JPH02173334A - Adaptable control method for engine - Google Patents

Adaptable control method for engine

Info

Publication number
JPH02173334A
JPH02173334A JP32577188A JP32577188A JPH02173334A JP H02173334 A JPH02173334 A JP H02173334A JP 32577188 A JP32577188 A JP 32577188A JP 32577188 A JP32577188 A JP 32577188A JP H02173334 A JPH02173334 A JP H02173334A
Authority
JP
Japan
Prior art keywords
rate
fuel
amount
air
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32577188A
Other languages
Japanese (ja)
Other versions
JP2997473B2 (en
Inventor
Shinsuke Takahashi
信補 高橋
Teruji Sekozawa
瀬古沢 照治
Seiju Funabashi
舩橋 誠壽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63325771A priority Critical patent/JP2997473B2/en
Publication of JPH02173334A publication Critical patent/JPH02173334A/en
Priority to JP30361398A priority patent/JPH11200919A/en
Application granted granted Critical
Publication of JP2997473B2 publication Critical patent/JP2997473B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To heighten a control quality when a fuel supply quantity is controlled on the basis of the attachment rate of fuel to an air intake pipe wall surface and the evaporation rate of an attached fuel, by surmizing the attachment rate and the evaporation rate from an air fuel ratio or a fuel injection quantity or the like, and correcting the attachment rate and the evaporation rate calculated as above on the basis of a surmize result. CONSTITUTION:A parameter calculating means 13 which calculates the rate (an attachment rate) of an injected fuel being attached to an air intake pipe wall surface from the various detection amounts of an engine operation condition, and the rate (an evaporation rate) of an attached fuel evaporating at a unit time, is equipped, and on the basis of its output, the control of a fuel quantity supplied to each cylinder is conducted by means of a fuel injection controlling means 12. At such a controller as this, a parameter surmizing means 14 which surmizes the attachment rate and the evaporation rate from such time system data as an exhaust gas air fuel ratio, a fuel injection quantity, a measured air quantity or the like, is provided. And on the basis of its surmize result, the opposing relation of various detection quantities, the attachment rate and the evaporation rate is arranged to be made to be corrected by means of a parameter characteristic correcting means 15.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動+lEエンジンの燃料噴射制御装置に係
り、特に、その制御パラメータを自動設定するのに好適
なエンジンの適応制御方法。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection control device for an automatic +1E engine, and particularly to an adaptive engine control method suitable for automatically setting control parameters thereof.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭58−8238号、 60−20
1.042号、 60−126:(37号公報に記載の
ように噴射燃料が吸気管壁面へ付着する割合である付着
率、及び、吸気管壁面付着燃料がm位時間に蒸発する割
合である蒸発率あるいは付着燃料が単位時間に気筒に持
ち去られる割合である持ち去り率と吸入空気量、吸気管
内圧等のエンジンの各種検出量との対応関係を予め求め
ておき、その対応関係を利用して気筒へ供給する燃料量
を決定している。すなわち、予め求めた対応関係を利用
してエンジンの各種検出量から制御パラメータである付
着率、及び、蒸発率(あるいは、持ち去り率)を算出し
、その算出結果に基づいて燃料噴射量を決定している。
The conventional device is disclosed in Japanese Patent Application Laid-Open No. 58-8238, 60-20.
1.042, 60-126: (As described in Publication No. 37, the adhesion rate is the rate at which the injected fuel adheres to the intake pipe wall, and the rate at which the fuel attached to the intake pipe wall evaporates in about m time. The correspondence between the evaporation rate or the removal rate, which is the rate at which adhering fuel is carried away to the cylinder per unit time, and various detected quantities of the engine such as intake air amount and intake pipe internal pressure is determined in advance, and this correspondence is used. In other words, the control parameters adhesion rate and evaporation rate (or removal rate) are calculated from various detected amounts of the engine using the correspondence relationship determined in advance. The fuel injection amount is then determined based on the calculation results.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、エンジンテストにより様々な運転領域
で予め付着率、蒸発率等のパラメータを算出しておく必
要があり制御システム開発に工数を要するという問題が
あった。
The above-mentioned conventional technology has a problem in that it is necessary to calculate parameters such as deposition rate and evaporation rate in advance in various operating ranges through engine tests, which requires a lot of man-hours to develop the control system.

又、エンジン特性の個体差により、各エンジンごとに算
出パラメータのマツチングを行う必要があり、これに関
しても工数を要するという問題があった。
Furthermore, due to individual differences in engine characteristics, it is necessary to match calculated parameters for each engine, which also requires a lot of man-hours.

又、エンジンの経時変化に対して配慮がなされておらず
時間の経過に伴い設定パラメータが最適値からずれ制御
性が劣化するという問題もあった。
Further, there is a problem in that no consideration is given to changes in the engine over time, and as time passes, the set parameters deviate from optimal values, resulting in deterioration of controllability.

又、従来法では空気量の計測遅れ、輸送遅れの影響に配
慮がなされていない。これらの遅れは、過渡時の制御性
に劣化を引き起すものである。付着率、蒸発率などのパ
ラメータにこの遅れを集約し、つまり、パラメータマツ
チングを行うことである領域で望みの制御性を得ること
は可能と考えられる。しかし、様々な領域で望みの制御
性が得られないという問題があった。すなわち、空気量
の計測遅れの特性が、加速時と減速時の全く異なるため
加速時に望みの制御性を得るようパラメータマツチング
を行っても、減速時に制御性の劣化が生じる、あるいは
、減速時にパラメータマツチングを行っても加速時に制
御性が劣化するという問題があった。
Furthermore, in the conventional method, consideration is not given to the effects of delays in measuring the amount of air and transportation delays. These delays cause deterioration in controllability during transients. It is thought that it is possible to obtain the desired controllability in a certain area by consolidating this delay into parameters such as deposition rate and evaporation rate, that is, by performing parameter matching. However, there is a problem in that desired controllability cannot be obtained in various areas. In other words, the characteristics of air flow measurement delay are completely different during acceleration and deceleration, so even if parameter matching is performed to obtain the desired controllability during acceleration, controllability may deteriorate during deceleration, or Even if parameter matching is performed, there is a problem in that controllability deteriorates during acceleration.

本発明の第1−の[1的は、エンジン特性の個体差経時
変化に適応して、上記パラメータを自動設定修正するエ
ンジンの適応制御方法を提供することにある。
A first object of the present invention is to provide an adaptive control method for an engine that automatically sets and corrects the above-mentioned parameters in response to individual differences in engine characteristics over time.

本発明の第2の目的は、空気量の遅れの影響をtQ) 補償し様々な運転領域で望みの制御性を得るエンジンの
適応制御方法を提供することにある。
A second object of the present invention is to provide an adaptive control method for an engine that compensates for the effect of air flow delay (tQ) and obtains desired controllability in various operating ranges.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1の目的は、エンジンの各種検出量から噴射燃料
が吸気管壁面に付着する割合である付着率、及び吸気管
壁面付着燃料が単位時間に蒸発する割合である蒸発率(
あるいは、上記付着燃料が単位時間に気筒に持ち去られ
る割合である持ち去り率)を算出、該算出値に基づいて
気筒に供給する燃料量を制御するエンジン制御装置にお
いて、排気管に広域空燃比センサを設置し、該センサに
よる計測空燃比及び、燃料噴射量計測空気量などから上
記付着率及び、蒸発率、あるいは、持ち去り率を推定す
るパラメータ推定手段、該推定結果に基づいてエンジン
の各種検出量と付着率、及び、蒸発率、あるいは、持ち
去り率の対応関係を修正するパラメータ特性修正手段を
設けることにより達成される。
The first purpose is to determine the adhesion rate, which is the rate at which the injected fuel adheres to the intake pipe wall surface, and the evaporation rate, which is the rate at which the fuel adhering to the intake pipe wall evaporates per unit time, based on various detected amounts of the engine.
Alternatively, in an engine control device that calculates a carry-off rate (the rate at which the adhering fuel is carried away to the cylinder per unit time) and controls the amount of fuel supplied to the cylinder based on the calculated value, a wide-range air-fuel ratio sensor is installed in the exhaust pipe. A parameter estimating means for estimating the deposition rate, evaporation rate, or carry-off rate from the air-fuel ratio measured by the sensor and the air amount measured by the fuel injection amount, and various detections of the engine based on the estimation results. This is achieved by providing a parameter characteristic modification means for modifying the correspondence between the amount and the deposition rate, evaporation rate, or removal rate.

又、上記第1、及び、第2の目的は、排気管に広域空燃
比センサを設置し、該センサによる計測空燃比、燃料噴
射量計測空気量などから上記付着率、及び、蒸発率、あ
るいは持ち去り率を推定するパラメータ推定手段を設け
、各種検出量から算出する付着率、蒸発率、持ち去り率
にかえ、該推定手段に推定結果に基づいて気筒に供給す
る燃料量を制御することにより達成される。
The first and second purposes are to install a wide-range air-fuel ratio sensor in the exhaust pipe, and measure the adhesion rate and evaporation rate from the measured air-fuel ratio, fuel injection amount, and air amount measured by the sensor. By providing a parameter estimating means for estimating the removal rate, and controlling the amount of fuel supplied to the cylinder based on the estimation results of the estimation means in place of the adhesion rate, evaporation rate, and removal rate calculated from various detected amounts. achieved.

又、上記第2の目的は、各種検出量と付着率。The second objective is to determine various detected amounts and adhesion rates.

蒸発率、持ち去り率との対応関係を運転状況に応じて複
数種類設けることによって達成される。
This is achieved by providing multiple types of correspondence between the evaporation rate and the removal rate depending on the operating situation.

〔作用〕[Effect]

第1図の手段においてパラメータ推定手段は、吸気管内
の燃料流動特性を表わすモデルに基づいて例えば逐時最
小二乗法によりモデルパラメータである付着率、及び、
蒸発率、あるいは、持ち去り率を推定し、これを推定時
のエンジン運転状態の削測値と対にしてパラメータ特性
修正手段に送る。パラメータ特性修正手段は、得られた
データに基づいて予め適当に定めらでいるエンジンの各
種検出量と付着率、及び、蒸発率、持ち去り率の対応関
係を修正してゆきその時々の運転状態における最適な関
係を定義する。以上のようにして、初期設定は適当でも
、エンジン運転回数が増せば付着率、蒸発率等のパラメ
ータは自動的に最適化されてゆくのでシステム開発工数
の低減及び、エンジン特性の個体差経時変化への適応が
可能となる。
In the means shown in FIG. 1, the parameter estimating means calculates the adhesion rate, which is a model parameter, by, for example, the successive least squares method based on a model representing the fuel flow characteristics in the intake pipe;
The evaporation rate or removal rate is estimated, and this is paired with the measured value of the engine operating state at the time of estimation and sent to the parameter characteristic correction means. The parameter characteristic correction means corrects the correspondence between various detection amounts of the engine, adhesion rate, evaporation rate, and removal rate, which are appropriately determined in advance based on the obtained data, and adjusts the relationship between the engine's various detected amounts and the adhesion rate, evaporation rate, and removal rate. Define the optimal relationship in As described above, even if the initial settings are appropriate, as the number of engine operations increases, parameters such as deposition rate and evaporation rate will be automatically optimized, reducing system development man-hours and reducing individual differences in engine characteristics over time. It becomes possible to adapt to

第2の手段において、パラメータ推定手段により付着率
、蒸発率、持ち去り率は時々の運転状態において常に最
適値に保たれるので同様の効果が可能となる。
In the second means, the deposition rate, evaporation rate, and take-off rate are always kept at optimum values under certain operating conditions by the parameter estimating means, so that a similar effect can be achieved.

第3の手段においては、加速時、減速時等、運転状況に
応じて別々なパラメータ設定が可能となるので様々な運
転領域で望みの制御性が得られる。
In the third means, different parameters can be set depending on driving conditions such as during acceleration and deceleration, so desired controllability can be obtained in various driving ranges.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図から第6図に従って説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は、本発明の第1の手段に対する全体構成図であ
る。従来装置が、パラメータ算出手段。
FIG. 1 is an overall configuration diagram of a first means of the present invention. The conventional device is the parameter calculation means.

燃料噴射制御手段のみから構成されていたのに対し、新
たにパラメータ推定手段、パラメータ特性修正手段を設
けた構成となっている。
In contrast to the previous configuration, which consisted only of fuel injection control means, the new configuration includes parameter estimating means and parameter characteristic modifying means.

以下、各手段の動作を説明する。The operation of each means will be explained below.

パラメータ算出手段は、吸入空気量、水温等のエンジン
の運転状態の計測値から噴射燃料が吸気管壁面へ付着す
る割合である付着率、吸気管付着燃料が単位時間に蒸発
する割合である蒸発率を予め定められた対応関係に基づ
いて算出し、これを燃料噴射制御手段に送る。燃料噴射
制御手段では、算出付着率、蒸発率に基づいて気筒に供
給する燃料量の制御を行う。
The parameter calculation means calculates the adhesion rate, which is the rate at which the injected fuel adheres to the intake pipe wall surface, and the evaporation rate, which is the rate at which the fuel adhering to the intake pipe evaporates per unit time, from measured values of engine operating conditions such as intake air amount and water temperature. is calculated based on a predetermined correspondence relationship and sent to the fuel injection control means. The fuel injection control means controls the amount of fuel supplied to the cylinder based on the calculated deposition rate and evaporation rate.

パラメータ推定手段は、排気管に設置した広域空燃比セ
ンサで計測される排ガス空燃比、燃料噴射量計測空気量
などの時系列データから制御パラメータである付着率、
蒸発率(あるいは、持ち去り率)を推定する。パラメー
タ推定は、例えば、吸気管内の燃料流動特性を表わす次
式の数式モデルの離散式に逐時最小二乗法を適用して行
うことができる。
The parameter estimation means calculates the adhesion rate, which is a control parameter, from time-series data such as the exhaust gas air-fuel ratio measured by a wide-range air-fuel ratio sensor installed in the exhaust pipe, and the air amount measured by the fuel injection amount.
Estimate the evaporation rate (or removal rate). Parameter estimation can be performed, for example, by applying the successive least squares method to a discrete equation of the following mathematical model expressing the fuel flow characteristics in the intake pipe.

Gze=(I   X) ・Gi+−・Mi     
  ・・11)t ここに、Gf :燃料噴射量(g/s)(噴射燃料量の
単位時間の質量流量への換算値)Gfeニジリンダ流入
燃料Jkt(g/s)Mi :吸気管壁面付着燃料量(
g) X :付着率 :蒸発率(1/s)(あるいは持 τ ち去り率) X、−を定数と見なしく]、) (2)式を離散化しG
ieとGiの関係式を導出すると次式を得る。なお、連
続式の差分化には、中心差分を用いている。
Gze=(IX)・Gi+−・Mi
...11)t Here, Gf: Fuel injection amount (g/s) (conversion value of injected fuel amount to mass flow rate per unit time) Gfe Niji cylinder inflow fuel Jkt (g/s) Mi: Fuel attached to intake pipe wall surface amount(
g) X: deposition rate: evaporation rate (1/s) (or removal rate)
When the relational expression between ie and Gi is derived, the following expression is obtained. Note that central difference is used for continuous difference.

2・Δt 2・Δt ここに、Δt:時間きざみ k :時刻(1時刻はΔtに相当) (3)式は、その誤差方程式が、パラメータX。2・Δt 2・Δt Here, Δt: time step k: Time (1 time corresponds to Δt) In equation (3), the error equation is the parameter X.

−に対して線形となるので、方程式誤差の重み付き2乗
和が最小という意味での最適なパラメータ算出が可能で
ある。
Since it is linear with respect to -, it is possible to calculate optimal parameters in the sense that the weighted sum of squares of equation errors is minimum.

すなわち、評価指標を(4)式とおくとも、Jが最小と
なるX、−が算出可能であり、その再帰形のアルゴリズ
ムは(5) (6)式となる。
That is, even if the evaluation index is set as Equation (4), it is possible to calculate X, - for which J is the minimum, and the recursive algorithm is Equations (5) and (6).

φ(k+1) Δ ・・・(6) 2・Δt 2・Δを 但しO〈ε〈1 なお、再帰形パラメータ推定法として(5) (6)穴
以外に適応制御システムの理論と実際(オーム社)のP
、78〜P、86記載の方法も適用可能である。
φ(k+1) Δ...(6) 2・Δt 2・Δ, but O〈ε〈1 In addition, as a recursive parameter estimation method, (5) (6) In addition to holes, the theory and practice of adaptive control systems (ohm company) P
, 78-P, 86 are also applicable.

(5) (6)式によりその時々の運転状態における。(5) According to equation (6), in the current operating state.

X、−を推定算出するためには、G i(k ) 、G
 i a(k)のデータが必要である。
In order to estimate and calculate X,-, G i(k ), G
Data of i a(k) is required.

燃料噴射量Gz(k)は、マイコンの燃料噴射弁への指
令値から算出される。シリンダ流入燃料量afeDc)
は、これを直接計測するセンサがないので、他の運転状
態の計測値から次式で算出する。
The fuel injection amount Gz(k) is calculated from a command value from the microcomputer to the fuel injection valve. Cylinder inflow fuel amount afeDc)
Since there is no sensor that directly measures this, it is calculated from the measured values of other driving conditions using the following formula.

N・Δ t N:エンジン回転数 ここにQaは、Lジエトロニクスシステムにおいては空
気量センサで検出されるスロットル上流の空気量の計測
値にノイズ、脈動除却のための各種処理をほどこしたも
のとする。すなわち、燃料噴射量決定のベースとなる空
気量とする。又、Dジエトロニクスシステムにおいては
、圧力センサで検出される吸気管内圧に基づいて算出さ
れるシリンダ流入空気量とする。これも燃料噴射量決定
のベースとなる空気量である。
N・Δt N: Engine rotation speed Here, Qa is the value obtained by applying various processing to eliminate noise and pulsation to the measured value of the air amount upstream of the throttle detected by the air amount sensor in the L-dietronics system. do. In other words, the air amount is used as the basis for determining the fuel injection amount. In the D-dietronics system, the amount of air flowing into the cylinder is calculated based on the intake pipe internal pressure detected by the pressure sensor. This is also the air amount that is the basis for determining the fuel injection amount.

A/Fは、排気管に設置した空燃比センサで検出される
排ガス空燃比である。
A/F is the exhaust gas air-fuel ratio detected by an air-fuel ratio sensor installed in the exhaust pipe.

koは、空気と燃料の混合気が気筒に吸入された時点か
ら、その燃焼ガスが排気されるまでの平均時間である。
ko is the average time from the time when the air-fuel mixture is taken into the cylinder until the combustion gas is exhausted.

ここでは、ピストン運動の3工程に相当するとしく11
)式で定式化する。
Here, 11 steps are assumed to correspond to three steps of piston movement.
) formula.

なお、(10)式でシリンダ流入燃料量を算出するため
には、空気量Qaは本来はシリンダ流入空気量であるべ
きである。ところが、Lジエトロニクスシステムでは、
スロットル通過空気量の計8(す値を用いている。又、
Dジエトロニクスシステムでもセンサの応答遅れのため
計測値は真のシリンダ流入空気量と一致し得ない。(1
0)式において、Qaを真のシリンダ吸入空気量とせず
、各システムにおける燃料噴射量決定のベースとなる空
気量を用いるのは、次の理由によるものである。従来方
法では、燃料の遅れのみを補償して望みの制御性を得よ
うとしているが、実際には、空気の輸送、及び計測の遅
れも存在し、これは急加減速時の制御性の劣化を起す。
Note that in order to calculate the amount of fuel flowing into the cylinder using equation (10), the air amount Qa should originally be the amount of air flowing into the cylinder. However, in the L-dietronics system,
The total amount of air passing through the throttle is 8 (the value is used. Also,
Even in the D-dietronics system, the measured value cannot match the true amount of air flowing into the cylinder due to the delay in response of the sensor. (1
In equation 0), the reason why Qa is not the true cylinder intake air amount, but the air amount which is the basis for determining the fuel injection amount in each system is used is as follows. In the conventional method, the desired controllability is obtained by compensating only for the fuel delay, but in reality, there is also a delay in air transportation and measurement, which causes deterioration in controllability during sudden acceleration and deceleration. wake up

この問題に対し空気の遅れをある程度X、−に集約し望
みの制御性を得ようとτ するのが、燃料決定のベースとなる空気量を用いる理由
である。
The reason for using the air amount as the basis for fuel determination is to solve this problem by consolidating the air delay to a certain extent to X, - to obtain the desired controllability.

なお、以上の方法では、空燃比センサの計測値をそのま
まシリンダ流入燃料量の算出に用いたが、センサの応答
遅れが大きい場合、最適なX、−は推定されない。
Note that in the above method, the measured value of the air-fuel ratio sensor is used as it is to calculate the amount of fuel flowing into the cylinder, but if the response delay of the sensor is large, the optimal X, - cannot be estimated.

この場合、センサの応答遅れを考慮してX。In this case, take into account the response delay of the sensor.

の推定を行う必要があるが、これは次の方法で対応可能
である。
It is necessary to estimate this, but this can be done using the following method.

まず、センサの応答遅れモデルを燃空比の伝達関数モデ
ルで仮定する。例えば、1次遅れを仮定すると遅れモデ
ルは次式となる。
First, the sensor response delay model is assumed to be a fuel-air ratio transfer function model. For example, assuming a first-order delay, the delay model is as follows.

A/Fin:計測排ガス空燃比 (12)式中の定数ρは、センサに所定入力を加えた時
のセンサ出力の応答を計測し、入出力時系列データに基
づいて(12)式の方程式誤差が最小となるように定め
る。以上のようにして求められた(13)式を、(3)
式、及び(10)式のA/FをA/Foutとおいた式
と連立させれば、燃料噴射量Giと計測排ガス空燃比A
 / F i nとの関係式が得られる。この関係式の
誤差方程式はパラメータX。
A/Fin: Measured exhaust gas air-fuel ratio The constant ρ in equation (12) measures the response of the sensor output when a predetermined input is applied to the sensor, and calculates the equation error of equation (12) based on input/output time series data. is determined to be the minimum. Expression (13) obtained as above can be expressed as (3)
By combining the formula and the formula in which A/F in formula (10) is set as A/Fout, the fuel injection amount Gi and the measured exhaust gas air-fuel ratio A
/F in A relational expression is obtained. The error equation for this relation is the parameter X.

一に対して線形となるので先に述べたのと同様のτ 方法でX、−の推定は可能となる。Since it is linear with respect to 1, the same τ as mentioned above The method allows estimation of,X,−,.

τ 以上で、パラメータ推定手段の動作の説明は終る。次に
、パラメータ特性修正手段の動作を説明する。パラメー
タ特性修正手段は、推定されたパΔ ここにA / F out :真の排ガス空燃比手段に
おけるX、−算出のベースとなるエンジンの各種検出量
Xz(k)、Xx(k) 、・・・に基づいて、パラメ
ータ算出手段の予め定められた各種検出量XI 、 X
4 、・・・とX、−の対応関係を修正する。
τ This concludes the explanation of the operation of the parameter estimating means. Next, the operation of the parameter characteristic modifying means will be explained. The parameter characteristic correction means uses the estimated parameter Δ where A / F out : X in the true exhaust gas air-fuel ratio means - various detected amounts of the engine that are the basis for calculation Xz (k), Xx (k),...・Based on various predetermined detection amounts XI, X of the parameter calculation means
4 Correct the correspondence between ,... and X, -.

τ 修正方法として、例えば、時刻にでの、Xt=81゜Δ る。この時パラメータ算出手段における状態X1= S
 1 、 X2.= S 21・・・に対する新たなX
、−を次τ 式で算出されるX、−とする。
As a correction method for τ, for example, Xt=81°Δ at time. At this time, the state in the parameter calculation means is X1=S
1, X2. = S 21 New X for...
, - are X, - calculated by the following τ equation.

τ X(xx、 )un ・=、 k)=m−Xo(xx、
 xx、 ・=r k)△ +(1−m) ・X(xz、 xxt −t k)ここ
に、X1=S1.X2=Sz− 0< m < 1 △ τ き換えないのは、推定がうまくいかない場合の、制御性
の劣化を防ぐためである。以上の方法でパラメータ修正
を繰り返せば、徐々にパラメータは最適値に収束してゆ
く。
τ X(xx, )un ・=, k)=m−Xo(xx,
xx, ・=r k)Δ+(1−m) ・X(xz, xxt −t k)Here, X1=S1. X2=Sz- 0<m<1 Δτ The reason for not changing is to prevent deterioration of controllability in case estimation is not successful. By repeating parameter correction using the above method, the parameters will gradually converge to the optimal values.

なお、ここでは、各運転状態に対する推定されたパラメ
ータを所定時間、あるいは、所定数だけ記憶しておき、
所定時間が経過、あるいは、所定数に達した時、推定パ
ラメータの平均値を本来パラメータ算出手段が算出する
パラメータ値と置き換えるようにして各種検出量と制御
パラメータ(付着率、蒸発率)の対応関係を修正しても
よい。
Note that here, the estimated parameters for each operating state are stored for a predetermined period of time or a predetermined number of times,
When a predetermined time has elapsed or a predetermined number has been reached, the average value of the estimated parameters is replaced with the parameter value originally calculated by the parameter calculation means, thereby establishing the correspondence between various detected amounts and control parameters (adhesion rate, evaporation rate). may be modified.

以上で、本発明の制御系の動作の説明を終る。This concludes the explanation of the operation of the control system of the present invention.

次に、以上の構成をディジタル式制御ユニットで実現す
る場合の制御系の全体構成、及び、制御プログラムの動
作について説明する。
Next, the overall configuration of the control system and the operation of the control program when the above configuration is realized by a digital control unit will be explained.

第2図に制御系の全体構成図を示す。ここではLジエ+
−ロニクスシステムを適用対象としている。
Figure 2 shows the overall configuration of the control system. Here L Jie +
-Applicable to Ronics system.

制御ユニットは、CUP、ROM、RAM、Ilo、L
SI、タイマ、それらを電気的に接続するバスを備えて
いる。■/○、LSIには、空気量センサ、水温センサ
、クランク角センサ、空燃比センサ、スロットル角セン
サからの信号が入力されるようになっている。又、■/
○、LSIからは、燃料噴射弁への信号が出力されるよ
うになっている。なお、Ilo、LSIは、入力側にA
/D変換器、出力側にD/A変換器を備えている。
The control unit includes CUP, ROM, RAM, Ilo, L
It is equipped with an SI, a timer, and a bus that electrically connects them. ■/○, Signals from an air amount sensor, a water temperature sensor, a crank angle sensor, an air-fuel ratio sensor, and a throttle angle sensor are input to the LSI. Also, ■/
○, The LSI outputs a signal to the fuel injection valve. In addition, Ilo, LSI has A on the input side.
/D converter and a D/A converter on the output side.

タイマはCP Uに対し一定時間ごとに割込要求を発生
し、この要求に応じてCPUはROMに格納された制御
プログラムを実行するようになっている。
The timer issues an interrupt request to the CPU at regular intervals, and in response to this request, the CPU executes a control program stored in the ROM.

次に、第3図により本発明の特徴であるパラメ−タを推
定し、その推定結果に基づいて、エンジンの各種検出量
とX、−との対応関係を修正する制御プログラムの動作
を説明する。
Next, we will explain the operation of a control program that estimates parameters, which are a feature of the present invention, with reference to FIG. 3, and corrects the correspondence between various detected amounts of the engine and .

まず、ステップ301において、時刻にの回転数N(k
)から、(10)式によりkOを算出する。
First, in step 301, the number of revolutions N(k
), kO is calculated using equation (10).

次に、ステップ302において、RAMに記憶されてい
る時刻にの計測空気ff1Q、(k)と時刻に+koの
計測空燃比A / F” (k + k o)を読み出
す。
Next, in step 302, the measured air ff1Q, (k) at the time stored in the RAM and the measured air-fuel ratio A/F'' (k + k o) at the time +ko are read out.

次に、ステップ303において、(10)式によりG、
。(k)を計算し、それをRAM内にストアする。
Next, in step 303, G, according to equation (10),
. (k) and store it in RAM.

次に、ステップ304において、RAMに記憶されてい
るG i (1) HG 、。(j、 ) (i = 
k −2、kΔ RAMにストアする。
Next, in step 304, G i (1) HG is stored in the RAM. (j, ) (i =
k −2, kΔ Store in RAM.

次に、ステップ305において、RA Mに記憶されて
いる、時刻にのX、−算出のベースとなるエンジンの各
種検出量x1.(kL xz(k)、xa(k)。
Next, in step 305, various detected amounts of the engine, x1. (kL xz(k), xa(k).

次に、ステップ306において、RAMに記憶△ (k)を読み出す。Next, in step 306, Δ is stored in the RAM. Read out (k).

次に、ステップ307において、(]3)式によりまれ
ていた番地にストアする。
Next, in step 307, the data is stored at the address specified by equation (3).

次に、ステップ308において、kの値を1増加する。Next, in step 308, the value of k is increased by one.

以」−で処理は終了し、次回の割込み要求があるまで待
機する。
The process ends with "-" and waits until the next interrupt request is received.

以上のプログラムを実行するためには、吸入空気量Qa
+回転数N、空燃比A/Fの計測値、燃料噴射量Gzシ
リンダ流入燃料量G i e及び、X。
In order to execute the above program, the intake air amount Qa
+Rotational speed N, measured value of air-fuel ratio A/F, fuel injection amount Gz, cylinder inflow fuel amount G ie, and X.

一算出のベースとなる変数の計測値XI 、 X2 。Measured values of variables XI and X2 that serve as the basis for one calculation.

xa、・・・のデータの記憶、消去等の管理が必要とな
るが、これは別のプログラムで実行されるようになって
いる。
It is necessary to manage the storage, deletion, etc. of data of xa, . . . , but this is executed by a separate program.

] なお、以上の方法では、パラメータX、−の推定時間、
推定精度の問題が懸念されるため第4図のような推定値
を直接利用して燃料の制御を行う構成をとっていない。
] Note that in the above method, the estimated time of the parameter
Since there is a concern about estimation accuracy, a configuration in which the estimated value as shown in FIG. 4 is directly used to control the fuel is not used.

ここで、推定時間の問題とは推定の遅れが大きいという
パラメータX、−が推定された時点でそのパラメータは
、すでにその時点の運転状態における最適値からずれて
しまっているため十分な制御性が得られない、又、推定
精度の問題とは、最適値から大きくはずれる値が推定さ
れた場合、大幅な制御性の劣化が生じるというものであ
る。以上の問題がなければ、第4図の構成をとればRA
M容量を大幅に低減でき、システムのコントダウンの可
能性が生じる。
Here, the problem with estimation time is that by the time the parameter X, - is estimated, the delay in estimation is large, the parameter has already deviated from the optimal value for the operating state at that time, so sufficient controllability is not achieved. The problem with estimation accuracy is that if a value that deviates significantly from the optimum value is estimated, controllability will be significantly degraded. If there are no above problems, if the configuration shown in Figure 4 is adopted, the RA
M capacity can be significantly reduced, and there is a possibility of system control.

次に、本発明の第3の手段に対する実施例を第5図、第
6図に従って説明する。
Next, an embodiment of the third means of the present invention will be described with reference to FIGS. 5 and 6.

第5図に、Lジエトロニクスシステムを対象とした時の
加速時、及び、減速時における各種空気量の過渡特性を
示す。加速時には、燃料噴射量決定のベースとなる計測
空気量はシリンダ流入空気量より大きくなっており、減
速時にはその逆となっている。本発明の対象となる制御
方式は、燃料の遅れのみを補償して、望みの制御性を得
ようとするもので空気量に関して何の配慮もなされてい
ない。したがって望みの制御性を得るためには、燃料噴
射量決定のベースとなる空気量は、シリンダ流入空気量
でなければならない。ところが、実際には、シリンダ流
入空気量と異なる計測空気量を使用している。計測空気
量をベースに燃料噴射量を決定する場合、付着率、蒸発
率等のパラメータマツチングを行えば、限られた領域で
は望みの制御性を得ることは可能であるが、様々な領域
では困難である。これは、第5図の空気量の加速時と減
速時の特性の違いから、生じるもので、加速時に望みの
制御性(空燃比の目標値への定値化)を得ようとパラメ
ータマツチングすれば、すなわち、計測空気量がシリン
ダ流入空気量より大きく計測空気量に基づく制御では燃
料供給量が要求値より大きくなるため、燃料が、やや少
なめになるようパラメータマツチングすれば、減速時に
は、制御量である空燃比は目標値を上まわってしまう。
FIG. 5 shows the transient characteristics of various air amounts during acceleration and deceleration when the L-dietronics system is targeted. During acceleration, the measured air amount, which is the basis for determining the fuel injection amount, is greater than the cylinder inflow air amount, and the opposite is true during deceleration. The control system to which the present invention is directed attempts to obtain desired controllability by compensating only for the fuel delay, and does not give any consideration to the amount of air. Therefore, in order to obtain the desired controllability, the amount of air on which the fuel injection amount is determined must be the amount of air flowing into the cylinder. However, in reality, a measured air amount different from the cylinder inflow air amount is used. When determining the fuel injection amount based on the measured air amount, it is possible to obtain the desired controllability in a limited area by matching parameters such as deposition rate and evaporation rate, but it is not possible in various areas. Have difficulty. This is caused by the difference in the characteristics of the air amount during acceleration and deceleration as shown in Figure 5, and parameter matching is necessary to obtain the desired controllability (setting the air-fuel ratio to the target value) during acceleration. For example, if the measured air amount is larger than the cylinder inflow air amount and control based on the measured air amount causes the fuel supply amount to be larger than the required value, if the parameters are matched so that the fuel is slightly less, the control will be controlled during deceleration. The air-fuel ratio, which is a quantity, exceeds the target value.

これは、減速時には、シリンダ流入空気量が計測空気量
より大きく、計測空気量に基づく制御では、燃料量が要
求値より小さくなるため燃料がやや多めになるように本
来ならパラメータ設定すべきところを、少なめになるよ
う設定してしまっているからである。つまり従来の制御
系では、加速時。
This is because during deceleration, the amount of air flowing into the cylinder is larger than the measured air amount, and with control based on the measured air amount, the fuel amount is smaller than the required value, so the parameters should have been set so that the amount of fuel is slightly larger. This is because it is set to be a small number. In other words, in conventional control systems, during acceleration.

減速時の双方の運転モードで望みの制御性を得ることは
困難であった。以上の問題はDジエトロニクスシステム
でも同様である。
It was difficult to obtain desired controllability in both operating modes during deceleration. The above problems also apply to the D-dietronics system.

この問題に対して、本発明では、例えば第6図に示す制
御系の構成のように、パラメータ算出手段に加速用パラ
メータ算出手段、減速用パラメー夕算出手段、各手段の
出力の一方を選択し、それを燃料噴射制御手段に送る信
号選択手段を設ける。
To solve this problem, in the present invention, for example, as in the configuration of the control system shown in FIG. 6, one of the acceleration parameter calculation means, the deceleration parameter calculation means, and the output of each means is selected as the parameter calculation means. , and signal selection means for sending the signal to the fuel injection control means.

加速用パラメータ算出手段は、減速時に望みの制御性を
得るような制御パラメータを算出する手段であり、減速
用パラメータ算出手段は、減速時に望みの制御性を得る
ような制御パラメータを算出する手段である。上記各手
段、エンジンの運転状態の各種検出量と制御パラメータ
の対応関係は予め望みの制御性が得られるよう定められ
ている。
The acceleration parameter calculation means is a means for calculating control parameters to obtain desired controllability during deceleration, and the deceleration parameter calculation means is means for calculating control parameters to obtain desired controllability during deceleration. be. The correspondence relationships between the above-mentioned means, various detected amounts of the engine operating state, and control parameters are determined in advance so as to obtain desired controllability.

又、信号選択手段では、スロットル開度の計測値の最新
値と数時刻前の値の偏差から加速状態にあるか、減速状
態にあるかを判定し、加速状態にあれば、加速用パラメ
ータ算出手段の出力を、減速状態にあれば、減速用パラ
メータ算出手段の出力を燃料噴射制御手段に送る。
In addition, the signal selection means determines whether the throttle opening is in an acceleration state or a deceleration state based on the deviation between the latest measured value and the value several hours ago, and if it is in an acceleration state, calculates acceleration parameters. If the means is in a deceleration state, the output of the deceleration parameter calculation means is sent to the fuel injection control means.

以上の構成では、加速時と減速時に別々のパラメータ設
定が可能なので様々な運転領域で極みの制御性を得るこ
とが可能となる。
With the above configuration, separate parameter settings can be made during acceleration and deceleration, making it possible to obtain the ultimate in controllability in various operating regions.

以上の実施例では、対応関係を2種類しか設けなかった
が、加減速の大きさにより複数種類設けるようにしても
良い。
In the above embodiment, only two types of correspondence were provided, but a plurality of types may be provided depending on the magnitude of acceleration/deceleration.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、運転回数が増せば、自動的に制
御パラメータである付着率、蒸発率の値が最適化されて
ゆくので、パラメータの初期設定工数の削減、及び、エ
ンジン特性の経時変化、個体差への適応が可能になると
いう効果がある。
As described above, according to the present invention, as the number of operations increases, the values of the control parameters such as deposition rate and evaporation rate are automatically optimized, thereby reducing the number of man-hours for initial setting of parameters, and improving engine characteristics over time. This has the effect of making it possible to adapt to changes and individual differences.

又、制御パラメータと各種検出量との関係式を複数種類
設けたことで様々な運転領域で望みの制御性が得られる
という効果がある。
Further, by providing a plurality of types of relational expressions between control parameters and various detected amounts, there is an effect that desired controllability can be obtained in various operating regions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御系の楕成図、第2図は本発明をデ
ィジタル式制御ユニットで実現する時の制御システムの
全体構成図、第3図は本発明の特徴となる制御プログラ
ムのフローチャート、第4図は本発明の他の実施例にお
ける制御系の構成図、第5図は、各種空気量の過渡特性
を示す図、第6図は本発明のさらに他の実施例における
制御系の構成図である。
Fig. 1 is an elliptical diagram of the control system of the present invention, Fig. 2 is an overall configuration diagram of the control system when the present invention is realized by a digital control unit, and Fig. 3 is a diagram of the control program that is a feature of the present invention. Flowchart, FIG. 4 is a block diagram of a control system in another embodiment of the present invention, FIG. 5 is a diagram showing transient characteristics of various air amounts, and FIG. 6 is a control system in still another embodiment of the present invention. FIG.

Claims (1)

【特許請求の範囲】 1、排気管に広域空燃比センサを設置し、該センサによ
る計測空燃比、燃料噴射量、計測吸入空気量を含む検出
量から噴射燃料が吸気管壁面に付着する割合である付着
率と、吸気管壁面付着燃料が単位時間に蒸発する割合で
ある蒸発率、あるいは、上記付着燃料が単位時間に気筒
に持ち去られる割合である持ち去り率のいずれか一方と
を、予め定められた対応関係に基づいて推定し、該推定
結果に基づいて上記検出量と付着率及び、蒸発率、ある
いは、持ち去り率の対応関係を修正することを特徴とす
るエンジンの適応制御方法。 2、排気管に広域空燃比センサを設置し、該センサによ
る計測空燃比、燃料噴射量、計測吸入空気量を含む検出
量から噴射燃料の吸気管壁面への付着率と、付着燃料の
蒸発率、あるいは付着燃料の気筒への持ち去り率とを推
定し、上記検出量から算出する付着率、蒸発率、持ち去
り率にかえ、該推定結果に基づいて気筒に供給する燃料
量を制御することを特徴とするエンジンの適応制御方法
。 3、請求項第1項の適応制御方法において、上記検出量
と上記付着率、蒸発率、持ち去り率との対応関係を運転
状況に応じて複数種類設ける。 4、請求項第1項の適応制御方法において、上記推定す
る処理は、上記空燃比センサの応答遅れを補償する処理
を含む。 5、請求項第1項または第2項の適応制御方法において
、上記計測吸入空気量は、Lジエトロニクスシステム、
及び、Dジエトロニクスシステムにおいて燃料噴射量決
定のベースとなる所定の処理を行つた後の空気量である
。 6、請求項第1項の適応制御方法において、上記修正す
る処理は、上記推定されたパラメータを徐々に所定のパ
ラメータに収束してゆくように上記検出量とパラメータ
の対応関係を修正する処理からなる。 7、請求項第1項の適応制御方法において、上記修正す
る処理は、各運転状態に対して推定されたパラメータを
所定時間、あるいは所定数だけ記憶しておき、該所定時
間が経過、あるいは、該所定数に達した時、上記推定さ
れたパラメータの平均値に、同一運転状態に対して推定
されたパラメータ値を置き換えるようにして上記検出量
とパラメータの対応関係を修正する処理からなる。
[Claims] 1. A wide-range air-fuel ratio sensor is installed in the exhaust pipe, and the rate at which the injected fuel adheres to the intake pipe wall is calculated based on the amount detected by the sensor, including the measured air-fuel ratio, fuel injection amount, and measured intake air amount. A certain adhesion rate and either an evaporation rate, which is the rate at which the fuel adhering to the intake pipe wall evaporates per unit time, or a removal rate, which is the rate at which the adhering fuel is carried away to the cylinder per unit time, are determined in advance. A method for adaptively controlling an engine, characterized in that the correspondence between the detected amount and the deposition rate, the evaporation rate, or the removal rate is corrected based on the estimation result. 2. A wide range air-fuel ratio sensor is installed in the exhaust pipe, and the adhesion rate of the injected fuel to the intake pipe wall surface and the evaporation rate of the adhering fuel are determined from the detected amounts including the measured air-fuel ratio, fuel injection amount, and measured intake air amount by the sensor. , or the rate of adhering fuel being carried away to the cylinder, and controlling the amount of fuel supplied to the cylinder based on the estimation result in place of the adhesion rate, evaporation rate, and removal rate calculated from the detected amount. An adaptive engine control method characterized by: 3. In the adaptive control method according to claim 1, a plurality of types of correspondence relationships between the detected amount and the deposition rate, evaporation rate, and removal rate are provided depending on the operating situation. 4. In the adaptive control method according to claim 1, the estimating process includes a process of compensating for a response delay of the air-fuel ratio sensor. 5. In the adaptive control method according to claim 1 or 2, the measured intake air amount is determined by the L-dietronics system;
and the air amount after performing predetermined processing that is the basis for determining the fuel injection amount in the D-dietronics system. 6. In the adaptive control method according to claim 1, the modifying process includes a process of modifying the correspondence relationship between the detected amount and the parameter so that the estimated parameter gradually converges to a predetermined parameter. Become. 7. In the adaptive control method according to claim 1, the correction process is performed by storing parameters estimated for each driving state for a predetermined period of time or by a predetermined number of parameters, and when the predetermined period of time elapses, or When the predetermined number is reached, the average value of the estimated parameters is replaced with the parameter value estimated for the same driving state, thereby correcting the correspondence relationship between the detected amount and the parameter.
JP63325771A 1988-12-26 1988-12-26 Engine adaptive control method Expired - Fee Related JP2997473B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63325771A JP2997473B2 (en) 1988-12-26 1988-12-26 Engine adaptive control method
JP30361398A JPH11200919A (en) 1988-12-26 1998-10-26 Adaptive control method for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325771A JP2997473B2 (en) 1988-12-26 1988-12-26 Engine adaptive control method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP30361398A Division JPH11200919A (en) 1988-12-26 1998-10-26 Adaptive control method for engine

Publications (2)

Publication Number Publication Date
JPH02173334A true JPH02173334A (en) 1990-07-04
JP2997473B2 JP2997473B2 (en) 2000-01-11

Family

ID=18180438

Family Applications (2)

Application Number Title Priority Date Filing Date
JP63325771A Expired - Fee Related JP2997473B2 (en) 1988-12-26 1988-12-26 Engine adaptive control method
JP30361398A Pending JPH11200919A (en) 1988-12-26 1998-10-26 Adaptive control method for engine

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP30361398A Pending JPH11200919A (en) 1988-12-26 1998-10-26 Adaptive control method for engine

Country Status (1)

Country Link
JP (2) JP2997473B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448978A (en) * 1992-07-03 1995-09-12 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
US5606959A (en) * 1994-12-30 1997-03-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797994B2 (en) * 2007-01-10 2011-10-19 日産自動車株式会社 Outside temperature estimation device and outside temperature estimation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036748A (en) * 1983-08-08 1985-02-25 Hitachi Ltd Fuel control system for engine
JPS60162029A (en) * 1984-02-01 1985-08-23 Hitachi Ltd Fuel injection control method of engine
JPS63246428A (en) * 1987-03-31 1988-10-13 Hitachi Ltd Control unit for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036748A (en) * 1983-08-08 1985-02-25 Hitachi Ltd Fuel control system for engine
JPS60162029A (en) * 1984-02-01 1985-08-23 Hitachi Ltd Fuel injection control method of engine
JPS63246428A (en) * 1987-03-31 1988-10-13 Hitachi Ltd Control unit for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448978A (en) * 1992-07-03 1995-09-12 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system and cylinder air flow estimation method in internal combustion engine
US5606959A (en) * 1994-12-30 1997-03-04 Honda Giken Kogyo Kabushiki Kaisha Fuel metering control system for internal combustion engine

Also Published As

Publication number Publication date
JP2997473B2 (en) 2000-01-11
JPH11200919A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
US5282449A (en) Method and system for engine control
JPS63215848A (en) Fuel injection amount control method and device for internal combustion engine
JP3054360B2 (en) Control method of internal combustion engine
JP2818805B2 (en) Engine fuel injection control device
JP2569586B2 (en) Electronic control unit for internal combustion engine
JPH0158335B2 (en)
EP0378814B1 (en) Method of controlling air-fuel ratio
JPH1054285A (en) Degradation judging device for air-fuel ratio sensor
JPH02227532A (en) Fuel injection control device
JPH0281935A (en) Correction method of air-fuel ratio and correction device for the same
JPH0585742B2 (en)
JPH02173334A (en) Adaptable control method for engine
JP2615811B2 (en) Fuel injection amount control device for internal combustion engine
JPS6287651A (en) Method of controlling operating characteristic amount of operating control means in internal combustion engine
JPH08232749A (en) Intake air amount estiminating device for internal combustion engine
JPH0523815Y2 (en)
JPS6161012A (en) Output control device of heat wire sensor
JPS6125930A (en) Control of fuel injection amount of internal-combustion engine
JP2755493B2 (en) Transient fuel correction method for internal combustion engine
JPH01134042A (en) Fuel injection quantity control system for internal combustion engine
JP2000027692A (en) Method and device for detecting intake pipe pressure in internal combustion engine
JPS6380044A (en) Non-linear feed-back control method for internal combustion engine
JPH01138337A (en) Method for controlling fuel injection of internal combustion engine
JPS63289237A (en) Fuel injection quantity controlling method for internal combustion engine
JPS6045752A (en) Fuel controller of internal-combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees