JPH02174266A - Multipolar bidirectional semiconductor control device - Google Patents
Multipolar bidirectional semiconductor control deviceInfo
- Publication number
- JPH02174266A JPH02174266A JP33007688A JP33007688A JPH02174266A JP H02174266 A JPH02174266 A JP H02174266A JP 33007688 A JP33007688 A JP 33007688A JP 33007688 A JP33007688 A JP 33007688A JP H02174266 A JPH02174266 A JP H02174266A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- semiconductor
- bidirectional
- type
- core wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 145
- 230000002457 bidirectional effect Effects 0.000 title claims description 47
- 230000001012 protector Effects 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005405 multipole Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Thyristors (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、雷サージ等の異常電圧から機器を防護する
ための多極の双方向半導体制御素子に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multipolar bidirectional semiconductor control element for protecting equipment from abnormal voltages such as lightning surges.
(従来の技術)
従来、この種の双方向半導体制御素子としては第7図に
示すものが知られている。この双方向半導体制御素子l
は、順次に隣接する半導体層Nl、半導体NP2、半導
体層N3、半導体層P4及び半導体層N5の5層領域か
ら成り、半導体層Nl、N3及びN5はn型半導体、半
導体層P2、及びP4はp型半導体である。一方の端部
における半導体層Nlと半導体層P2とは電極2によっ
て短絡され、他方の端部における半導体層P4と半導体
層N5とは電極3によって短絡されている。電極2には
端子4が形成され、電極3には端子5が形成されている
また、この従来の双方向半導体制御素子の電圧−電流特
性は第8図に示すように、高抵抗領域6a、5bと比較
的低い微分抵抗を有する降伏領域7a、7bと移行領域
8a、8bと低抵抗領域lla、llbとから成るスイ
ッチ特性を持っている。図中の点9a、9bはブレーク
オーバN圧、点10a、fobは保持電流である。(Prior Art) Conventionally, as this type of bidirectional semiconductor control device, one shown in FIG. 7 is known. This bidirectional semiconductor control element
consists of five layer regions of sequentially adjacent semiconductor layer Nl, semiconductor NP2, semiconductor layer N3, semiconductor layer P4, and semiconductor layer N5, where semiconductor layers Nl, N3, and N5 are n-type semiconductors, and semiconductor layers P2 and P4 are n-type semiconductors. It is a p-type semiconductor. The semiconductor layer Nl and the semiconductor layer P2 at one end are short-circuited by the electrode 2, and the semiconductor layer P4 and the semiconductor layer N5 at the other end are short-circuited by the electrode 3. A terminal 4 is formed on the electrode 2, and a terminal 5 is formed on the electrode 3. Furthermore, as shown in FIG. 8, the voltage-current characteristics of this conventional bidirectional semiconductor control element include a high resistance region 6a, 5b, breakdown regions 7a and 7b having relatively low differential resistance, transition regions 8a and 8b, and low resistance regions lla and llb. Points 9a and 9b in the figure are the breakover N pressure, and points 10a and fob are the holding current.
次に、この従来の双方向半導体制御素子を用いて通信中
継機器用保安器を構成した例を第9図に示す。Next, FIG. 9 shows an example in which a protector for communication relay equipment is constructed using this conventional bidirectional semiconductor control element.
中継器11の入カドランス12の側の通信線の心線14
と心線15との間に素子18、心線14.15とアース
24との間に素子19および20、出カドランス13の
側の心線16.17とアース24との間に素子21およ
び22、心線16と心線17との間に素子23が、それ
ぞれ接続されている。雷サージが、例えば、心線14と
アース24との間に印加されると、素子19がONして
雷サージ電流をアース24へ流して中継器11を防護す
る0通常、襲雷時において、心線14とアース24との
間及び心線15とアース24との間には、同時刻に同電
圧のサージが印加される。このとき、素子19と素子2
0とに動作特性の差があると、その差に応じた電圧(最
大で各素子のブレークオーバ電圧の差)が心線14と心
線15との間、すなわち中継器11に印加されるので、
中継器11が損傷することがある。また、心線14と心
線15との間に直接異常電圧が印加された場合、心線1
4と心線15との間には素子19と素子20とが直列に
挿入されることとなり、動作電圧は素子19.20が単
独の場合より大きくなり(最大で各素子のブレークオー
バ電圧の和)、中継器11を防護できない場合がある。Core wire 14 of the communication line on the side of the inductor transformer 12 of the repeater 11
and the core wire 15, elements 19 and 20 between the core wire 14.15 and the ground 24, and elements 21 and 22 between the core wire 16.17 on the side of the output transformer 13 and the ground 24. , an element 23 is connected between the core wire 16 and the core wire 17, respectively. When a lightning surge is applied, for example, between the core wire 14 and the ground 24, the element 19 turns on and the lightning surge current flows to the ground 24 to protect the repeater 11. Normally, during a lightning strike, Surges of the same voltage are applied between the core wire 14 and the ground 24 and between the core wire 15 and the ground 24 at the same time. At this time, element 19 and element 2
If there is a difference in operating characteristics between ,
The repeater 11 may be damaged. In addition, if an abnormal voltage is applied directly between the core wire 14 and the core wire 15, the core wire 1
Element 19 and element 20 are inserted in series between 4 and core wire 15, and the operating voltage is higher than when elements 19 and 20 are used alone (up to the sum of the breakover voltage of each element). ), the repeater 11 may not be protected.
これらを避けるために素子19と素子20とは動作特性
の等しいものを使うことが望ましく、さらに、心線14
と心線15との間に素子18を入れる場合が多い。In order to avoid these problems, it is desirable to use elements 19 and 20 that have the same operating characteristics.
In many cases, an element 18 is inserted between the core wire 15 and the core wire 15.
以上のことは出カドランス13の側も同様であり、この
例では四個ないし六個の双方向半導体制御素子が必要と
なる。The above also applies to the output transformer 13, and in this example, four to six bidirectional semiconductor control elements are required.
(発明が解決しようとする課題)
ところで、従来の双方向半導体制御素子では、異常電圧
から機器を防護する保安器等を構成する場合、−本の通
信線の心線に対し少なくとも一個の双方向半導体制御素
子を用いなければならない。(Problems to be Solved by the Invention) By the way, in the conventional bidirectional semiconductor control device, when configuring a protector etc. that protects equipment from abnormal voltage, at least one bidirectional Semiconductor control elements must be used.
しかも、双方向半導体制御素子は同一ロットで製造され
たものでも動作特性に差異が生じる場合があるので、動
作特性の差異に起因する機器の損傷を避けるための双方
向半導体制御素子を別に付加しなければならない。した
がって、多数の双方向半導体制御素子を必要とするとい
う問題点があった。Furthermore, bidirectional semiconductor control devices may differ in operating characteristics even if they are manufactured in the same lot, so a separate bidirectional semiconductor control device must be added to avoid damage to equipment due to differences in operating characteristics. There must be. Therefore, there is a problem in that a large number of bidirectional semiconductor control elements are required.
(課題を解決するための手段)
このような問題点を解決するために、この発明の多極の
双方向半導体制御素子は、複数のpnpn型二端子サイ
リスタから成る双方向半導体制<B素子において、第1
の導電型から成る第1の半導体層と、第1の半導体層に
内包され、且つ第1の半導体層の一方の主面に露出して
形成された第2の導電型から成る第2の半導体層と、第
1の半導体層の他方の主面に互いに離間して形成された
第2の導電型から成る複数以上の第3の半導体層と、複
数以上の第2の半導体層上にのみ形成された第1の導電
型から成る第4の半導体層と、複数以上の第4の半導体
層の各々に、第4の半導体層に内包され、且つ第4の半
導体層の外部表面に露出して形成された第2の導電型か
ら成る第5の半導体層と、第1の半導体層と第2の半導
体層とを各々の外部表面において短絡して形成された単
一の電極と、複数以上の第4の半導体層と第4の半導体
層に形成された第5の半導体層とを、各々の外部表面に
おいて対を成して短絡して形成された複数以上の電極と
から成ることを要旨とする。(Means for Solving the Problems) In order to solve such problems, the multipolar bidirectional semiconductor control device of the present invention is a bidirectional semiconductor control device consisting of a plurality of pnpn type two-terminal thyristors. , 1st
a first semiconductor layer of a conductivity type; and a second semiconductor of a second conductivity type included in the first semiconductor layer and exposed on one main surface of the first semiconductor layer. a plurality of third semiconductor layers of a second conductivity type formed on the other main surface of the first semiconductor layer and spaced apart from each other; and a plurality of third semiconductor layers formed only on the plurality of second semiconductor layers. a fourth semiconductor layer of a first conductivity type, and each of the plurality of fourth semiconductor layers includes a fourth semiconductor layer that is included in the fourth semiconductor layer and exposed on the external surface of the fourth semiconductor layer. a fifth semiconductor layer of the second conductivity type formed; a single electrode formed by short-circuiting the first semiconductor layer and the second semiconductor layer at their respective external surfaces; The gist includes a plurality of electrodes formed by short-circuiting a fourth semiconductor layer and a fifth semiconductor layer formed on the fourth semiconductor layer in pairs on each external surface. do.
(作用)
この発明においては、複数のpnpn型二端子サイリス
タが同じ半導体基板に隣接して形成され多極の双方向半
導体制御素子を構成する。したがって、各pnpn型二
端子サイリスタは、互いに極めて近い動作特性になる。(Function) In the present invention, a plurality of pnpn type two-terminal thyristors are formed adjacent to the same semiconductor substrate to constitute a multipolar bidirectional semiconductor control element. Therefore, each pnpn type two-terminal thyristor has operating characteristics that are very similar to each other.
また、保安器等を構成する場合、使用する素子数が減少
することにより、小型化が可能になり端子数も減少する
。Furthermore, when constructing a protector or the like, the number of elements used is reduced, which allows for miniaturization and a reduction in the number of terminals.
(実施例)
第1図は、この発明の多極の双方向半導体制御素子の一
実施例の断面図である。(Embodiment) FIG. 1 is a sectional view of an embodiment of a multipolar bidirectional semiconductor control element of the present invention.
この多極の双方向半導体制御素子25は、第1の導電型
としてp型、第2の導電型としてn型を用いている。そ
して、p型半導体から成る第1の半導体層P6および第
4の半導体層P7a、P7b、n型半導体から成る第2
の半導体層N8ab、第3の半導体層N9a、N9b及
び第5の半導体層N10a、N10bの5層領域から成
っている。This multipolar bidirectional semiconductor control element 25 uses p type as the first conductivity type and n type as the second conductivity type. A first semiconductor layer P6 and a fourth semiconductor layer P7a, P7b are made of a p-type semiconductor, and a second semiconductor layer is made of an n-type semiconductor.
It consists of five layer regions: a semiconductor layer N8ab, a third semiconductor layer N9a, N9b, and a fifth semiconductor layer N10a, N10b.
半導体層P6と半導体層N8abとは電極26、半導体
層P7aと半導体層N10aとは電極27a、半導体層
P7bと半導体層N10bとは電極27bによってそれ
ぞれ短絡されている。The semiconductor layer P6 and the semiconductor layer N8ab are short-circuited by an electrode 26, the semiconductor layer P7a and the semiconductor layer N10a are short-circuited by an electrode 27a, and the semiconductor layer P7b and the semiconductor layer N10b are short-circuited by an electrode 27b.
第2図は、この多極の双方向半導体制御素子を通信機器
の保安器として使用する例の結線図である。FIG. 2 is a wiring diagram of an example in which this multi-polar bidirectional semiconductor control element is used as a protector for communication equipment.
多極の双方向半導体制御素子25の電極26には端子2
8、電極27aには端子29a、電極27bには端子2
9bがそれぞれ設けられる。端子28はアース30へ、
端子29aは通信線の心線31aへ、端子29bは通信
線の心線31bへそれぞれ接続される。そして心線31
a、31bは通信機器32へ接続される。The terminal 2 is connected to the electrode 26 of the multipolar bidirectional semiconductor control element 25.
8. Terminal 29a is attached to electrode 27a, and terminal 2 is attached to electrode 27b.
9b are provided respectively. Terminal 28 to ground 30,
The terminal 29a is connected to the core wire 31a of the communication line, and the terminal 29b is connected to the core wire 31b of the communication line. and core wire 31
a and 31b are connected to the communication device 32.
次に、この多極の双方向半導体制御素子の動作を説明す
る。まず、この多極の双方向半導体制御素子25を、電
極26の図中の左半分と電極27aとによって挟まれた
双方向半導体制御素子33aと、電極26の図中の右半
分と電極27bとによって挾まれた双方向半導体制御素
子33bと、これらの素子間の第一の半導体層P6から
成る抵抗Rとに分割して考える。ここで、襲雷時に、例
えば端子28が正電位に端子29aが負電位になるよう
に、雷サージが印加されると、第8図の電圧−電流特性
を示して素子33aがONとなり通信機器32を防護す
る。このとき、抵抗Rの抵抗値は充分に太き(素子33
bに対する影響は極めて小さい。すなわち、素子33a
と素子33bとは電気的に絶縁しているものと見なせる
。したがって、素子33aと素子33bとは各々独立し
て動作する。また、これらの素子において正方向動作と
逆方向動作との電流経路は構造上対称的であるため、正
方向特性と逆方向特性とは極めて近いものが容易に得ら
れる。Next, the operation of this multipolar bidirectional semiconductor control element will be explained. First, this multipolar bidirectional semiconductor control element 25 is separated into a bidirectional semiconductor control element 33a sandwiched between the left half of the electrode 26 in the figure and the electrode 27a, and a bidirectional semiconductor control element 33a sandwiched between the right half of the electrode 26 in the figure and the electrode 27b. The bidirectional semiconductor control element 33b sandwiched by the two elements, and the resistor R consisting of the first semiconductor layer P6 between these elements will be considered. Here, during a lightning strike, if a lightning surge is applied such that, for example, the terminal 28 has a positive potential and the terminal 29a has a negative potential, the voltage-current characteristic shown in FIG. Protect 32. At this time, the resistance value of the resistor R is sufficiently large (element 33
The effect on b is extremely small. That is, element 33a
and element 33b can be considered to be electrically insulated. Therefore, element 33a and element 33b each operate independently. Further, in these elements, the current paths for forward direction operation and reverse direction operation are structurally symmetrical, so that forward direction characteristics and reverse direction characteristics can be easily obtained.
また、この多極の双方向半導体制御素子25を構成する
素子33aと素子33bとは、同一半導体基板に隣接し
て同時に形成されるので、互いに極めて特性の近いもの
が得られる。すなわち、従来の技術の説明で述べた理由
により、素子間の動作電圧の差異によって心線31aと
心線31bとの間に生じる電圧は非常に低いものである
。したかって、心線31aと心線31bとの間に他の双
方向半導体制御素子を設ける必要がない。Further, since the elements 33a and 33b constituting the multipolar bidirectional semiconductor control element 25 are formed adjacently on the same semiconductor substrate at the same time, they can have characteristics extremely similar to each other. That is, for the reason stated in the description of the prior art, the voltage generated between the core wires 31a and 31b due to the difference in operating voltage between the elements is extremely low. Therefore, there is no need to provide another bidirectional semiconductor control element between the core wire 31a and the core wire 31b.
さらに、第3図は、第9図に示した従来の双方向半導体
制御素子を六個用いて構成した保安器を、この発明の多
極の双方向半導体制御素子を一個用いて置き換えた例で
ある。Furthermore, FIG. 3 shows an example in which the protector configured using six conventional bidirectional semiconductor control devices shown in FIG. 9 is replaced with one multipolar bidirectional semiconductor control device of the present invention. be.
この多極の双方向半導体制御素子34では、双方向半導
体制御素子33a、33b、33c、33dが第1の半
導体層P6および第2の半導体層N8ab、N8cdを
介して接続された構造を存している。中継器11の入カ
ドランス12の側において、素子33aの電極27aは
端子29aを介して通信用の心線14に接続され、素子
33bの電極27bは端子29bを介して通信用の心線
15に接続されている。出カドランス13の側において
、素子33cの電127cは端子29cを介して通信用
の心線17に接続され、素子33dの電極27dは端子
29dを介して通信用の心線16に接続されている。ま
た、電極35は端子28によってアース24に接続され
ている。すなわち、素子33aは心線14とアース24
との間、素子33bは心線15とアース24との間、素
子33cは心線17とアース24との間、素子33dは
心線16とアース24との間にそれぞれ設けられ、それ
らに発生した異常電圧から中継器11等を防護する。な
お、素子33aと素子33bとは隣接して形成されるた
めに動作特性がほとんど等しい。したがって、心線14
と心線15との間に発生する異常電圧は小さいので、心
線14と心線15との間に別の双方向半導体制御素子を
設ける必要がない。同様に心線16と心線17との間に
も別の双方向半導体制御素子を設ける必要がない。この
ように、保安器を構成するのに、従来六個必要であった
双方向半導体制御素子が、この発明の多極の双方向半導
体制御素子を使えば一個で実現できる。したがって、保
安器の小型化、保安器筐体への組み込み工程の簡略化、
素子の組合せ選択工程の省略化などの製造工数の低減が
図れる。This multipolar bidirectional semiconductor control element 34 has a structure in which bidirectional semiconductor control elements 33a, 33b, 33c, and 33d are connected via a first semiconductor layer P6 and second semiconductor layers N8ab and N8cd. ing. On the side of the inductance lance 12 of the repeater 11, the electrode 27a of the element 33a is connected to the communication core wire 14 via the terminal 29a, and the electrode 27b of the element 33b is connected to the communication core wire 15 via the terminal 29b. It is connected. On the side of the output transformer 13, the electrode 127c of the element 33c is connected to the communication core wire 17 via the terminal 29c, and the electrode 27d of the element 33d is connected to the communication core wire 16 via the terminal 29d. . Further, the electrode 35 is connected to the ground 24 by a terminal 28. That is, the element 33a connects the core wire 14 and the ground 24.
The element 33b is provided between the core wire 15 and the earth 24, the element 33c is provided between the core wire 17 and the earth 24, and the element 33d is provided between the core wire 16 and the earth 24. This protects the repeater 11, etc. from the abnormal voltage generated. Note that since the element 33a and the element 33b are formed adjacent to each other, their operating characteristics are almost the same. Therefore, the core wire 14
Since the abnormal voltage generated between the core wire 14 and the core wire 15 is small, there is no need to provide another bidirectional semiconductor control element between the core wire 14 and the core wire 15. Similarly, there is no need to provide another bidirectional semiconductor control element between the core wires 16 and 17. In this way, the conventional multi-polar bidirectional semiconductor control element of the present invention can be used to realize one bidirectional semiconductor control element, whereas six bidirectional semiconductor control elements were conventionally required to construct a protector. Therefore, it is possible to downsize the protector, simplify the process of incorporating it into the protector housing,
It is possible to reduce the number of manufacturing steps, such as by omitting the element combination selection process.
第4図は、この発明の多極の双方向半導体制ill素子
の断面図である。FIG. 4 is a sectional view of a multipolar bidirectional semiconductor illumination device of the present invention.
このように、第1の半導体層P6、第2の半導体層N8
ab、N8cd、−−−1第3の半導体層N9a、N9
b、N9c、 ・−−1第4の半導体層P7a、P、
7b、P7c、−=−1第5の半導体層N10a、Nl
0b、N10c、・・・電極36.27a、27b、2
1c、−−=がら成る双方向半導体制御素子を並列に何
個形成してもよい。In this way, the first semiconductor layer P6, the second semiconductor layer N8
ab, N8cd, ---1 third semiconductor layer N9a, N9
b, N9c, --1 fourth semiconductor layer P7a, P,
7b, P7c, -=-1 fifth semiconductor layer N10a, Nl
0b, N10c, ... electrodes 36.27a, 27b, 2
Any number of bidirectional semiconductor control elements consisting of 1c, --= may be formed in parallel.
第5図および第6図は、この発明の多極の双方向半導体
制御素子の他の実施例である。第1図及び第2図と同一
部分には同一番号を付し、説明を省略する。FIGS. 5 and 6 show other embodiments of the multipolar bidirectional semiconductor control device of the present invention. Components that are the same as those in FIGS. 1 and 2 are given the same numbers, and their explanations will be omitted.
第5図において、第2の半導体層N8a、N8b及び第
5の半導体層N10a、N10bの設けられる位置が第
1図と異なっている。このように形成してもよい。In FIG. 5, the positions where the second semiconductor layers N8a, N8b and the fifth semiconductor layers N10a, N10b are provided are different from FIG. 1. It may be formed in this way.
第6図の第1の半導体層P6において、第3の半導体層
N9a、N9bが形成されない面に溝37が形成されて
いる。この溝37によって、図中に示した抵抗Rの値を
大きくでき、素子33aと素子33bとの絶縁性をより
高めることができる。In the first semiconductor layer P6 of FIG. 6, a groove 37 is formed on the surface where the third semiconductor layers N9a and N9b are not formed. With this groove 37, the value of the resistance R shown in the figure can be increased, and the insulation between the elements 33a and 33b can be further improved.
なお、以上の実施例において第2の半導体チップ5の半
導体層とのどちらが一方または両方に、保持電流を大き
くするために、電極側からスリットを入れてもよい。In the above embodiment, a slit may be formed in one or both of the semiconductor layers of the second semiconductor chip 5 from the electrode side in order to increase the holding current.
さらに、以上の実施例では、第1の導電型としてn型、
第2の導電型としてp型を用いているが、勿論、第1の
導電型としてp型、第2の導電型としてn型を用いても
よい。Furthermore, in the above embodiments, the first conductivity type is n type,
Although p-type is used as the second conductivity type, of course, p-type may be used as the first conductivity type, and n-type may be used as the second conductivity type.
(発明の効果)
以上説明したように、この発明の多極の双方向半導体制
御素子によれば、複数のpnpn型二端子サイリスタを
一体化して一個の半導体チップに形成したので、保安器
等を構成する素子数を減らすことができ、筐体への組み
込み工程の簡略化、素子の組合せ選択工程の省略化など
の製造工数の低減が図れる。(Effects of the Invention) As explained above, according to the multipolar bidirectional semiconductor control device of the present invention, a plurality of pnpn type two-terminal thyristors are integrated into one semiconductor chip, so that protectors etc. The number of elements to be configured can be reduced, and the number of manufacturing steps can be reduced, such as by simplifying the process of assembling the device into the housing and omitting the process of selecting a combination of elements.
第1図はこの発明の多極の双方向半導体制御素子の一実
施例を示す断面図、第2図はこの発明の多極の双方向半
導体制御素子を通信機器の保安器として使用する例の結
線図、第3図はこの発明の多極の双方向半導体制御素子
を通信機器用中継器の保安器として使用する場合の結線
図、第4図はこの発明の多極の双方向半導体制御素子の
断面図、第5図および第6図はこの発明の多極の双方向
半導体制御素子の他の実施例を示す断面図、第7図は従
来の双方向半導体制御素子を示す断面図、第8図は従来
の双方向半導体制御素子の電圧−電流特性を示すグラフ
、第9図は従来の双方向半導体制御素子を通信機器用中
継器の保安器として使用する場合の結線図である。
P6・・・第1の半導体層、N8ab、、N8cd、N
8a、N8b−−−第2の半導体層、N9a、N9b、
N9cm−・第3の半導体層、P7a2、P7b、Pl
cm ・・第4の半導体層、N10a、N10b、Nl
0c = ・・第5の半導体層、26.27a、27b
、27c、27d −−・電極。
7a
7b
第1図
特許出願人・・・株式会社 白山製作所代理人 ・・・
弁理士 吉1)芳春
第2図
第5図
第6図FIG. 1 is a sectional view showing an embodiment of the multi-polar bidirectional semiconductor control device of the present invention, and FIG. 2 is a cross-sectional view showing an example of using the multi-polar bi-directional semiconductor control device of the present invention as a protector for communication equipment. Connection diagram, FIG. 3 is a connection diagram when the multi-pole bidirectional semiconductor control element of this invention is used as a protector of a repeater for communication equipment, and FIG. 4 is a wiring diagram of the multi-pole bi-directional semiconductor control element of this invention. 5 and 6 are cross-sectional views showing other embodiments of the multipolar bidirectional semiconductor control element of the present invention, and FIG. 7 is a cross-sectional view showing a conventional bidirectional semiconductor control element. FIG. 8 is a graph showing voltage-current characteristics of a conventional bidirectional semiconductor control element, and FIG. 9 is a wiring diagram when the conventional bidirectional semiconductor control element is used as a protector for a repeater for communication equipment. P6...first semiconductor layer, N8ab, , N8cd, N
8a, N8b---second semiconductor layer, N9a, N9b,
N9cm-・Third semiconductor layer, P7a2, P7b, Pl
cm...Fourth semiconductor layer, N10a, N10b, Nl
0c =...Fifth semiconductor layer, 26.27a, 27b
, 27c, 27d --- Electrode. 7a 7b Figure 1 Patent applicant: Agent of Hakusan Seisakusho Co., Ltd.
Patent Attorney Yoshi 1) Yoshiharu Figure 2 Figure 5 Figure 6
Claims (1)
体制御素子において、 第1の導電型から成る第1の半導体層と、 第1の半導体層に内包され、且つ第1の半導体層の一方
の主面に露出して形成された第2の導電型から成る第2
の半導体層と、 第1の半導体層の他方の主面に互いに離間して形成され
た第2の導電型から成る複数以上の第3の半導体層と、 複数以上の第3の半導体層上にのみ形成された第1の導
電型から成る第4の半導体層と、 複数以上の第4の半導体層の各々に、第4の半導体層に
内包され、且つ第4の半導体層の外部表面に露出して形
成された第2の導電型から成る第5の半導体層と、 第1の半導体層と第2の半導体層とを各々の外部表面に
おいて短絡して形成された単一の電極と、複数以上の第
4の半導体層と第4の半導体層に形成された第5の半導
体層とを、各々の外部表面において対を成して短絡して
形成された複数以上の電極とから成ることを特徴とする
多極の双方向半導体制御素子。[Claims] A bidirectional semiconductor control device comprising a plurality of pnpn type two-terminal thyristors, comprising: a first semiconductor layer having a first conductivity type; and a first semiconductor layer included in the first semiconductor layer; A second layer of the second conductivity type formed exposed on one main surface of the layer.
a plurality of third semiconductor layers of the second conductivity type formed on the other main surface of the first semiconductor layer and spaced apart from each other; and on the plurality of third semiconductor layers. a fourth semiconductor layer of the first conductivity type that is formed only in the fourth semiconductor layer; a single electrode formed by short-circuiting the first semiconductor layer and the second semiconductor layer at their respective external surfaces; A plurality of electrodes are formed by short-circuiting the fourth semiconductor layer and the fifth semiconductor layer formed on the fourth semiconductor layer in pairs on each external surface. Features a multi-polar bidirectional semiconductor control element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63330076A JP2723942B2 (en) | 1988-12-27 | 1988-12-27 | Multi-pole bidirectional semiconductor control element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63330076A JP2723942B2 (en) | 1988-12-27 | 1988-12-27 | Multi-pole bidirectional semiconductor control element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02174266A true JPH02174266A (en) | 1990-07-05 |
JP2723942B2 JP2723942B2 (en) | 1998-03-09 |
Family
ID=18228514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63330076A Expired - Fee Related JP2723942B2 (en) | 1988-12-27 | 1988-12-27 | Multi-pole bidirectional semiconductor control element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2723942B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03136375A (en) * | 1989-10-23 | 1991-06-11 | Shindengen Electric Mfg Co Ltd | Surge protective device |
JPH0522854A (en) * | 1991-07-12 | 1993-01-29 | Nippon Telegr & Teleph Corp <Ntt> | Surge protection device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034179A (en) * | 1973-07-27 | 1975-04-02 | ||
JPS63198341U (en) * | 1987-06-12 | 1988-12-21 |
-
1988
- 1988-12-27 JP JP63330076A patent/JP2723942B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034179A (en) * | 1973-07-27 | 1975-04-02 | ||
JPS63198341U (en) * | 1987-06-12 | 1988-12-21 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03136375A (en) * | 1989-10-23 | 1991-06-11 | Shindengen Electric Mfg Co Ltd | Surge protective device |
JPH0522854A (en) * | 1991-07-12 | 1993-01-29 | Nippon Telegr & Teleph Corp <Ntt> | Surge protection device |
Also Published As
Publication number | Publication date |
---|---|
JP2723942B2 (en) | 1998-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930011797B1 (en) | Semiconductor integrated circuit device | |
US7183612B2 (en) | Semiconductor device having an electrostatic discharge protecting element | |
KR100885829B1 (en) | Semiconductor device and protection circuit | |
JPWO2003041170A1 (en) | Surge protection semiconductor device | |
JP3144330B2 (en) | Semiconductor device | |
JP4741602B2 (en) | Multi-layer component with multiple varistors with various capacities as ESD protection elements | |
KR100514239B1 (en) | Semiconductor device | |
EP0385450B1 (en) | Semiconductor device with MIS capacitor | |
US6456474B2 (en) | Semiconductor integrated circuit | |
JPH02174266A (en) | Multipolar bidirectional semiconductor control device | |
JPS62110435A (en) | Overvoltage protective integrated circuit device of subscriber line | |
JP2723941B2 (en) | Multi-pole bidirectional semiconductor control element | |
JP7027176B2 (en) | Semiconductor device | |
CN109148437B (en) | Semiconductor device and semiconductor circuit device | |
WO2016170913A1 (en) | Semiconductor chip having on-chip noise protection circuit | |
KR100730231B1 (en) | Semiconductor device | |
JP2723940B2 (en) | Multi-pole bidirectional semiconductor control element | |
CN108511420B (en) | Semiconductor structure and chip | |
EP0185777A1 (en) | Safety circuit system for overvoltage protection of multi-wire lines | |
CN107068677B (en) | Semiconductor device with a plurality of semiconductor chips | |
CN212542480U (en) | Variable capacitance element | |
JP2509300B2 (en) | Input circuit of semiconductor device | |
JP6838240B2 (en) | Electronic device | |
JPH0336206Y2 (en) | ||
JP2023023342A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071128 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081128 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |