JPH0217423A - Temperature measuring apparatus - Google Patents

Temperature measuring apparatus

Info

Publication number
JPH0217423A
JPH0217423A JP16714688A JP16714688A JPH0217423A JP H0217423 A JPH0217423 A JP H0217423A JP 16714688 A JP16714688 A JP 16714688A JP 16714688 A JP16714688 A JP 16714688A JP H0217423 A JPH0217423 A JP H0217423A
Authority
JP
Japan
Prior art keywords
temperature
data
rom
thermistor
temperature sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16714688A
Other languages
Japanese (ja)
Other versions
JPH0781916B2 (en
Inventor
Noboru Masuda
昇 増田
Mitsuhiro Murata
充弘 村田
Akira Kumada
明 久万田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP63167146A priority Critical patent/JPH0781916B2/en
Publication of JPH0217423A publication Critical patent/JPH0217423A/en
Publication of JPH0781916B2 publication Critical patent/JPH0781916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the occurrence of errors in replacement of temperature sensitive elements for detection by providing the temperature sensitive elements which measure temperature and the installation temperature of a device, and providing a nonvolatile ROM in which the data of the resistance values with respect to the temperature of the temperature sensitive element are stored. CONSTITUTION:A first temperature sensitive element 12 measures the temperature of a place where a measuring device is used. A second temperature sensitive element 15 measures the temperature of, e.g. human body. Standard value data which are measured in the constant temperature oven in the element 12 and the operation value data which are obtained when the value of a current flowing through the element 12 is changed for self-heating are stored in a nonvolatile ROM 22 beforehand. The data can be rewritten by sending control signals into the ROM 22. An operating means 24 computes the resistance values of the temperature sensitive elements 12 and 15, and the results are stored in the ROM 22. A comparing means 25 compares the measured value data from the means 24 with the standard value data of the ROM 22. Correction is performed by using a correcting value obtained from the standard value data and the operational value data, and the result is displayed on a display device 23. Even if there are slight dispersions in the shapes and the resistance values of the temperature sensitive elements for measurements, approximately accurate measurement and display can be performed by replacement of probes.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、温度を計測する装置、特に人体の体内温度を
計測する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a device for measuring temperature, and particularly to a device for measuring internal temperature of a human body.

〈従来の技術〉 人間や動物の治療性ゐの1つとして、体内例えば直腸や
膀胱の内部温度を計測する必要が生じる場合がある。
<Prior Art> As part of the treatment of humans and animals, it may be necessary to measure the internal temperature of the body, such as the rectum or bladder.

従来の装置は、第5図に示すように、定電流源1の両端
にサーミスタと抵抗3を直列に接続し、サーミスタ2と
抵抗3の間のアナログ電圧をアナログディジタル変換図
M(AD変換回路)4によりディジタル信号に変換し、
この信号をマイクロコンピュータ(CPU)5で処理し
てサーミスタ2が検出した温度を表示装置6に表示して
いる。
As shown in FIG. 5, the conventional device connects a thermistor and a resistor 3 in series across a constant current source 1, and converts the analog voltage between the thermistor 2 and the resistor 3 into an analog-to-digital conversion diagram M (AD conversion circuit). )4 into a digital signal,
This signal is processed by a microcomputer (CPU) 5 and the temperature detected by the thermistor 2 is displayed on a display device 6.

この装置において、サーミスタ2の部分はプローブ状に
構成されるため、使用中にプローブ部分を破損すること
が多くプローブの交換が必要となる。
In this device, since the thermistor 2 is configured in the shape of a probe, the probe is often damaged during use, requiring replacement of the probe.

〈発明が解決しようとする課題〉 一般に、サーミスタは材質または使用目的により定まる
抵抗値およびサーミスタ定数を持っている。上述のプロ
ーブの交換に際しては、前に使用されたサーミスタに対
する誤差が極めて小さい、例えばサーミスタの抵抗値を
±0.01kQ以内、サーミスタ定数を±10°に以内
の誤差に押える必要がある。これは従前計測のデータと
の整合を計るためであり、プローブ交換による誤差の発
生は原則として好ましくない。このためサーミスタプロ
ーブの製造が極めて困難になり、また高価となる欠点を
有する。
<Problems to be Solved by the Invention> Generally, a thermistor has a resistance value and a thermistor constant determined by the material or purpose of use. When replacing the above-mentioned probe, it is necessary to keep the error with respect to the previously used thermistor to be extremely small, for example, the resistance value of the thermistor must be kept within ±0.01 kQ, and the thermistor constant must be kept within ±10°. This is to ensure consistency with previous measurement data, and as a general rule, it is undesirable for errors to occur due to probe replacement. This makes manufacturing the thermistor probe extremely difficult and has the disadvantage of being expensive.

本発明は上述の欠点に鑑みなされたもので、検出要感温
素子を交換しても誤差の発生が殆ど生じない温度計測装
置を提供するものである。
The present invention has been made in view of the above-mentioned drawbacks, and it is an object of the present invention to provide a temperature measuring device in which almost no error occurs even if the temperature sensing element to be detected is replaced.

く課題を解決するための手段〉 本発明は、温度を計測する第1感温素子と、装置の設置
温度を計測する第2感温素子と、これらに電流を供給す
る共通の定電流源と、前記各感温素子の両端電圧をディ
ジタル信号に変換するAD変換回路と、感温素子の温度
に対する抵抗値のデータを格納する不揮発性ROMと、
ディジタル信号から感温素子の抵抗値を計算し、そのデ
ータを不揮発性FLOMに格納する演算手段と、前記R
OMに記憶されているデータと演算手段の測定データを
比較して修正する比較手段と、修正データを表示する表
示装置とから構成する。
Means for Solving the Problems> The present invention comprises a first temperature sensing element that measures temperature, a second temperature sensing element that measures the installed temperature of the device, and a common constant current source that supplies current to these elements. , an AD conversion circuit that converts the voltage across each temperature sensing element into a digital signal, and a nonvolatile ROM that stores data on resistance values of the temperature sensing elements with respect to temperature;
arithmetic means for calculating the resistance value of the temperature sensing element from the digital signal and storing the data in a nonvolatile FLOM;
It consists of a comparing means that compares and corrects the data stored in the OM and the measured data of the calculation means, and a display device that displays the corrected data.

く作用〉 第1感温素子は、計測装置が使用される場所の温度を計
測する。第2感温素子は、例えば人体の体内温度を計測
する。不揮発生ROMには、第1感温素子の恒温槽を用
いて計測された標準値データと、第1感温素子に流す電
流の電流値を変えて自己発熱させたときの動作値データ
が予め格納されている。これらのデータネ揮発性ROM
にコントロール信号を送ることによりは書き換えが可能
である。
Function> The first temperature sensing element measures the temperature at the location where the measuring device is used. The second temperature sensing element measures, for example, the internal temperature of a human body. The non-volatile generation ROM contains in advance the standard value data measured using a constant temperature bath for the first temperature sensing element and the operating value data when the first temperature sensing element generates self-heating by changing the current value of the current flowing through the first temperature sensing element. Stored. These data are volatile ROM
Rewriting is possible by sending a control signal to.

第2r6温素子の出力がAD変換回路によりディジタル
信号に変換されて演算手段に人力される。
The output of the 2r6 temperature element is converted into a digital signal by an AD conversion circuit and inputted to the calculation means.

演算手段は、感温素子の抵抗値を計算し不揮発性ROM
に格納する。比較手段は演算手段の測定値データと不揮
発性FtOMに格納されている標準値データと比較し、
上記の標準値データと動作値データから求めた補正値を
用いて修正し、その修正されたデータを表示装置に表示
する。
The calculation means calculates the resistance value of the temperature sensing element and stores it in the non-volatile ROM.
Store in. The comparison means compares the measured value data of the calculation means with the standard value data stored in the non-volatile FtOM,
The corrected data is corrected using the correction value obtained from the standard value data and the operating value data, and the corrected data is displayed on the display device.

補正値は感温素子の正味の温度係数を与えるが、体内等
の特殊な場所の計測の場合は経験による補正値が加味さ
れる。
The correction value gives the net temperature coefficient of the temperature sensing element, but when measuring a special place such as inside the body, a correction value based on experience is added.

〈実施例〉 本発明装置の実施例を図面を参照して説明する。<Example> Embodiments of the device of the present invention will be described with reference to the drawings.

第2図において、定電流源10の両端には、開閉スイッ
チ11を介して、第1感温素子、例えばサーミスタ12
と抵抗13の直列回路が接続され、更に電流制限抵抗1
4、第2感温素子、例えばサーミスタ15、抵抗16の
直列回路が接続されている。第1サーミスタ12は計測
装置の内部に配置されており、また第2サーミスタ16
はプローブに設けられ体内、例えば直腸、膀胱に挿入さ
れる。電流制限抵抗14には両端を短絡する開閉スイッ
チが併設され通常閉成しており、このスイッチの開成は
リレー18により行われる。
In FIG. 2, a first temperature sensing element, for example a thermistor 12, is connected to both ends of the constant current source 10 via an on/off switch 11.
A series circuit of resistor 13 is connected, and a current limiting resistor 1
4. A second temperature sensing element, for example a series circuit of a thermistor 15 and a resistor 16, is connected. The first thermistor 12 is arranged inside the measuring device, and the second thermistor 16
is provided on a probe and inserted into the body, for example into the rectum or bladder. The current limiting resistor 14 is provided with an open/close switch that short-circuits both ends and is normally closed, and the relay 18 opens and closes this switch.

第1のサーミスタ12の両端は、第1のアナログ・ディ
ジタル変換回路19を介してマイクロコンピュータ(以
下CPUという)20 に接続されている。また、第2
のサーミスタ15の両端は第2のアナログ・ディジタル
変換回路21を介してCPU20に接続されている。ア
ナログ・ディジタル変換回路19.21はアナログ信号
をディジタル信号に変換する。
Both ends of the first thermistor 12 are connected to a microcomputer (hereinafter referred to as CPU) 20 via a first analog-to-digital conversion circuit 19. Also, the second
Both ends of the thermistor 15 are connected to the CPU 20 via a second analog-to-digital conversion circuit 21. Analog-to-digital conversion circuits 19.21 convert analog signals into digital signals.

CPU20には、不揮発生ROM、例えばEEP RO
M (Electrically Erasable 
and Program−mable Read 0n
ly Memory ) 22が併設されている。
The CPU 20 includes a nonvolatile ROM, such as EEP RO.
M (Electrically Erasable
and Program-mable Read 0n
ly Memory) 22 is attached.

このEEPROM22は電気的に情報の書き込みと消去
が自由に行える記憶素子である。
This EEPROM 22 is a memory element in which information can be freely written and erased electrically.

またCPU20には、リレー18および表示装置23が
接続されている。
Further, a relay 18 and a display device 23 are connected to the CPU 20.

上述の回路において、サーミスタは、製造工程の最終段
階において温度に対する抵抗値の特性が計測され、コン
ピュータのデータ装置に蓄積されるのが一般的である。
In the above-mentioned circuit, the temperature resistance characteristics of the thermistor are generally measured at the final stage of the manufacturing process and stored in the data device of the computer.

このようなデータがない場合には、計測装置内に取付け
られるサーミスタは、回路に組込まれる前に恒温槽の中
で標準値が計測される。即ち、サーミスタに一定電流を
流し、恒温槽の温度を、例えば第3図のように、T 1
+ T 2yTa=(’C)としたときのサーミスタの
基準抵抗値、Rlt rt2.R3(k皿)を得る。こ
れらの値は、回路に組込まれる前に或は後にデータ装置
等の所定の装置によりEEPROMに読込まれ標準値と
なる。
If such data is not available, the thermistor installed in the measuring device is subjected to standard value measurements in a thermostatic oven before being incorporated into the circuit. That is, a constant current is applied to the thermistor, and the temperature of the thermostatic chamber is set to T 1 as shown in FIG. 3, for example.
+ T 2yTa = ('C), the reference resistance value of the thermistor, Rlt rt2. Obtain R3 (k dishes). These values are read into the EEPROM by a predetermined device such as a data device before or after being incorporated into the circuit and become standard values.

次に、第2図の回路に於て、スイッチ11が閉成される
と各サーミスタ12.15には回路定数により定まる電
流例えば1mAが流れる。この電流値では、自己発熱は
小さい。このとき、CPU20も同時に図示しない回路
により立上がる。CPU20が立上がると、AD変換回
路19.21から入力する信号からサーミスタ12.1
5の初期抵抗値R10e R20+がCPU20により
計算されEEFROM22に記憶される。
Next, in the circuit shown in FIG. 2, when the switch 11 is closed, a current, for example, 1 mA, determined by the circuit constants flows through each thermistor 12, 15. At this current value, self-heating is small. At this time, the CPU 20 is also started up by a circuit not shown. When the CPU 20 starts up, the thermistor 12.1 is output from the signal input from the AD conversion circuit 19.21.
The initial resistance value R10e R20+ of 5 is calculated by the CPU 20 and stored in the EEFROM 22.

CPU2Ofタイマーを持っており、立上りから一定時
間経過するとリレーを作動させ、スイッチ17を開成す
ると共に、定電流源の容量が通常動作時の5倍程度に変
更される。スイッチ17が開くと第10に3温素子に破
損しない程度の過電流が流れ、サーミスタの抵抗値が温
度上昇と共に減少し、初期抵抗値とこの値から特性曲線
の係数が求まり、このデータはEEPROMに蓄積され
る。
It has a CPU2Of timer, which activates the relay and opens the switch 17 when a certain period of time has elapsed since the start-up, and the capacity of the constant current source is changed to about five times that of normal operation. When the switch 17 opens, tenthly, an overcurrent flows through the three-temperature element to the extent that it will not be damaged, and the resistance value of the thermistor decreases as the temperature rises.The coefficient of the characteristic curve is determined from the initial resistance value and this value, and this data is stored in the EEPROM. is accumulated in

この操作は、第4図に示すように、所定時間継続され、
この間ソーミスタは発熱しながら自己温度を上昇差せ、
サーミスタ定数、熱放散定数、素子形態等で異なるもの
の概ね温度変化に対する抵抗値を与える。
This operation is continued for a predetermined time as shown in FIG.
During this time, Thaumister generates heat and increases its own temperature,
Although the thermistor constant, heat dissipation constant, element form, etc. differ, it generally provides a resistance value against temperature changes.

一方、CPU20はサーミスタ12の自己発熱による抵
抗値の変化を演算し、各温度、例えば、T i、T 2
t T 3における抵抗値R1ot R20t R30
をEEPROM22に格納する。発熱による抵抗値は、
サーミスタ定数、熱放散定数を含んだ値であり、これは
動作値となる。この場合、サーミスタ15からのデータ
は殆ど変化がないので考慮されない。
On the other hand, the CPU 20 calculates the change in resistance value due to self-heating of the thermistor 12, and calculates the change in resistance value at each temperature, for example, T i, T 2
Resistance value at t T 3 R1ot R20t R30
is stored in the EEPROM 22. The resistance value due to heat generation is
This value includes the thermistor constant and heat dissipation constant, and is the operating value. In this case, the data from the thermistor 15 is not considered because it hardly changes.

EEFROM22に格納されている標準値に対する動作
値の差異、例えば、温度’r、、’r2.’r3におけ
る抵抗値の差異RI  R10+ R3R30は、計測
装置の使用時における補正値となる。標準値、動作値、
補正値は、CPU20において函数として認識すること
ができる。
Differences in operating values from standard values stored in the EEFROM 22, for example temperatures 'r,'r2. The resistance value difference RI R10+R3R30 at 'r3 becomes a correction value when the measuring device is used. Standard value, operating value,
The correction value can be recognized by the CPU 20 as a function.

次に、体内温度計測用のプローブが交換された場合につ
いて述べる。プローブに使用されているサーミスタは、
計測装置の製造時におけるサーミスタの形状効果、抵抗
値、サーミスタ定数等に若干の差異がある。また、体内
に挿入されるプローブのサーミスタに流される電流は、
0.3mA程度ときわめて小さい。従って、自己発熱は
殆ど生じない。
Next, a case will be described in which the probe for internal temperature measurement is replaced. The thermistor used in the probe is
There are some differences in the shape effect, resistance value, thermistor constant, etc. of the thermistor during the manufacturing of the measuring device. In addition, the current flowing through the thermistor of the probe inserted into the body is
The current is extremely small at around 0.3mA. Therefore, almost no self-heating occurs.

プローブが体内に挿入されると、サーミスタは体温と同
温に暖められる。サーミスタ15が体温に変化すると、
その変化分はAD変換されCPU20の演算手段24で
サーミスタ15の抵抗が計算され、測定値が求められる
。測定値はCPU20の比較手段25に送られ、EEP
ROM22に格納されている標準値と比較されて補正値
が加えられ、標準値に対する誤差が修正される。この修
正を受けた体温は表示装置に表示される。
When the probe is inserted into the body, the thermistor is heated to the same temperature as body temperature. When thermistor 15 changes to body temperature,
The amount of change is AD converted, the resistance of the thermistor 15 is calculated by the calculating means 24 of the CPU 20, and a measured value is obtained. The measured value is sent to the comparison means 25 of the CPU 20, and the EEP
It is compared with the standard value stored in the ROM 22, a correction value is added, and the error with respect to the standard value is corrected. The corrected body temperature is displayed on the display device.

く効果〉 本発明の計測装置は、温度に対するサーミスタの抵抗値
について標準値を求めて不揮発性ROMに記憶し、また
、自己発熱による温度変化による動作値を求めて不揮発
性ROMに記憶すると共に、標準値と比較して補正値を
求め、この補正値により体温測定値を修正するものであ
るから、プローブ等の交換により、測定用サーミスタの
形状、抵抗値、サーミスタ定数等に多少バラツキがあっ
ても、はぼ正確な計測表示を得ることができる。
Effect> The measuring device of the present invention obtains a standard value for the resistance value of the thermistor with respect to temperature and stores it in a non-volatile ROM, and also obtains an operating value due to temperature change due to self-heating and stores it in the non-volatile ROM. Since a correction value is calculated by comparing it with a standard value and the body temperature measurement value is corrected using this correction value, there may be slight variations in the shape, resistance value, thermistor constant, etc. of the measurement thermistor due to replacement of probes, etc. You can also get a very accurate measurement display.

また、補正値データの記憶に不揮発性ROM′f:使用
しているので、電源OFFの収態で消滅せず、−度設定
するのみで再利用でき、計測装置の使用時に、計測誤差
を考慮する必要がない利点を有する。
In addition, since a non-volatile ROM'f is used to store correction value data, it does not disappear when the power is turned off, and can be reused by simply setting -degrees. Measurement errors are taken into consideration when using the measuring device. It has the advantage that you don't have to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の概略構成図、第2図は発明装置の
実施例を示す構成図、第3図はサーミスタの温度に対す
る抵抗値の特性図、第4図は発明装置の初期電流の説明
図、第5図は従来装置の概略図である。 図中の10は電源、12.13はサーミスタ、19.2
1はAD変換回路、20はCPU、22は不揮発性RO
M、23は表示装置、24は演算手段、25は比較手段
である。 第 図 第2図 第 図 第 図
Figure 1 is a schematic configuration diagram of the device of the present invention, Figure 2 is a configuration diagram showing an embodiment of the device of the invention, Figure 3 is a characteristic diagram of the resistance value versus temperature of the thermistor, and Figure 4 is a diagram of the initial current of the device of the invention. The explanatory diagram, FIG. 5, is a schematic diagram of a conventional device. In the figure, 10 is a power supply, 12.13 is a thermistor, 19.2
1 is an AD conversion circuit, 20 is a CPU, 22 is a non-volatile RO
M, 23 is a display device, 24 is a calculation means, and 25 is a comparison means. Figure 2 Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)温度を計測する第1感温素子と、装置の設置温度
を計測する第2感温素子と、これらに電流を供給する共
通の定電流源と、前記各感温素子の両端電圧をディジタ
ル信号に変換するAD変換回路と、感温素子の温度に対
する抵抗値のデータを格納する不揮発性ROMと、ディ
ジタル信号から感温素子の抵抗値を計算し、そのデータ
を不揮発性ROMに格納する演算手段と、前記ROMに
記憶されているデータと演算手段の測定データを比較し
て修正する比較手段と、修正データを表示する表示装置
とから構成することを特徴とする温度計測装置。
(1) A first temperature sensing element that measures temperature, a second temperature sensing element that measures the installed temperature of the device, a common constant current source that supplies current to these, and a voltage across each of the temperature sensing elements. An AD conversion circuit that converts into a digital signal, a non-volatile ROM that stores data on the resistance value of the temperature-sensitive element with respect to temperature, and a non-volatile ROM that calculates the resistance value of the temperature-sensitive element from the digital signal and stores the data in the non-volatile ROM. A temperature measuring device comprising: a calculation means; a comparison means for comparing and correcting data stored in the ROM with data measured by the calculation means; and a display device for displaying the corrected data.
JP63167146A 1988-07-05 1988-07-05 Temperature measuring device Expired - Fee Related JPH0781916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63167146A JPH0781916B2 (en) 1988-07-05 1988-07-05 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63167146A JPH0781916B2 (en) 1988-07-05 1988-07-05 Temperature measuring device

Publications (2)

Publication Number Publication Date
JPH0217423A true JPH0217423A (en) 1990-01-22
JPH0781916B2 JPH0781916B2 (en) 1995-09-06

Family

ID=15844275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63167146A Expired - Fee Related JPH0781916B2 (en) 1988-07-05 1988-07-05 Temperature measuring device

Country Status (1)

Country Link
JP (1) JPH0781916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523820A (en) * 1998-08-21 2002-07-30 ローズマウント インコーポレイテッド Diagnosis of resistive process controllers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179758A (en) * 1981-04-30 1982-11-05 Fujitsu General Ltd Method and device for measurement of temperature coefficient of resistance
JPS59114428A (en) * 1982-12-21 1984-07-02 Casio Comput Co Ltd Temperature measuring apparatus
JPS60166832A (en) * 1984-12-24 1985-08-30 Omron Tateisi Electronics Co Electronic thermometer
JPS61290332A (en) * 1985-06-18 1986-12-20 Omron Tateisi Electronics Co Electronic thermometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179758A (en) * 1981-04-30 1982-11-05 Fujitsu General Ltd Method and device for measurement of temperature coefficient of resistance
JPS59114428A (en) * 1982-12-21 1984-07-02 Casio Comput Co Ltd Temperature measuring apparatus
JPS60166832A (en) * 1984-12-24 1985-08-30 Omron Tateisi Electronics Co Electronic thermometer
JPS61290332A (en) * 1985-06-18 1986-12-20 Omron Tateisi Electronics Co Electronic thermometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002523820A (en) * 1998-08-21 2002-07-30 ローズマウント インコーポレイテッド Diagnosis of resistive process controllers
JP4738596B2 (en) * 1998-08-21 2011-08-03 ローズマウント インコーポレイテッド Diagnosis of resistance-type process control equipment

Also Published As

Publication number Publication date
JPH0781916B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
AU2003284136B2 (en) Thermometry probe calibration method
KR100263595B1 (en) Self calibrating temperature controller
EP1857797B1 (en) Radiation thermometer calibration
US6179785B1 (en) Ambient sensing feature for thermometer recalibration system
US4150573A (en) Electronic digital thermometer
US5857777A (en) Smart temperature sensing device
US4161880A (en) Linearized digital thermometer
CA2373366C (en) Predictive temperature measurement system
US6839651B2 (en) Probe tip thermal isolation and fast prediction algorithm
US5655305A (en) High precision electronic digital thermometer
US4158965A (en) Electronic thermometer with heat conditioned probe
US20070268952A1 (en) Thermometer calibration by immersion in non-electrically conductive liquid
US4537516A (en) Electronic thermometer
US5111692A (en) Temperature compensated liquid level and fluid flow sensor
JP2002156348A (en) Calibration method for humidity sensor, and humidity sensor using the same
US5264833A (en) Automatic leak detector
US20040071182A1 (en) Thermometry probe calibration method
US6928379B2 (en) Apparatus and method for sensing temperature
US20090067474A1 (en) Adjusting method and system thereof for a temperature sensing element
JPH10253572A (en) Measuring device equipped with electrode with memory
JPH05115443A (en) System to perform determination and correction of temperature by biomedical thermometer
US20050092078A1 (en) Pulsed thermistor sensor
JPH0217423A (en) Temperature measuring apparatus
US5539674A (en) Minimum reading pressure gage with dual function sensor
US4008617A (en) Electronic thermometer and method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees