. As a result, the radio waves of each subarray 7A, 7B, 7G, and 7D are all combined in the same phase at point P.

また、第5図(b)においては、サブアレイ7B及び7
Cはサブアレイ7Aに対して 180°回転されており
、サブアレイ7Dはサブアレイ7Aと同姿勢であり、入
出力線路9においては、線路PQとPRとは等長である
か、線路QA及びRDは線路QB及びRCに較べて共に
λg/2だけ長い。従って、サブアレイ7A及び7Dは
、サブアレイ7B及び7Cとπたけ異なる位相で励振さ
れる。その結果、各サブアレイ7A、7B、7C17D
の電波は、P点ではすべて同相で合成される。
In addition, in FIG. 5(b), subarrays 7B and 7
C is rotated 180 degrees with respect to subarray 7A, subarray 7D is in the same attitude as subarray 7A, and in input/output line 9, lines PQ and PR are of equal length, or lines QA and RD are line Both are longer by λg/2 than QB and RC. Therefore, subarrays 7A and 7D are excited with a phase different by π from subarrays 7B and 7C. As a result, each subarray 7A, 7B, 7C17D
The radio waves are all synthesized in the same phase at point P.

〈発明が解決しようとする課題〉 各サブアレイは、バッチアンテナ素子1及び4に現われ
る楕円偏波と、バッチアンテナ素子2及び3に現われる
楕円偏波とか、位相を90″異にすることによって、入
出力線路5上に円偏波を生ずるように構成されている。
<Problems to be Solved by the Invention> Each sub-array is configured to have a phase difference of 90'' between the elliptically polarized waves appearing in batch antenna elements 1 and 4 and the elliptically polarized waves appearing in batch antenna elements 2 and 3. It is configured to generate circularly polarized waves on the output line 5.

しかし、この条件か充たされるのは成る特定の中心周波
数foの場合に限られ、動作周波数が中心周波数foか
ら遠ざかると、入出力線路5上で円偏波が合成されなく
なり、軸比特性が悪くなる。
However, this condition is only satisfied in the case of a specific center frequency fo, and as the operating frequency moves away from the center frequency fo, circularly polarized waves are no longer synthesized on the input/output line 5, resulting in poor axial ratio characteristics. Become.

第5図示の従来のアレイでは、動作周波数か中心周波数
foから外れた場合、第6図に示すように各サブアレイ
7A、7B、7C17Dの入出力線路5に生じた楕円偏
波か同相で合成される結果、その入出力線路9上にも楕
円偏波10が現われる。即ち、各サブアレイの電波を合
成しても、その軸比特性は一向に改善されない。
In the conventional array shown in FIG. 5, when the operating frequency deviates from the center frequency fo, the elliptically polarized waves generated in the input/output lines 5 of each subarray 7A, 7B, and 7C17D are synthesized in phase as shown in FIG. As a result, an elliptically polarized wave 10 also appears on the input/output line 9. That is, even if the radio waves of each subarray are combined, the axial ratio characteristic will not be improved at all.

また、第5図(a)においては、P点から出てR点を通
り、3点またはT点を通ってA点または0点で反射して
P点へ戻る反射波と、P点から出てQ点を通りU点また
は7点を通ってB点または0点で反射してP点へ戻る反
射波とが同相で合成され、第5図(b)においては、Q
点から出てA点及びB点でそれぞれ反射してQ点へ戻る
反射波同士が同相で合成され、同様にR点から出て0点
及び0点でそれぞれ反射してR点へ戻る反射波同士が同
相で合成されるために、アンテナの定在波比が悪くなる
In Fig. 5(a), a reflected wave exits from point P, passes through point R, passes through point 3 or point T, is reflected at point A or point 0, and returns to point P, and a reflected wave exits from point P. The reflected wave passes through point Q, passes through point U or 7, is reflected at point B or point 0, and returns to point P. In Fig. 5(b), the reflected wave
The reflected waves that leave the point, reflect at points A and B, and return to point Q are combined in phase, and similarly, the reflected waves that leave point R, reflect at points 0 and 0, and return to point R. Since they are combined in the same phase, the standing wave ratio of the antenna deteriorates.

従って、第5図(a)及び(b)の何れにおいても、良
好な円偏波特性が得られる周波数帯域が狭く、かつ定在
波比も悪くなる欠点があった。
Therefore, in both of FIGS. 5(a) and 5(b), the frequency band in which good circular polarization characteristics can be obtained is narrow, and the standing wave ratio is also poor.

〈課題を解決するための手段〉 この発明は、平面誘電体基板上に配設した一点給電円偏
波パウチアンテナ素子を4個づつまとめて形成したサブ
アレイの4個を更に、まとめてアレイを形成させるに際
し、各アレイ内では、4個のサブアレイをアレイの合成
点の周りに等角度で配置すると共に、各サブアレイの物
理的姿勢を順にπ/2づつ回転させ、これらのサブアレ
イを順に合成点からλg/4(λtは波長)づつ線路長
を異にする線路によって当該アレイの信号入出力端に接
続し、この信号入出力端において各サブアレイの人出力
を合成するようにしたものである。
<Means for Solving the Problems> The present invention further forms an array by further combining four subarrays formed by collectively forming four single-point-fed circularly polarized pouch antenna elements arranged on a planar dielectric substrate. To do this, within each array, four subarrays are arranged at equal angles around the composite point of the array, and the physical posture of each subarray is sequentially rotated by π/2. It is connected to the signal input/output terminal of the array by lines having different line lengths by λg/4 (λt is the wavelength), and the human outputs of each subarray are combined at the signal input/output terminal.

従って、サブアレイ数が4個であるので、各サブアレイ
はアレイ中心の周りに90″ごとに配こされ、物理的姿
勢か順に90°づつ回転する。
Therefore, since the number of subarrays is four, each subarray is arranged every 90'' around the center of the array, and the physical orientation rotates by 90° in turn.

そして、各サブアレイは信号入出力端に、順にλg/4
づつ線路長を異にする線路によって結合される。
Then, each subarray is sequentially connected to λg/4 at the signal input/output terminal.
They are connected by lines with different line lengths.

〈作  用〉 電波の受信に際し、各サブアレイの入来電波か中心周波
数「0から外れることによって楕円偏波になっても、各
サブアレイが順にπ/2づつ姿勢を異にし、かつその受
信電波は順にλg/4づつ線路長を異にする線路を経て
合成されるために、合成点において各サブアレイから来
た電波は、順にπ/2づつ楕円偏波の姿勢を異にする。
<Function> When receiving radio waves, even if the incoming radio wave of each subarray becomes an elliptically polarized wave due to the center frequency deviating from 0, each subarray sequentially changes its attitude by π/2, and the received radio wave Since the radio waves are synthesized sequentially through lines having different line lengths by λg/4, the radio waves coming from each subarray at the synthesis point have their elliptically polarized waves sequentially different by π/2.

従って、これらの姿勢を異にする楕円偏波が合成される
結果、完全な円偏波になる。
Therefore, as a result of combining these elliptically polarized waves with different orientations, a complete circularly polarized wave is obtained.

また、相隣るサブアレイから合成点へ至る線路長の差は
λg/今であるため、合成点から出て各サブアレイの入
出力点で反転し、合成点へ戻った反射波は、位相を互い
に2πづつ異にし逆相(0″に対して 180’ ) 
L/ているために互いに打消し合う。
Also, since the difference in line length from adjacent subarrays to the synthesis point is λg/now, the reflected waves that leave the synthesis point, are inverted at the input/output points of each subarray, and return to the synthesis point have their phases shifted from each other. Reverse phase by 2π (180' to 0'')
They cancel each other out because they are L/.

その結果、円偏波特性が得られる周波数帯域幅か大きく
拡がると共に、定在波比も向上する。
As a result, the frequency bandwidth in which circularly polarized wave characteristics can be obtained is greatly expanded, and the standing wave ratio is also improved.

なお、このアンテナにより送信する場合にも、動作か可
逆的に行なわれるために、同様な優れた広帯域特性を得
ることができる。
Note that when transmitting using this antenna, the same excellent broadband characteristics can be obtained because the operation is reversible.

く実 施 例〉 第1図において、7A、78.7G及び7Dはそれぞれ
サブアレイを示す。各サブアレイは、第3図に示されて
いるような一点給電円偏波バッチアンテナ素子の任意の
もの4個を、例えば第4図に示すような形に接続したも
ので、矢印符号は第4図における矢印8と同様に、各サ
ブアレイの物理的姿勢を示している。図からIN′]ら
かなように、各サブアレイは、正方形の4隅に相当する
位近に配置され、物理的姿勢が順に90°づつ回転して
いる。
Examples In FIG. 1, 7A, 78.7G, and 7D each indicate a subarray. Each subarray is made by connecting four arbitrarily selected single-point-fed circularly polarized batch antenna elements as shown in FIG. 3 in the form shown in FIG. Similar to arrow 8 in the figure, it indicates the physical orientation of each subarray. As is clear from the figure, each subarray is arranged near the four corners of a square, and its physical posture is sequentially rotated by 90 degrees.

共通の入出力線路11は、P点において線路12と13
とに分岐する。線路12は、Q点においで更に線1!8
111と15とに分岐し、線路14はサブアレイフへの
入II力点Aに至り、線路15はサブアレイ7Bの入出
力点Bに至る。また、線路13はR点において更に線路
16と17とに分岐し、線路16はサブアレイ7Cの入
出力点Cに至り、線路17はサブアレイ7Dの入出力点
りに至っている。
The common input/output line 11 connects lines 12 and 13 at point P.
It branches into Line 12 further becomes line 1!8 at point Q.
111 and 15, the line 14 reaches the input point A of the subarray 7B, and the line 15 reaches the input/output point B of the subarray 7B. Further, line 13 further branches into lines 16 and 17 at point R, line 16 reaching input/output point C of sub-array 7C, and line 17 reaching input/output point of sub-array 7D.

ここで、線路12の長さPQを交、とじ、線路14の長
さQAを交2としたとき、各線路の長さは次のような関
係になるように定められている。
Here, when the length PQ of the line 12 is an intersection and the length QA of the line 14 is an intersection 2, the lengths of each line are determined to have the following relationship.

線路12   PQ=交。Line 12 PQ=cross.

線路14   QA=見2 線路16   RC=見。Track 14 QA=See 2 Track 16 RC=See.

となり、P点から各サブアレイの入出力点までの線路長
は順にλg/4づつ異ることになる。
Therefore, the line lengths from point P to the input/output points of each subarray differ by λg/4 in turn.

L述のように、各サブアレイか順に90°づつ姿勢を異
にし、かつ共通の入出力点Pからの線路長か順に入g/
4づつ変化している結果、第2図に示すように、点Pに
おいては姿勢か90″づつ異なる楕円偏波か総合されて
、円偏波18が合成される。
As described in L, each subarray has a different attitude by 90 degrees, and the line length from the common input/output point P is input in order.
As a result, as shown in FIG. 2, as shown in FIG. 2, at point P, the circularly polarized waves 18 are synthesized by combining the elliptical polarizations that differ by 90'' from each other.

また、Q点から出てA点及び8点で反射してQ点へ戻る
反射波は、位相が180°異なるために互いに打消し合
い、同様にR点から出て0点及び0点で反射してR点に
戻った反射波も1位相か180@異なるために互いに打
消し合う。そのために、良好な定在波比を維持すること
かできる。
Also, the reflected waves that go out from point Q, reflect at points A and 8, and return to point Q cancel each other because their phases differ by 180 degrees, and similarly go out from point R and reflect at points 0 and 0. The reflected waves that returned to point R also cancel each other because they differ by one phase or 180@. Therefore, it is possible to maintain a good standing wave ratio.

第7図は、上記実施例(実線)及び第5図(b)に示し
た従来例(点線)の軸比−周波数特性を示し、軸比1d
Bのレベルで比較すると、従来例では±1%未満の帯域
しか得られないのに対し、上記実施例では実に±3%以
上の帯域幅を得ることができる。
FIG. 7 shows the axial ratio-frequency characteristics of the above embodiment (solid line) and the conventional example (dotted line) shown in FIG.
Comparing the B level, the conventional example can only obtain a bandwidth of less than ±1%, whereas the above embodiment can actually obtain a bandwidth of ±3% or more.

第8図は、上記実施例(実線)及び第5図(b)に示し
た従来例(点線)の交差偏波保護比−周波数特性を示し
、 25dBのレベルで比較すると、従来例では1.9
8%の帯域幅しか得られないのに対し、上記実施例では
実に6.55%の帯域幅を得ることかできる。
FIG. 8 shows the cross-polarization protection ratio-frequency characteristics of the above embodiment (solid line) and the conventional example (dotted line) shown in FIG. 9
While only 8% of the bandwidth can be obtained, in the above embodiment, a bandwidth of 6.55% can be obtained.

〈発明の効果〉 以上の実施例によって明らかなように、この発明による
ときは、マイクロストリップバッチアンテナが円偏波で
動作する帯域幅を大幅に拡大すると共に、線路上の定在
波比を大きく改善することができる。
<Effects of the Invention> As is clear from the above embodiments, according to the present invention, the bandwidth in which the microstrip batch antenna operates with circularly polarized waves is greatly expanded, and the standing wave ratio on the line is greatly increased. It can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明を実施したアレイの構成図、第2図は
同アレイの動作説明図、第3図は従来の各種のバッチア
ンテナ素子の平面図、第4図は従来のサブアレイの一例
の平面図、第5図は従来のアレイの構成図、第6図は第
5図示のアレイの動作説明図、第7図は上記実施例及び
従来例の軸比−周波数特性線図、第8図は上記実施例及
び従来例の交差偏波保護比−周波数特性線図である。 7A〜7D・・・ サブアレ化 12〜17・・・ 線路、 アレイの信号入出力端。
Fig. 1 is a configuration diagram of an array embodying the present invention, Fig. 2 is an explanatory diagram of the operation of the array, Fig. 3 is a plan view of various conventional batch antenna elements, and Fig. 4 is an example of a conventional sub-array. A plan view, FIG. 5 is a configuration diagram of a conventional array, FIG. 6 is an explanatory diagram of the operation of the array shown in FIG. 5, FIG. 7 is an axial ratio-frequency characteristic diagram of the above embodiment and the conventional example, and FIG. is a cross-polarization protection ratio-frequency characteristic diagram of the above embodiment and the conventional example. 7A to 7D... Sub-arrays 12 to 17... Lines, signal input/output terminals of the array.

Claims (1)

【特許請求の範囲】[Claims] (1)平面誘電体基板上に配設したバッチアンテナ素子
を一定個数づつまとめてサブアレイを形成させ、更にこ
れらサブアレイを4個づつまとめてアレイを形成させた
円偏波平面アンテナにおいて、各アレイ内のサブアレイ
は、当該アレイの合成点の周りに90°間隔で配置され
、かつその物理的姿勢が順にπ/2づつ回転しており、
更にこれらのサブアレイは、順にλg/4(λgは線路
波長)づつ線路長を異にする線路によって当該アレイの
信号入出力端にそれぞれ接続されていることを特徴とす
る平面アンテナ。
(1) In a circularly polarized planar antenna in which a fixed number of batch antenna elements arranged on a planar dielectric substrate are grouped together to form a subarray, and these subarrays are further grouped into four subarrays to form an array. The sub-arrays are arranged at 90° intervals around the composite point of the array, and their physical postures are sequentially rotated by π/2,
Furthermore, the planar antenna is characterized in that these sub-arrays are respectively connected to the signal input/output ends of the array by lines having different line lengths by λg/4 (λg is the line wavelength).
JP33049188A 1988-12-26 1988-12-26 Planer antenna Pending JPH02174304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33049188A JPH02174304A (en) 1988-12-26 1988-12-26 Planer antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33049188A JPH02174304A (en) 1988-12-26 1988-12-26 Planer antenna

Publications (1)

Publication Number Publication Date
JPH02174304A true JPH02174304A (en) 1990-07-05

Family

ID=18233219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33049188A Pending JPH02174304A (en) 1988-12-26 1988-12-26 Planer antenna

Country Status (1)

Country Link
JP (1) JPH02174304A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156701A (en) * 1990-10-19 1992-05-29 Nec Corp Microstrip antenna for circularly polarized wave
JPH0927710A (en) * 1995-07-12 1997-01-28 Nec Corp Helical antenna
JP2009055613A (en) * 2007-08-28 2009-03-12 Mti Co Ltd Compound element for radio relay device antenna and dipole array circular polarized antenna using it

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621304A (en) * 1985-06-25 1987-01-07 コミユニケイシヨンズ サテライト コ−ポレ−シヨン Microstrip antenna array and manufacture thereof
JPS6434002A (en) * 1987-07-30 1989-02-03 Sony Corp Plane antenna

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621304A (en) * 1985-06-25 1987-01-07 コミユニケイシヨンズ サテライト コ−ポレ−シヨン Microstrip antenna array and manufacture thereof
JPS6434002A (en) * 1987-07-30 1989-02-03 Sony Corp Plane antenna

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04156701A (en) * 1990-10-19 1992-05-29 Nec Corp Microstrip antenna for circularly polarized wave
JPH0927710A (en) * 1995-07-12 1997-01-28 Nec Corp Helical antenna
JP2009055613A (en) * 2007-08-28 2009-03-12 Mti Co Ltd Compound element for radio relay device antenna and dipole array circular polarized antenna using it

Similar Documents

Publication Publication Date Title
US6690331B2 (en) Beamforming quad meanderline loaded antenna
JP4108275B2 (en) Circularly polarized antenna
US3681772A (en) Modulated arm width spiral antenna
US3396398A (en) Small unidirectional antenna array employing spaced electrically isolated antenna elements
JP2001196846A (en) Polarized wave shared antenna system
JPH0313105A (en) Radial line slot antenna
JPH02174304A (en) Planer antenna
JPS617707A (en) Array antenna for circularly polarized wave
JP3636920B2 (en) Multi-frequency antenna
Fusco et al. Wide-band dual slant linearly polarized antenna
JPS586602A (en) Active antenna
US3475756A (en) Polarization diversity loop antenna
JPS5839401B2 (en) circular array antenna
JPH02179008A (en) Planar antenna
JPH03157006A (en) Array antenna
RU2208277C1 (en) Phased antenna array
JP4498625B2 (en) Fan beam antenna
JPH0213841B2 (en)
JPH04186904A (en) Plane antenna
JP2003534758A (en) Broadband meander line loaded antenna
JPS62209376A (en) Plane antenna radar equipment
JP2635723B2 (en) Antenna device
RU2208276C1 (en) Phased antenna array
JPH032983Y2 (en)
JPH0325961B2 (en)