JPH02172897A - Production of zinc oxide whisker - Google Patents

Production of zinc oxide whisker

Info

Publication number
JPH02172897A
JPH02172897A JP63328271A JP32827188A JPH02172897A JP H02172897 A JPH02172897 A JP H02172897A JP 63328271 A JP63328271 A JP 63328271A JP 32827188 A JP32827188 A JP 32827188A JP H02172897 A JPH02172897 A JP H02172897A
Authority
JP
Japan
Prior art keywords
zinc
powder
whiskers
zinc oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63328271A
Other languages
Japanese (ja)
Other versions
JP2584035B2 (en
Inventor
Minoru Yoshinaka
芳中 實
Eizo Asakura
朝倉 栄三
Motoi Kitano
基 北野
Jun Yagi
順 八木
Hideyuki Yoshida
吉田 英行
Takashige Sato
佐藤 隆重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63328271A priority Critical patent/JP2584035B2/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to EP90900992A priority patent/EP0407601B1/en
Priority to DE68924646T priority patent/DE68924646T2/en
Priority to US07/566,475 priority patent/US5158643A/en
Priority to PCT/JP1989/001246 priority patent/WO1990007022A1/en
Priority to KR1019900701787A priority patent/KR930007857B1/en
Priority to CA002005737A priority patent/CA2005737C/en
Publication of JPH02172897A publication Critical patent/JPH02172897A/en
Application granted granted Critical
Publication of JP2584035B2 publication Critical patent/JP2584035B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an aggregate of zinc oxide macrocrystals having the dimensions of industrial-grade whiskers or above by heating zinc powder having an oxide coat on the surface in an atmosphere contg. oxygen. CONSTITUTION:A vessel with one face open is used and zinc powder having an oxide coat on the surface is put on the bottom of the vessel opposite to the open face. The vessel is set in a preheated furnace, where the zinc powder is heated and oxidized in an atmosphere contg. oxygen to form and deposit whiskers in the vessel. The pref. particle size of the zinc powder is 10-300mum. Each of the obtd. zinc oxide whiskers consists of a central core part and acicular crystal parts extending in different four axial directions from the core part and each of the acicular crystal parts has about 0.7-14mum diameter at the base and about 3-200mum length.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、巨大なテトラボッド状構造を有する酸化亜鉛
ウィスカー集合体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing zinc oxide whisker aggregates having a giant tetrabod-like structure.

従来の技術 現在、−船釣工業材料として使用される酸化亜鉛はいわ
ゆるフランス法によるものが多く1粒子の大きさ、特に
形状がまちまちの団塊状粒子の集合体である。又、細く
短い針状結晶粒子に高収率で形成させる方法(例えば特
公昭60−5629号公報)があるが、これは上記フラ
ンス法の改良法で、加熱亜鉛蒸気を炉外に導き急速に冷
却するものであり、このため巨大結晶体は生成せず、微
小寸法(長さが0.1〜15μm)の針状結晶となる。
BACKGROUND OF THE INVENTION At present, zinc oxide used as a material for boat fishing industry is mostly produced by the so-called French process, and is an aggregate of nodular particles of various sizes, especially shapes. There is also a method of forming thin and short acicular crystal particles with high yield (for example, Japanese Patent Publication No. 60-5629). It is used for cooling, and therefore, giant crystals are not generated, but needle-like crystals with minute dimensions (0.1 to 15 μm in length) are formed.

この様な寸法の針状結晶体は現在市販されている各種工
業用ウィスカーと比較すると寸法面で約2桁小さい。こ
のため、前記ウィスカーの共通的特長である金属、セラ
ミック、樹脂等への補強効果は前記団塊状酸化亜鉛の水
準と大差なく、ウィスカー的な顕著な効果は認められな
い。繊維形状の単結晶性であるウィスカーは同材質の団
塊状物質よりは格段と機械的強度が犬でこれを他の物質
中に混入して高い機械的強度を得るための強化物質とし
て注目されており、現在では2金属、金属酸化物、金属
炭化物、金属窒化物等の工業用ウィスカーが市販されて
いる。又酸化亜鉛においても長さが開拓のウィスカーの
例(特開昭50−6697号公報)等があるが、これは
単純針状体のもので、わざわざ亜鉛の合金を用いるため
、結晶中に不純物を含んだり、成長時に原料設置前から
離れた位置に基板を設けることを必要としたり、低収率
であったり、複雑な装置、操作で長時間を要する等の実
験室的検討に過ぎないものが多い。
Acicular crystals of such dimensions are about two orders of magnitude smaller in size than various industrial whiskers currently on the market. Therefore, the reinforcing effect on metals, ceramics, resins, etc., which is a common feature of the whiskers, is not much different from that of the nodular zinc oxide, and no significant whisker-like effects are observed. Whiskers, which are monocrystalline in the form of fibers, have much greater mechanical strength than nodules of the same material, and are attracting attention as reinforcing substances that can be mixed into other substances to obtain high mechanical strength. Currently, industrial whiskers made of two metals, metal oxides, metal carbides, metal nitrides, etc. are commercially available. There is also an example of a long whisker (Japanese Unexamined Patent Application Publication No. 50-6697) for zinc oxide, but this is a simple needle-shaped whisker, and since a zinc alloy is purposely used, impurities are present in the crystal. , require a substrate to be placed at a remote location before starting the growth process, have low yields, require complex equipment and long hours of operation, etc., and are merely laboratory studies. There are many.

発明が解決しようとする課題 本発明は工業用ウィスカー級の寸法性或はこれら以上の
寸法を有する酸化亜鉛の巨大結晶体の集合体を得る製造
法を提供することを目的とする。
Problems to be Solved by the Invention An object of the present invention is to provide a manufacturing method for obtaining an aggregate of gigantic zinc oxide crystals having dimensions comparable to or larger than industrial whiskers.

また1本発明は巨大テトラボッド状構遺の酸化亜鉛ウィ
スカー集合体の新規な製造方造を提供するものである。
The present invention also provides a novel method for producing a zinc oxide whisker aggregate having a giant tetrabod-like structure.

課題を解決するための手段 本発明による酸化亜鉛ウィスカーの製造方法は、表面に
酸化皮膜を有する亜鉛粉末を酸素を含む雰囲気下で加熱
処理して酸化亜鉛を生成させることを特徴とする。前記
フランス法の改良法や単純針状結晶体製造法等の如く、
原料設置場所とウィスカー生成、成長箇所が分離区分さ
れているのが従来気相法ウィスカー製造方法の特徴でも
ある。しかるに本発明では一面が開口した容器を用いる
Means for Solving the Problems The method for manufacturing zinc oxide whiskers according to the present invention is characterized in that zinc powder having an oxide film on its surface is heat-treated in an atmosphere containing oxygen to generate zinc oxide. Like the improved French method and the method for producing simple needle crystals, etc.
A feature of the conventional vapor phase whisker manufacturing method is that the raw material installation location and the whisker generation and growth locations are separated. However, in the present invention, a container with one side open is used.

この容器の開口面に対応する面を底面とし、この底面上
に上記亜鉛粉末を設置して、この容器ごと予め加熱され
た炉内に設置して空気など酸素を含む雰囲気下で加熱、
酸化処理を行うことにより。
The surface corresponding to the opening surface of this container is the bottom surface, and the above-mentioned zinc powder is placed on this bottom surface, and the container is placed in a preheated furnace and heated in an atmosphere containing oxygen such as air.
By performing oxidation treatment.

従来のものとは全くかけ離れた新規な巨大テトラボッド
状醒化亜鉛ウィスカー集合体を製造できるし、生成した
ウィスカーはこの容器内の上層部に堆積して製造される
特徴を有する。父上記容器のウィスカー堆積層より下層
部には、副生ずる団塊状酸化亜鉛層がウィスカー層と分
離して堆積する特徴をも有する。
It is possible to produce a new giant tetrabod-shaped aroused zinc whisker aggregate that is completely different from conventional ones, and the produced whiskers have the characteristic that they are deposited in the upper layer of the container. The container also has the characteristic that a by-product nodular zinc oxide layer is deposited separately from the whisker layer below the whisker deposition layer.

又、ここにおいて、亜鉛粉末は容器の底面に層状に散布
するのが望ましいし、原材投入方法も。
Also, here, it is desirable to sprinkle the zinc powder in a layer on the bottom of the container, and also the method of feeding the raw materials.

予め、上記容器を炉内で加熱させた後に亜鉛粉末を容器
底部に散布する方法も可能である。
It is also possible to heat the container in advance in a furnace and then sprinkle zinc powder on the bottom of the container.

又、原料亜鉛粉末は表面に酸化皮膜を形成させたものが
必須であり、酸化皮膜の形成は粉末製造時に達成される
ことが多く、これには溶融粉末を経る方法、固体状のま
まの粉砕による方法等があるが、前者は一部やや多孔質
であるが厚膜化し易く、後者はち密で薄い皮膜となるこ
とが多い。
In addition, it is essential that the raw zinc powder has an oxide film formed on its surface, and the formation of the oxide film is often achieved during powder production. The former is somewhat porous but tends to form a thick film, while the latter often results in a dense and thin film.

又、亜鉛粉末に酸化皮膜を形成したり、皮膜厚を増大さ
せたりする好ましい方法としては、後述のように亜鉛粉
末を水と共存下で拙潰し、熟成させる方法がある。
A preferred method for forming an oxide film on zinc powder or increasing the thickness of the film is to roughly crush zinc powder in the coexistence of water and age it, as described below.

作用 本発明の方法によって得られる敗北亜鉛ウィスカーは、
中心の核部とこの核部から異なる4軸方向に伸びた針状
結晶部からなり、前記針状結晶部の基部の径が0.7〜
14μm、であり、前記針状結晶部の基部から先端まで
の長さが3〜20011mである。又針状結晶部が3軸
或は2軸のものも多少混入するが、これらは、成長中或
は後に他のウィスカーと接触して、その一部が折損した
り、成長が停止した結果である。又この成長中の接触に
より完全なテトラボッド形の一部に他のテトラポ。
The defeated zinc whiskers obtained by the method of the invention are
Consisting of a central core and needle-like crystal parts extending in four different axial directions from this core, the diameter of the base of the needle-like crystal part is 0.7 to
14 μm, and the length from the base to the tip of the needle-like crystal portion is 3 to 20011 m. In addition, some whiskers with triaxial or biaxial needle-like crystals are mixed in, but these are the result of some of them being broken or growth being stopped due to contact with other whiskers during or after growth. be. Also during this growth contact with other tetrapods makes them part of the complete tetrabod shape.

ドが付着したものも多少みられる。他の形状即ち板状晶
が針状部に付着することもあるが1本発明の製造方法に
よればテトラボッド状のものが主体となる。
There are also some pieces with dots attached. Although other shapes, that is, plate-like crystals, may adhere to the needle-like portion, according to the manufacturing method of the present invention, tetrabod-like crystals are the main body.

本発明者は針状部の寸法が前述の如く細く短く。The present inventor has designed the needle-like portion to be thin and short as described above.

かつ二次成長部を付着させた従来の結晶体から飛躍的に
巨大でかって実現されたことのない巨大テトラボッド状
ウィスカー集合体を発現させるべく種々実験研究の結果
、その製造方法に極めて大きな要因のあることを確認し
た。
In addition, as a result of various experimental studies to develop a giant tetrabod-like whisker aggregate, which has never been realized before, from a conventional crystalline body with attached secondary growth parts, we found that there is an extremely important factor in the manufacturing method. I confirmed that there is.

更に詳細には従来法の如く、インゴットからの亜鉛金属
溶湯や5還元亜鉛、亜鉛化合物からの純金属亜鉛等を使
用しての焼成雰囲気条件の選定だけでは上記巨大テトラ
ボッド状ウィスカーを発現させることが不可能であり、
これを達成させるには、従来と異なり、亜鉛金属粉末、
特に表面に酸化皮膜を有する亜鉛粉末を用いるのが必須
であり、かつ、この粉末を用いて上記の容器を用いた加
熱酸化方法を採ることにより、容器の上層部にウィスカ
ーを下層に団塊状酸化亜鉛粉末を堆積させる反応方式に
より上層部に新規な巨大テトラボッド状′酸化亜鉛ウィ
スカーの集合体が発現することを確認した。
More specifically, as in the conventional method, it is not possible to develop the giant tetrabod-like whiskers simply by selecting the firing atmosphere conditions using molten zinc metal from an ingot, 5-reduced zinc, pure metal zinc from a zinc compound, etc. It is impossible,
To achieve this, unlike conventional methods, zinc metal powder,
In particular, it is essential to use zinc powder that has an oxide film on the surface, and by using this powder and using the heating oxidation method using the container described above, whiskers are formed in the upper layer of the container and nodular oxidation is performed in the lower layer. It was confirmed that a new aggregate of giant tetrabod-shaped zinc oxide whiskers appeared in the upper layer by the reaction method of depositing zinc powder.

更に詳細には1本発明の製造方法の中で、表面に酸化皮
膜を有する亜鉛金属粉末の脆化皮膜部が内部亜鉛金属部
からの亜鉛蒸気、煙に対し密封性を示す。即ち密封度の
高い酸化皮膜を有する粉末は、低い密封度のものより低
温域では蒸気、煙の発生が抑制され、高温域で一気に高
濃度の亜鉛煙、蒸気の発生、追随した酸化反応が起こり
1本発明の酸化亜鉛ウィスカーが発現する。又この眼化
皮膜の別の効果の一つは亜鉛金属部が互いに融解、溶湯
化することなく、高濃度の亜鉛煙、蒸気を発生させるこ
とである。
More specifically, in one of the manufacturing methods of the present invention, the brittle film part of the zinc metal powder having an oxide film on the surface exhibits sealing properties against zinc vapor and smoke from the internal zinc metal part. In other words, a powder with a highly sealed oxide film suppresses the generation of steam and smoke in a low temperature range compared to a powder with a low sealing degree, and in a high temperature range, a high concentration of zinc smoke and steam is generated, followed by an oxidation reaction. 1. The zinc oxide whiskers of the present invention are developed. Another effect of this ophthalmic coating is that the zinc metal parts do not melt or become molten metal, and generate highly concentrated zinc smoke or steam.

即ちこの酸化皮膜は内部からの亜鉛煙、蒸気の発生を制
御する役割を有する結果である。又第3に皮膜の酸化亜
鉛部がウィスカー成長の基板的役割を担っていることも
同時に確認された。尚上述の密封度とは粉末内部の亜鉛
金属からの蒸気、煙を表面で密封する度合をいう。これ
は酸化皮膜の厚み、組織、金属部と酸化皮膜部の体積比
等により変化する。
That is, this oxide film has the role of controlling the generation of zinc smoke and steam from inside. Thirdly, it was also confirmed that the zinc oxide part of the film plays the role of a substrate for whisker growth. The degree of sealing mentioned above refers to the degree to which vapor and smoke from the zinc metal inside the powder are sealed on the surface. This varies depending on the thickness of the oxide film, its structure, the volume ratio of the metal part to the oxide film part, etc.

特に酸化皮膜の厚み1組織は金属粉末の製造時に達成さ
れるものが多い。即ち溶融亜鉛粉末を経て得られるもの
は特に制御しない限り、厚くてやや多孔質な酸化度Hが
得られる。逆に固体のまま粉砕した系では皮膜厚は小で
かなりち密なものが得られる。又これら膜厚の均等性は
前者のものの方が良好であるが、後者の場合は形状がや
や複雑で凹凸部を有する粉末形となるため、膜厚が不均
一となる場合も多い。又前者の場合、膜厚が厚く成長し
過ぎた場合には表面部がぜい弱となり、クラックを生じ
欠陥を生じさせることもある。又このような酸化皮膜を
有する粒子系では、以上の様な条件以外でも、転移、そ
の他の要因で皮膜に欠陥を生じることも多い。
In particular, the 1-thickness structure of the oxide film is often achieved during the production of metal powder. That is, the oxidation degree H obtained through molten zinc powder is thick and somewhat porous unless particularly controlled. On the other hand, when the solid material is ground, the film thickness is small and the film is quite dense. The former has better uniformity in film thickness, but the latter has a slightly more complex shape and is in the form of a powder with uneven parts, so the film thickness is often non-uniform. In the former case, if the film grows too thick, the surface becomes fragile, which may cause cracks and defects. Furthermore, in particle systems having such an oxide film, defects are often caused in the film due to dislocation and other factors in addition to the conditions described above.

次にこれら皮膜の欠陥、割れ等密封性の劣化を改修した
り、膜厚を増大させたりするためには。
Next, in order to correct deterioration in sealing performance such as defects and cracks in these films, or to increase the film thickness.

拙潰、熟成処理を行う。この処理は選択的に上述欠陥部
が膜欠損部に酸化物を堆積させることを確認した。
Carefully crushed and aged. It was confirmed that this treatment selectively deposits oxides in the film defect areas.

更にこれらの亜鉛粉末について詳記する。これらの粒子
径は0.1〜600μmのものが使用可能であり、なか
でも10〜300μmのものが最良の結果となる。これ
らの金属亜鉛粉末は亜鉛線。
Furthermore, these zinc powders will be described in detail. These particles can have a diameter of 0.1 to 600 .mu.m, with the best result being 10 to 300 .mu.m. These metal zinc powders are made of zinc wire.

亜鉛棒や亜鉛粉末をガス溶線法、ガス溶棒法、ガス粉末
法、電気(アーク)溶線法、プラズマジエ、ト法等で空
気中に溶射することより得た粉末。
Powder obtained by spraying zinc rods or zinc powder into the air using the gas melt wire method, gas melt rod method, gas powder method, electric (arc) wire method, plasma jet method, etc.

溶湯粉化によるもの、即ち粒状化法、アトマイズ法によ
る粉末がある。又機械的粉砕による方法即ち、地金イン
ゴット等を切削又はジョー・クラッシャー、ジャイレー
トリ・クラッシャーで粗粉砕されたものを更に再粉砕し
たものがあり、その中粉砕にはいろいろの形式があるが
、スタンプミル法、渦流ミル法等がある。更により微細
粉にするためにはハンマーミル、カッチングミル、ミク
ロナイザー等を使用して得た粉末がある。又電解による
もの、金属の蒸発、凝1等を利用した物理的操作、化学
的反応を利用した化学操作による亜鉛粉末を用いること
もできる。通常は、上記の各方法での粉末では粉末表面
に酸化皮膜が生成しない様に留意して製造されているが
、本発明に使用する場合には逆に酸化皮膜が表面に形成
されれば有効であるため、水分共存下や高酸素濃度(大
気中等)高湿度中等の酸化促進雰囲気中で製造すること
も可能である。又高温、高機械的圧力下で製造する場合
にも良好な粉末を得ることができる。又、上記の亜鉛粉
末製造法を採っても密封性の点で酸化皮膜形成が不充分
な場合や、酸化皮膜が有効な程に形成されない粉末製造
法が採られた場合には以下に示す好ましい方法が採られ
る。
There are powders produced by pulverization of molten metal, ie, granulation method and atomization method. There is also a method of mechanical crushing, in which the raw metal ingot is cut or coarsely crushed using a jaw crusher or gyratory crusher and then re-pulverized. There are mill methods, eddy current mill methods, etc. In order to make the powder even finer, there are powders obtained using a hammer mill, a cutting mill, a micronizer, etc. It is also possible to use zinc powder obtained by electrolysis, physical operation using metal evaporation, coagulation, etc., or chemical operation using chemical reaction. Normally, powders produced by each of the above methods are manufactured with care taken to avoid forming an oxide film on the powder surface, but when used in the present invention, it is effective if an oxide film is formed on the surface. Therefore, it is also possible to produce it in an oxidation-promoting atmosphere, such as in the presence of moisture or a high oxygen concentration (such as in the atmosphere) or high humidity. Also, good powder can be obtained even when produced at high temperature and under high mechanical pressure. In addition, if the formation of an oxide film is insufficient in terms of sealability even if the above zinc powder manufacturing method is adopted, or if a powder manufacturing method that does not form an effective oxide film is adopted, the following preferable method is used. method is adopted.

まず水共存下での機械的処理として乳鉢式拙潰機、ロー
ル等で処理を行い粒子に圧力を加える。
First, mechanical treatment in the presence of water is performed using a mortar-type crusher, rolls, etc. to apply pressure to the particles.

更にこれを水中に24時間以上、なかでも76時間なら
ばいかなる粒子径のものでも、完全な結果を与える。又
放置熟成温度は20℃以上に保つことが好ましい。酸化
皮膜の形成は上記メカノケミカル反応によらなくても熟
成等によるケミカル反応だけでも形成できるが、通常後
者の場合は時間がかかりすぎるし、上述、密封度向上に
は前者の方の効果が大きい。
Furthermore, if it is kept in water for more than 24 hours, especially 76 hours, it will give perfect results regardless of the particle size. Further, it is preferable to keep the aging temperature at 20° C. or higher. The oxide film can be formed by chemical reactions such as aging without using the mechanochemical reactions mentioned above, but the latter usually takes too much time, and as mentioned above, the former is more effective in improving the degree of sealing. .

このように酸化皮膜の形成、増大、成長の要因は多岐に
わたるが総括すると(1)機械的圧力の付加、(2)水
中ないし高湿度下でのg化反応、 (3) 、 (1)
(2)の相剰効果(メカノケミカル反応)、(4)M素
濃度。
There are a wide variety of factors that cause the formation, increase, and growth of oxide films, but they can be summarized as follows: (1) application of mechanical pressure, (2) g-oxidation reaction in water or under high humidity, (3), (1)
(2) Reciprocal effect (mechanochemical reaction), (4) M elementary concentration.

(5)温度効果等が関係する。生成するウィスカーの寸
法、特に針状部の長さ径から評定すると、上記(3)に
よる時間が太きく影響を与える。即ち短時間で効果は犬
である。
(5) Temperature effects etc. are involved. When evaluated from the dimensions of the generated whiskers, especially the length and diameter of the needle-like portions, the time due to the above (3) has a large influence. In other words, the effect is great in a short period of time.

水との共存下での拙潰、熟成時間が犬ならば上記ウィス
カー寸法も原料粉の酸化皮膜の密封度向上により、増大
する傾向にある。
If the crushing and maturing time in the coexistence with water is long, the whisker size will also tend to increase due to the improved sealing degree of the oxide film of the raw material powder.

粉体上の酸化皮膜は密封度向上により、内部の金属亜鉛
部からの亜鉛の放出を低温域で抑制するし又内部への酸
素の移行も同様に抑制する。このため単結晶成長時に十
分な亜鉛蒸気、煙濃度が与えられる。結晶寸法は従来の
気相法のものとかけ離れて画期的に大きくなる。
By improving the degree of sealing, the oxide film on the powder suppresses the release of zinc from the internal metal zinc part at low temperatures, and also suppresses the migration of oxygen into the interior. Therefore, sufficient zinc vapor and smoke concentration are provided during single crystal growth. The crystal size is dramatically larger than that of conventional gas phase methods.

次に放置熟成後乾燥する。この乾燥は粉末表面の水切り
が達成できればよく、次の焼成工程の高温中へ移行した
当初の弊害が防がれるように、即ち、ルツボ割れ、粉末
の飛び散りがなくなる程度に乾燥すれば良好である。こ
のために風乾ないし亜鉛粉末が溶融しない高製造の温度
範囲で行うことができる。
Next, it is left to mature and then dried. This drying only needs to be able to remove water from the powder surface, and it is sufficient if it is dried to the extent that the initial adverse effects of transferring to the high temperature of the next firing process are prevented, that is, there is no cracking of the crucible or scattering of the powder. . For this purpose, air drying or high production temperature ranges in which the zinc powder does not melt can be carried out.

次に乾燥した亜鉛粉末は、本発明に用いる耐熱性容器の
底部に散布して焼成、酸化する。上記容器とは金属、カ
ーボン、磁器(アルミナ)等の素材より得られるもので
、底部に対応した開口面を有する。
Next, the dried zinc powder is sprinkled on the bottom of the heat-resistant container used in the present invention and fired and oxidized. The container is made of a material such as metal, carbon, or porcelain (alumina), and has an opening corresponding to the bottom.

又、上記素材が各々無孔質のち密面から達成されたもの
や多孔質からなるものも含む。具体的には、これら容器
がルツボである場合も含む。次に原料を底部に配置した
容器を予め加熱した酸素を含む雰囲気を保持した炉内に
導き焼成、酸化を行う。又炉内温度は700〜1300
℃、中でも900〜1100℃で加熱するのが、いかな
る粒子径でも良好な結果を与える。
It also includes those in which the above-mentioned materials are non-porous and have a dense surface, and those in which the materials are porous. Specifically, cases where these containers are crucibles are also included. Next, the container with the raw material placed at the bottom is introduced into a furnace that maintains a preheated oxygen-containing atmosphere for firing and oxidation. Also, the temperature inside the furnace is 700 to 1300
Heating at a temperature of 900 to 1100° C. gives good results for any particle size.

又、上記温度域の炉内に前記ルツボを保持しておき、調
整した粉末を投入して散布して焼成しても好ましい結果
を与える。焼成時間は700〜1300℃において12
0〜10分間、900〜1100℃では90〜10分間
が適当である。前記加熱焼成は通常空気中で行えば良い
が、窒素と酸素の混合比を調整したガスや酸素ガスを用
いても好ましい結果表なる。
Further, preferable results can be obtained even if the crucible is kept in a furnace in the above temperature range, and the prepared powder is introduced and fired by scattering. Firing time is 12 at 700-1300℃
For 0 to 10 minutes, at 900 to 1100°C, 90 to 10 minutes is appropriate. The heating and firing may normally be carried out in air, but preferable results can also be obtained by using a gas with an adjusted mixing ratio of nitrogen and oxygen or oxygen gas.

上記加熱酸化の特に初期過程では加熱された亜鉛粉末は
容器の芯部から開口部へと飛び上り、開口部付近から底
部へと落下してくる。これを操り返しながら酸化反応と
ウィスカー成長が進み、次第に容器上層部には本発明の
ウィスカー集合体が堆積し下層には団塊状酸化亜鉛粉末
が堆積する。
Particularly in the initial stage of the heating oxidation, the heated zinc powder flies up from the core of the container to the opening and falls from near the opening to the bottom. The oxidation reaction and whisker growth proceed while controlling this process, and the whisker aggregate of the present invention is gradually deposited in the upper layer of the container, and the nodular zinc oxide powder is deposited in the lower layer.

以上の様に本発明の製造方法が達成されるには、前述の
様に密封性酸化皮膜を有する亜鉛粉末が必須となる。こ
れは各種の粉末製造方法やその条件制御により密封性の
酸化皮膜が発現できるし、更に水共存下での拙潰、熟成
処理により、完全化される。
In order to achieve the manufacturing method of the present invention as described above, zinc powder having a sealing oxide film is essential as described above. This can be achieved by developing a sealing oxide film through various powder manufacturing methods and controlling the conditions, and can be further perfected by rough crushing and aging treatment in the coexistence of water.

この事実は、X線回折、電子顕微鏡観察より確認した。This fact was confirmed by X-ray diffraction and electron microscopy observation.

又、この様に形成された酸化皮膜又はこれらの処理では
焼成工程に特別な効果を与えている。
In addition, the oxide film formed in this way or these treatments has a special effect on the firing process.

すなわち、亜鉛粉末が酸化を受けない良好な方法で製造
された直後のもので、酸化皮膜の形成がないもの、或は
X線回折法では全く検出できない極めて薄くぜい弱な膜
しか有さないものでは、前記条件下の焼成時に均等に粒
子の飛上昇、降下が起こらなく、不均一焼成となり、温
度、酸素濃度を調整しても種々の色調の団塊状酸化亜鉛
と未燃焼の金属亜鉛が共存した系が生成し、ウィスカー
は生成しない。
In other words, the zinc powder must have just been manufactured using a good method that does not undergo oxidation, and must not have an oxide film formed, or only have an extremely thin and fragile film that cannot be detected at all by X-ray diffraction. During firing under the above conditions, the particles did not rise and fall evenly, resulting in uneven firing, and even after adjusting the temperature and oxygen concentration, nodular zinc oxide of various colors and unburned metallic zinc coexisted. system, but not whiskers.

一方、成長した密封性酸化皮膜を有する亜鉛粉末では、
高温焼成が均一かつ完全に進行して極めて高収率に巨大
テトラボッド状ウィスカーに成長するし、皮膜部の酸化
物は層状に団塊状酸化亜鉛となり生成する。
On the other hand, zinc powder with a grown hermetic oxide film
The high-temperature firing progresses uniformly and completely to grow giant tetrabod-like whiskers with an extremely high yield, and the oxide in the film forms nodular zinc oxide in layers.

この様に亜鉛粉末が教化皮膜により完全に覆われている
場合には、テトラボッド状ウィスカーは完全に成長し、
形状的にも二次成長部や板状晶等が少なくなる。このた
め製造時に酸化皮膜が形成され、更に拙潰、熟成による
皮膜形成を促した系では、形状、大きさ共に良好なウィ
スカー集合体を得ることができる。しかるに皮膜の密封
度は前述の如ぐ膜厚のみで一義的には決定できなく、特
に大きさ、寸法に関しては、膜の組織金属部の体積比(
粒径に依存)等により変化する。このため局部的に酸化
皮膜が形成されている場合でも本発明のテトラボッド状
ウィスカーを得ることは可能であるが、形状、収率がか
なり低位となる。
In this way, when the zinc powder is completely covered with the edifying film, the tetrabod-like whiskers will grow completely,
In terms of shape, there are fewer secondary growth parts, plate-shaped crystals, etc. For this reason, in a system in which an oxide film is formed during production and the film formation is further promoted through crushing and aging, it is possible to obtain a whisker aggregate with good shape and size. However, the degree of sealing of a film cannot be determined uniquely by the film thickness alone, as mentioned above, and in particular, the size and dimensions are determined by the volume ratio of the metallic part of the film (
(depending on particle size) etc. Therefore, even if an oxide film is locally formed, it is possible to obtain the tetrabod-like whiskers of the present invention, but the shape and yield will be quite low.

又、焼成製造時、加工調整された粉末のみかけ体積に比
し、ライスカム生成系は急激に体積を増大するが、通常
の気相成長法で通常みられるソース部外へのウィスカー
の付着発現、成長のタイプではなく、基本的に大部分の
ものは原料設置部分に連続的に生成、成長する体積増加
型のものである。
In addition, during firing production, the volume of the rice comb production system increases rapidly compared to the apparent volume of the processed powder, but the appearance of whisker adhesion outside the source area, which is normally seen in ordinary vapor phase growth methods, Basically, most of them are of the volume increase type that continuously generate and grow in the raw material installation area, rather than the growth type.

実施例 以下に本発明の実施例を示す。Example Examples of the present invention are shown below.

実施例1 純度s 9.99%の亜鉛線をアーク放電方式による溶
射法で、#R素濃度27係の酸素、窒素混合ガス雰囲気
中に溶射した。雰囲気の温度は40℃に設定して行った
Example 1 A zinc wire having a purity of 9.99% was thermally sprayed in an oxygen/nitrogen mixed gas atmosphere with a #R elementary concentration of 27 by thermal spraying using an arc discharge method. The temperature of the atmosphere was set at 40°C.

この亜鉛粉末を回収した粒子径を160〜300μmに
分級して、再度160℃で24時間乾燥して焼成に供し
た。この粉末1202を容器としては多孔質アルミナ磁
器製のルツボの底面に散布した。このアルミナルツボは
長方体で横20m、縦35m、高さ16crnであり5
広面積部の一面が開口部となっている。父上記粉末属は
この開口面に対応する底面に3MM厚で上記粉末を均一
散布した。この容器をそのまま予め960℃に保たれた
炉内に導き空気雰囲気で36分間の加熱処理を行った。
The recovered zinc powder was classified to have a particle size of 160 to 300 μm, dried again at 160° C. for 24 hours, and subjected to firing. This powder 1202 was sprinkled on the bottom of a crucible made of porous alumina porcelain. This alumina crucible is rectangular, 20 m wide, 35 m long, and 16 crn high.
One side of the wide area portion is an opening. The above powder was uniformly sprinkled on the bottom surface corresponding to this opening surface to a thickness of 3 mm. This container was directly introduced into a furnace previously maintained at 960° C. and was subjected to a heat treatment for 36 minutes in an air atmosphere.

、この結果、上記容器内の下層部には、やや黄色の団塊
状酸化亜鉛が層状に生成され、その上層部にはみかけ嵩
比重0.11の巨大テトラボッド状酸化亜鉛ウィスカー
集合体が生成した。わずかにウィスカー層が容器外にあ
ふれたが、反応の主体は容器内で行われ、反応初期の高
温亜鉛粉末粒子が開口部分の距離まで上昇し降下する現
象を繰り返しながら酸化反応ウィスカー生成反応が続行
した。この時上記の如く容器外に多少あふれることがあ
るが、反応の主体は容器内で行われ、生成物のほとんど
は容器内に堆積した。
As a result, a layer of slightly yellow nodular zinc oxide was formed in the lower layer of the container, and a giant tetrabod-shaped zinc oxide whisker aggregate with an apparent bulk specific gravity of 0.11 was formed in the upper layer. Although a small amount of the whisker layer overflowed outside the container, the main reaction took place inside the container, and the oxidation reaction and whisker generation reaction continued as the high-temperature zinc powder particles at the initial stage of the reaction repeatedly rose to the distance of the opening and then descended. did. At this time, as mentioned above, there may be some overflowing outside the container, but the main reaction was carried out within the container, and most of the products were deposited inside the container.

生成酸化亜鉛中の上記ウィスカー集合体の割合は88係
であり、残り12係で団塊状酸化亜鉛であった。得られ
た酸化亜鉛ウィスカーの電子顕微鏡写真を第1図に示す
The ratio of the whisker aggregates in the produced zinc oxide was 88%, and the remaining 12% was nodular zinc oxide. An electron micrograph of the obtained zinc oxide whiskers is shown in FIG.

核部と、この核部から異なる4軸方向に伸びた針状結晶
部からなるテトラボッド状の結晶体が明確に認められる
。又板状晶のものも認められた。
A tetrabod-like crystal body consisting of a core and needle-shaped crystal parts extending from the core in four different axial directions is clearly recognized. Plate crystals were also observed.

いずれにしても上記の方法によると巨大テトラボッド状
のものが86係以上を占める。第2図は上記ウィスカー
のX線回折図を示す。すべて酸化亜鉛のピークを示し、
電子線回折の結果も、転移、格子欠陥の少ない単結晶性
を示した。又不純物含有量も少なく、原子吸光分析の結
果、酸化亜鉛が99.97%であった。
In any case, according to the above method, giant tetrabod-like objects occupy 86 cells or more. FIG. 2 shows an X-ray diffraction pattern of the whisker. All show zinc oxide peaks,
Electron diffraction results also showed single crystallinity with few dislocations and lattice defects. In addition, the content of impurities was low, and as a result of atomic absorption spectrometry, the content of zinc oxide was 99.97%.

実施例2 実施例1と同じ純亜鉛線を同じ溶射法で溶射し、直後、
その粉末を回収し、粉末1Kgに対しら501のイオン
交換水を投入し、乳鉢型拙潰機で26分間撹拌処理を行
い、次に20℃の水中に76時間放置熟成した。放置時
の水量粉体層から約1mの水位を保って大気中で保管し
た。この水中放置後、130℃で3時間の乾燥を行うこ
とにより、粉末の水分を除去する。次にこの粉末を多孔
質アルミナ容器に入れ、底面に散布した。容器は横40
 cm 、縦50 cm 、高さ30αであり、広面積
の一面が開口部となっている。粉末散布方法は上記亜鉛
粉末20o2を3朋以下の厚みで均一に散布した。この
容器をそのまま予め970℃に保たれた炉内に導き、3
0分間、焼成、酸化させた。堆積物の様子や反応中の亜
鉛粒子の振るまいは実施例1と同様であった。上層部の
ウィスカーの嵩比重は0.09の巨大テトラボッド状教
化亜鉛ウィスカー集合体であった。割合は84%であっ
た。得られた酸化亜鉛ウィスカーの電子顕微鏡写真を第
3図に示す。4軸テトラボツド状のものが89係以上を
占める。X線回折、電子線回折の結果は実施例1と同様
であった。原子吸光分析では酸化亜鉛が99.99Wt
係以上であった。
Example 2 The same pure zinc wire as in Example 1 was thermally sprayed using the same thermal spraying method, and immediately after
The powder was collected, ion-exchanged water of 501 g/kg of powder was added, stirred for 26 minutes in a mortar-type crusher, and then left to mature in water at 20° C. for 76 hours. Amount of water during storage The sample was stored in the atmosphere with the water level maintained at about 1 m from the powder layer. After standing in the water, the powder is dried at 130° C. for 3 hours to remove moisture from the powder. This powder was then placed in a porous alumina container and sprinkled on the bottom. The container is 40mm wide
cm, length 50 cm, and height 30α, and one side of the wide area is an opening. The powder scattering method was to uniformly spread the above-mentioned zinc powder at a thickness of 3 mm or less. This container was guided as it was into a furnace maintained at 970°C, and
It was fired and oxidized for 0 minutes. The appearance of the deposit and the behavior of the zinc particles during the reaction were the same as in Example 1. The bulk density of the whiskers in the upper layer was 0.09, and they were a giant tetrabod-shaped edified zinc whisker aggregate. The percentage was 84%. An electron micrograph of the obtained zinc oxide whiskers is shown in FIG. 4-axis tetrabot-shaped ones account for more than 89 units. The results of X-ray diffraction and electron beam diffraction were the same as in Example 1. Atomic absorption spectrometry shows that zinc oxide is 99.99Wt.
It was above the level of staff.

実施例3 機械的粉砕による粉末を使用した。純度99.99チ以
上の地金を切削し、ショークラッシャーで6回粗粉砕し
た後、スタンプミルで10回微粉砕した。全て空気中で
行った。粒子径60〜300μmのものを分級して得た
。焼成炉温度は970℃で、酸素26係の窒素混合ガス
雰囲気で行った。時間は36分間とした。容器は炭化硅
素製で、横20α、縦40an、高さ20cmの直方体
で広面積の一面が開口部となっている。他は全て実施例
1と同様に行った。みかけ嵩比重0.1でのウィスカー
が84 wt %得られ、16wt%が団塊状酸化亜鉛
であった。このウィスカーの電子顕微鏡写真を第4図に
示す。4軸テトラボツド状のものが81係であった。X
線、電子線回折の結果は実施例1と同様であった。ウィ
スカーの原子吸光分析で酸化亜鉛が99.97係であっ
た。
Example 3 A mechanically milled powder was used. An ingot with a purity of 99.99 cm or higher was cut, coarsely crushed six times with a show crusher, and then finely crushed ten times with a stamp mill. Everything was done in the air. It was obtained by classifying particles having a particle size of 60 to 300 μm. The firing furnace temperature was 970° C., and the firing was carried out in a mixed gas atmosphere of 26% oxygen and nitrogen. The time was 36 minutes. The container is made of silicon carbide, and is a rectangular parallelepiped with a width of 20 α, a length of 40 an, and a height of 20 cm, with one wide surface having an opening. Everything else was the same as in Example 1. 84 wt % of whiskers with an apparent bulk density of 0.1 were obtained, with 16 wt % being nodular zinc oxide. An electron micrograph of this whisker is shown in FIG. The 4-axis tetrabot-shaped one was number 81. X
The results of ray and electron diffraction were the same as in Example 1. Atomic absorption analysis of the whiskers revealed that zinc oxide had a coefficient of 99.97.

実施例4 実施例3と同様に機械的粉砕による粉末を得た。Example 4 A powder was obtained by mechanical pulverization in the same manner as in Example 3.

更にこの粉末I Kpに対し6002のイオン交換水を
加え、乳鉢式括潰機で10分間撹拌処理を行い、次に2
6℃の水中に90時間放置、熟成する。水中放置後、1
60℃で12時間乾燥し粉末の水分を除去した。この様
に調整した粉末を実施例3と同様に焼成処理した。生成
したウィスカーの嵩比重はo、09で75wt%が得ら
れ、25係が団塊状酸化亜鉛粉末であった。このウィス
カーの電子顕微鏡写真を第6図に示す。4軸テトラボツ
ド状のものが92チを示した。X線、電子線回折の結果
は実施例1と同様であった。ウィスカーの原子吸光分析
で酸化亜鉛が99.99 wt%であった。容器は実施
例3と同様にして同様な反応形態で行われた。
Furthermore, 6002 ion-exchanged water was added to this powder I Kp, stirred for 10 minutes in a mortar-type crusher, and then 2
Leave to mature in water at 6°C for 90 hours. After leaving it in water, 1
The powder was dried at 60° C. for 12 hours to remove moisture. The powder thus prepared was fired in the same manner as in Example 3. The bulk specific gravity of the produced whiskers was 75 wt % in o, 09, and 25 was nodular zinc oxide powder. An electron micrograph of this whisker is shown in FIG. The 4-axis tetrabot-shaped one showed 92 inches. The results of X-ray and electron diffraction were the same as in Example 1. Atomic absorption analysis of the whiskers revealed that zinc oxide was 99.99 wt%. The vessel was used as in Example 3 and a similar reaction configuration was carried out.

実施例6 揮発、凝縮法による球状亜鉛粉末を用いた。磁器製容器
中に純度99.97wt%の亜鉛地金を入れ970’C
に保ち亜鉛を蒸発させ気化分を室温、空気中で凝縮させ
た。平均粒径7.6μmのものを分級して得た。この亜
鉛粉末を実施例1と同様にして焼成した。焼成用容器は
実施例1と同寸法の炭化硅素製のものであり、実施例1
と同様にして焼成した。但し焼成温度は990℃で25
分間行った。雰囲気は空気であった。反応中の亜鉛粒子
の挙動は実施例1と同様で生成物の堆積も同様であった
Example 6 Spherical zinc powder produced by the volatilization and condensation method was used. Place zinc ingot with purity of 99.97wt% in a porcelain container and heat at 970'C.
The zinc was evaporated and the vapor was condensed in air at room temperature. The particles with an average particle size of 7.6 μm were obtained by classification. This zinc powder was fired in the same manner as in Example 1. The firing container was made of silicon carbide and had the same dimensions as in Example 1.
It was fired in the same manner. However, the firing temperature is 990℃ and 25
I went for a minute. The atmosphere was atmospheric. The behavior of the zinc particles during the reaction was similar to that of Example 1, and the product deposition was also similar.

生成ウィスカーの嵩比重0.09で92 wt %が得
られた。他は団塊状酸化亜鉛であった。このウィスカー
の電子顕微鏡写真を第6図に示す。4軸テトラボツド状
のものは90係以上であった。又実施例4までのものよ
り針状部の寸法が小であった。X線、電子線回折、原子
吸光分析の結果も実施例1と同様であった。
The resulting whiskers had a bulk specific gravity of 0.09 and 92 wt %. The others were nodular zinc oxide. An electron micrograph of this whisker is shown in FIG. The four-axis tetrabot-like one had a coefficient of 90 or more. In addition, the size of the needle-like portion was smaller than those in Examples up to Example 4. The results of X-ray, electron diffraction, and atomic absorption spectrometry were also the same as in Example 1.

実施例6 実施例6で用いた亜鉛粉末を用いた。この粉末I Kg
を550−の水中に投じ、拙潰機で6分間混合した。次
に30’Cの水中に91時間放置熟成した。その後11
0℃で24時間乾燥して水分を除去した。この様に調整
した粉末を実施例6と同様に同条件で酸化させた。生成
したウィスカーの嵩比重0.09で84 wt%で得ら
れ、残りは団塊状酸化亜鉛であった。ウィスカーの電子
顕微鏡写真を第7図に示す。4軸テトラボツド状のもの
は96係以上であった。実施例5と同様に斜状部寸法が
その他のものよりやや小であった。X線、電子線回折、
原子吸光分析の結果も実施例1と同様であった。
Example 6 The zinc powder used in Example 6 was used. This powder I kg
The mixture was poured into 550-g water and mixed for 6 minutes using a rough crusher. Next, it was left to mature in water at 30'C for 91 hours. then 11
Moisture was removed by drying at 0° C. for 24 hours. The powder thus prepared was oxidized in the same manner as in Example 6 under the same conditions. The generated whiskers had a bulk specific gravity of 0.09 and were obtained in an amount of 84 wt%, and the remainder was nodular zinc oxide. An electron micrograph of the whiskers is shown in FIG. The 4-axis tetrabot-shaped one had a coefficient of 96 or more. As in Example 5, the dimensions of the oblique portion were slightly smaller than those of the others. X-ray, electron diffraction,
The results of atomic absorption spectrometry were also the same as in Example 1.

上記実施例を次表にまとめる。The above examples are summarized in the following table.

(以下余 白) 発明の効果 本発明の製造方法によると巨大テトラボッド状の酸化亜
鉛ウィスカーが得られる。又製造方法として原料として
表面に、酸化皮膜を有する亜鉛粉末の粒度選択、酸化皮
膜の密封性の調整、水中での機械的iG潰処理、水中で
の熟成による皮膜密封度の向上処理、皮膜の厚化処理に
続き乾燥後、−面に開口面を持った容器底への原料粉末
の散布後に焼成工程で容器内にウィスカーが堆積する方
法で、酸素を含む雰囲気下で行った場合、工程条件の設
定により、テトラボッド状酸化亜鉛ウィスカーの各種の
大きさのものが得られる。
(Hereinafter, blank spaces) Effects of the Invention According to the production method of the present invention, zinc oxide whiskers in the shape of giant tetrabods can be obtained. In addition, the manufacturing method includes particle size selection of zinc powder having an oxide film on the surface as a raw material, adjustment of the sealing property of the oxide film, mechanical iG crushing treatment in water, treatment to improve the sealing degree of the film by aging in water, After drying following the thickening process, whiskers are deposited inside the container during the firing process after the raw material powder is sprinkled on the bottom of the container with an opening on the negative side.If carried out in an atmosphere containing oxygen, the process conditions Various sizes of tetrabod-like zinc oxide whiskers can be obtained by setting .

本発明で得られるウィスカーは異方性のない立体構造を
有しているため、各種材料の強化材として用いる場合や
電子材料として用いる場合でも機械的、電気的特性に異
方性を生じさせない。又従来の酸化亜鉛の微細針状結晶
と比べて寸法的にはるかに大きく、金属や樹脂、セラミ
ックと複合させて、それらの機械的強度を強化できる等
の効果の他、他の同種目的の炭化硅素や窒化硅素等に比
べて安価に製造できる利点を有しており、工業的にも経
済的にも極めて大きな効果を奏するものである。
Since the whiskers obtained in the present invention have a three-dimensional structure without anisotropy, they do not cause anisotropy in mechanical or electrical properties even when used as reinforcing materials for various materials or as electronic materials. In addition, it is much larger in size than the conventional fine acicular crystals of zinc oxide, and can be combined with metals, resins, and ceramics to strengthen their mechanical strength. It has the advantage that it can be produced at a lower cost than silicon, silicon nitride, etc., and has extremely large effects both industrially and economically.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第3〜7図は本発明による酸化亜鉛ウィス
カーの結晶構造を示す電子顕微鏡写真、第2図はX線回
折図である。 代理人の氏名 弁理士 粟 野 重 孝 はが1名区 剣 奴
1 and 3 to 7 are electron micrographs showing the crystal structure of zinc oxide whiskers according to the present invention, and FIG. 2 is an X-ray diffraction diagram. Name of agent: Patent attorney Shigetaka Awano

Claims (1)

【特許請求の範囲】[Claims] 容器が一面の開口部を有し、この面に対応する底面上に
、表面に酸化皮膜を有する亜鉛粉末を配置して、酸素を
含む雰囲気下で加熱、酸化させて、ウィスカーを同一容
器内に生成、堆積させることを特徴とする酸化亜鉛ウィ
スカーの製造法。
A container has an opening on one side, and zinc powder having an oxide film on the surface is placed on the bottom surface corresponding to this surface, and is heated and oxidized in an oxygen-containing atmosphere to form whiskers in the same container. A method for producing zinc oxide whiskers, characterized by generating and depositing them.
JP63328271A 1988-12-16 1988-12-26 Method for producing zinc oxide whiskers Expired - Lifetime JP2584035B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63328271A JP2584035B2 (en) 1988-12-26 1988-12-26 Method for producing zinc oxide whiskers
DE68924646T DE68924646T2 (en) 1988-12-16 1989-12-13 METHOD FOR PRODUCING ZINCOXIDE WHISKERS.
US07/566,475 US5158643A (en) 1988-12-16 1989-12-13 Method for manufacturing zinc oxide whiskers
PCT/JP1989/001246 WO1990007022A1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
EP90900992A EP0407601B1 (en) 1988-12-16 1989-12-13 Production method of zinc oxide whisker
KR1019900701787A KR930007857B1 (en) 1988-12-16 1989-12-13 Production method of zinc-oxide whisker
CA002005737A CA2005737C (en) 1988-12-16 1989-12-15 Manufacturing method of zinc oxide whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63328271A JP2584035B2 (en) 1988-12-26 1988-12-26 Method for producing zinc oxide whiskers

Publications (2)

Publication Number Publication Date
JPH02172897A true JPH02172897A (en) 1990-07-04
JP2584035B2 JP2584035B2 (en) 1997-02-19

Family

ID=18208361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63328271A Expired - Lifetime JP2584035B2 (en) 1988-12-16 1988-12-26 Method for producing zinc oxide whiskers

Country Status (1)

Country Link
JP (1) JP2584035B2 (en)

Also Published As

Publication number Publication date
JP2584035B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
KR920009567B1 (en) Zinc oxide whiskers having a tetrapod crystalline form and method for making the same
Ayyub et al. Synthesis of nanocrystalline material by sputtering and laser ablation at low temperatures
Iwama et al. Ultrafine powders of TiN and AlN produced by a reactive gas evaporation technique with electron beam heating
CA2137248A1 (en) .alpha.-alumina
JP2003041362A (en) Method for manufacturing zinc oxide-based homologous compound film
Kim et al. Amorphous phase formation of the pseudo-binary Al2O3–ZrO2 alloy during plasma spray processing
KR20040069178A (en) MgO VAPOR DEPOSITION MATERIAL AND METHOD FOR PREPARATION THEREOF
Lux et al. Aerosol generation of lanthanum aluminate
JP2600762B2 (en) Method for producing zinc oxide whiskers
Yang et al. Epitaxial grain growth during splat cooling of alumina droplets produced by atmospheric plasma spraying
WO1990007022A1 (en) Production method of zinc oxide whisker
JPH02172897A (en) Production of zinc oxide whisker
JP2697431B2 (en) Zinc oxide crystal and method for producing the same
US4865832A (en) Molybdenum oxide whiskers and a method of producing the same
JP2019151533A (en) Silicon carbide powder
JP2605847B2 (en) Manufacturing method of zinc oxide whiskers
JP2563544B2 (en) Manufacturing method of zinc oxide whiskers
JP2584032B2 (en) Manufacturing method of zinc oxide whiskers
JPS63166965A (en) Target for vapor deposition
Lim et al. Surface Breakaway Decomposition of Perovskite 0.91 PZN–0.09 PT during High‐Temperature Annealing
Sadler et al. Response of silicon carbide to high-intensity laser irradiation in a high-pressure inert gas atmosphere
US20020071803A1 (en) Method of producing silicon carbide power
JPS5891019A (en) Manufacture of aluminum nitride-base powder
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
Ueyama et al. Preparation of BaTiO 3 ultrafine particles by micro-emulsion charring method